Proposed theorems on an almost complex golden structure and its frame bundle
Main Article Content
Abstract
The goal of this research is to ascertain the connection between CRstructure and an almost complex golden structure and to identify some fundamental findings. A few theorems on CR-structure and an almost complex golden structure are proved, and integrability criteria are discussed.
Downloads
Download data is not yet available.
Article Details
How to Cite
Sadiyal, A. (2024). Proposed theorems on an almost complex golden structure and its frame bundle. Journal of the Tensor Society, 18(01), 01-08. https://doi.org/10.56424/jts.v18i01.250
Section
Articles

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
1] A. Bejancu, Geometry of CR submanifolds, D. Reidel Publishing Co., Dordrecht (1986).
[2] A. Bejancu, CR submanifolds of a Kaehler manifold-I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
[3] D.E. Blair and B.Y. Chen, On CR-submanifolds of Hermitian manifolds, Israel J. Math. 34 (1979), 353-363.
[4] B.Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, (1973).
[5] S. Dragomir, M. H. Shahid and F.R. Al-Solamy, Geometry of CauchyRiemann Submanifolds, Springer Singapore, (2016).
[6] Lovejoy S. Das, Submanifolds of F-structure satisfying FK +(−)K+1F = 0, Internat. J. Math. Math. Sci. 26 (2001), 167-172.
[7] Lovejoy S. Das, On CR-structure and F-structure satisfying FK + (−)K+1F = 0. Rocky Mountain Journal of Mathematics, 36(3) (2006),
885-892.
[8] K. Yano and Masahiro Kon, Differential geometry of CR-submanifolds, Geom. Dedicata 10 (1981), 369-391.
[9] M.N.I. Khan, S Chaubey, N Fatima, A Al Eid, Metallic Structures for Tangent Bundles over Almost Quadratic –Manifolds, Mathematics 11, 4683,
2023.
[10] U.C. De, M.N.I. Khan, Complete lifts of a semi-symmetric non-metric connection from a riemannian manifold to its tangent bundles, Commun.
Korean Math. Soc. 38 (4), 1233-1247, 2023.
[11] M.N.I. Khan, F Mofarreh, A Haseeb, Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection, Symmetry, 2023 15 (3), 753.
[12] M.N.I. Khan, De, U.C.; Velimirovic, L.S. Lifts of a Quarter-Symmetric
Metric Connection from a Sasakian Manifold to Its Tangent Bundle. Mathematics, 11, 53, 2023.
[13] M.N.I. Khan, Novel theorems for metallic structures on the frame bundle
of the second order, Filomat 36:13 (2022), 4471–4482, 2022.
[14] R. Kumar, L Colney, M.N.I. Khan, Lifts of a semi-symmetric non-metric
connection (SSNMC) from statistical manifolds to the tangent Bundle Results in Nonlinear Analysis 6 (3), 50-65, 2023.
[15] R. Kumar, L Colney, M.N.I. Khan, Proposed Theorems on the Lifts of
Kenmotsu Manifolds Admitting a Non-Symmetric Non-Metric Connection
(NSNMC) in the Tangent Bundle, Symmetry 15(11), 2037, 2023.
8[16] Cordero, L.A.; Dodson, C.T.; Le´on, M.D. Differential Geometry of Frame
Bundles. Springer Netherlands, Kluwer Academic Publishers, 1989.
[17] Bonome, A.; Castro, R.; Hervella, L.M. Almost Complex Structure in the
Frame Bundle of an Almost Contact Metric Manifold. Math. Z. 1986, 193,
431-440.
[18] Cordero, L.A.; Leon, D.M. Prolongation of G-structures to the frame
bundle. Annali di Matematica pura ed applicata. 1986, 143, 123–141.
https://doi.org/10.1007/BF01769212
[19] Yano, K.; Ishihara, S. Tangent and Cotangent Bundles. Marcel Dekker,
Inc., New York, 1973.
[20] Crasmareanu, M.; Hretcanu, C.E. Golden differential geometry. Chaos
Solitons Fractals 2008, 38, 1229-1238.
[21] Spinadel, V.W. de., On characterization of the onset to chaos, Chaos
Solitons Fractals 1997, 8(10), 1631–1643.
[22] Stakhov, A., The generalized golden proportions, a new theory of real
numbers, and ternary mirror-symmetrical arithmetic, Chaos, Solitons and
Fractals 2007, 33, 315–334.
[23] Naveira A. A classification of Riemannian almost-product manifolds.
Rend Di Mat Di Roma 1983, 3, 577-592.
[24] Pitis G. On some submanifolds of a locally product manifold. Kodai Math
J. 1986, 9, 327-333.
[25] Yano K, Kon M. Structures on Manifolds, Series in Pure Mathematics.
Singapore: World Scientific, 1984.
[26] Goldberg, S.I.; Yano, K. Polynomial structures on manifolds, Kodai Math
Sem Rep. 1970, 22, 199-218.
[27] Goldberg, S.I.; Petridis, N.C. Differentiable solutions of algebraic equations on manifolds. Kodai Math. Sem. Rep. 1973, 25, 111–128.
[28] Ozkan, M.; Prolongations of golden structures to tangent bundles. Differential Geometry Dynamical Systems 2014, 16, 227-239.
[29] Ozkan, M.; Peltek, B. A New Structure on Manifolds: Silver Structure,
International Electronic Journal of Geometry, 2016, 9(2), 59–69.
