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1. Introduction
In differential geometry, the theory of the tangent bundle of submanifolds is an intriguing subject. Regarding the almost 
complex structure of the ambient manifold, there are three different kinds of submanifolds: holomorphic submanifolds, fully 
real submanifolds, and CR-(Cauchy-Riemannian) submanifolds. A novel class of submanifolds of the complex manifold 
was begun by Bejancu [1], who researched the CR-submanifold of a Kahlerian manifold. Bejancu presented the idea of the 
CR-submanifold and described its fundamental characteristics. Many researchers, such as Bejancu [2], Blair and Chen [3], 
Chen [4], Dragomir at el [5], and Yao and Kon [8], made significant contributions to CR-submanifolds. For the recent studies 
on tangent bundle and geometric structures, we refer to ([10]-[17]) and many more. In this paper, we study the integrability 
conditions and Nijenhuis tensor on CR-structures and an almost complex golden structure.

The equation 2 3 0
2

x x I− + =  will be examined. The solutions of the equation are represented by the equation ( )1 1 5
2

x i= ±

. Let F  be a nonzero tensor field on a n -dimensional manifold M  of type ( )1,1  and class C∞  such that

( )2 3 0# 1.1
2

F F I− + =
                                                                           (1.1)

such structure on M  