[30] Gonul, S.; Erken, I. K.; Yazla, A.; Murathan, C. A Neutral relation
between metallic structure and almost quadratic ϕ-structure. Turk J Math.
2019, 43, 268-278.
[31] Lachieze-Rey M. Connections and Frame Bundle Reductions.
arXiv:2002.01410 [math-ph], 4 Feb 2020.
[2] A. Bejancu, CR submanifolds of a Kaehler manifold-I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
[3] D.E. Blair and B.Y. Chen, On CR-submanifolds of Hermitian manifolds, Israel J. Math. 34 (1979), 353-363.
[4] B.Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, (1973).
[5] S. Dragomir, M. H. Shahid and F.R. Al-Solamy, Geometry of CauchyRiemann Submanifolds, Springer Singapore, (2016).
[6] Lovejoy S. Das, Submanifolds of F-structure satisfying FK +(−)K+1F = 0, Internat. J. Math. Math. Sci. 26 (2001), 167-172.
[7] Lovejoy S. Das, On CR-structure and F-structure satisfying FK + (−)K+1F = 0. Rocky Mountain Journal of Mathematics, 36(3) (2006),
885-892.
[8] K. Yano and Masahiro Kon, Differential geometry of CR-submanifolds, Geom. Dedicata 10 (1981), 369-391.
[9] M.N.I. Khan, S Chaubey, N Fatima, A Al Eid, Metallic Structures for Tangent Bundles over Almost Quadratic –Manifolds, Mathematics 11, 4683,
2023.
[10] U.C. De, M.N.I. Khan, Complete lifts of a semi-symmetric non-metric connection from a riemannian manifold to its tangent bundles, Commun.
Korean Math. Soc. 38 (4), 1233-1247, 2023.
[11] M.N.I. Khan, F Mofarreh, A Haseeb, Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection, Symmetry, 2023 15 (3), 753.
[12] M.N.I. Khan, De, U.C.; Velimirovic, L.S. Lifts of a Quarter-Symmetric
Metric Connection from a Sasakian Manifold to Its Tangent Bundle. Mathematics, 11, 53, 2023.
[13] M.N.I. Khan, Novel theorems for metallic structures on the frame bundle
of the second order, Filomat 36:13 (2022), 4471–4482, 2022.
[14] R. Kumar, L Colney, M.N.I. Khan, Lifts of a semi-symmetric non-metric
connection (SSNMC) from statistical manifolds to the tangent Bundle Results in Nonlinear Analysis 6 (3), 50-65, 2023.
[15] R. Kumar, L Colney, M.N.I. Khan, Proposed Theorems on the Lifts of
Kenmotsu Manifolds Admitting a Non-Symmetric Non-Metric Connection
(NSNMC) in the Tangent Bundle, Symmetry 15(11), 2037, 2023.
8[16] Cordero, L.A.; Dodson, C.T.; Le´on, M.D. Differential Geometry of Frame
Bundles. Springer Netherlands, Kluwer Academic Publishers, 1989.
[17] Bonome, A.; Castro, R.; Hervella, L.M. Almost Complex Structure in the
Frame Bundle of an Almost Contact Metric Manifold. Math. Z. 1986, 193,
431-440.
[18] Cordero, L.A.; Leon, D.M. Prolongation of G-structures to the frame
bundle. Annali di Matematica pura ed applicata. 1986, 143, 123–141.
https://doi.org/10.1007/BF01769212
[19] Yano, K.; Ishihara, S. Tangent and Cotangent Bundles. Marcel Dekker,
Inc., New York, 1973.
[20] Crasmareanu, M.; Hretcanu, C.E. Golden differential geometry. Chaos
Solitons Fractals 2008, 38, 1229-1238.
[21] Spinadel, V.W. de., On characterization of the onset to chaos, Chaos
Solitons Fractals 1997, 8(10), 1631–1643.
[22] Stakhov, A., The generalized golden proportions, a new theory of real
numbers, and ternary mirror-symmetrical arithmetic, Chaos, Solitons and
Fractals 2007, 33, 315–334.
[23] Naveira A. A classification of Riemannian almost-product manifolds.
Rend Di Mat Di Roma 1983, 3, 577-592.
[24] Pitis G. On some submanifolds of a locally product manifold. Kodai Math
J. 1986, 9, 327-333.
[25] Yano K, Kon M. Structures on Manifolds, Series in Pure Mathematics.
Singapore: World Scientific, 1984.
[26] Goldberg, S.I.; Yano, K. Polynomial structures on manifolds, Kodai Math
Sem Rep. 1970, 22, 199-218.
[27] Goldberg, S.I.; Petridis, N.C. Differentiable solutions of algebraic equations on manifolds. Kodai Math. Sem. Rep. 1973, 25, 111–128.
[28] Ozkan, M.; Prolongations of golden structures to tangent bundles. Differential Geometry Dynamical Systems 2014, 16, 227-239.
[29] Ozkan, M.; Peltek, B. A New Structure on Manifolds: Silver Structure,
International Electronic Journal of Geometry, 2016, 9(2), 59–69.
[30] Gonul, S.; Erken, I. K.; Yazla, A.; Murathan, C. A Neutral relation
between metallic structure and almost quadratic ϕ-structure. Turk J Math.
2019, 43, 268-278.
[31] Lachieze-Rey M. Connections and Frame Bundle Reductions.
arXiv:2002.01410 [math-ph], 4 Feb 2020.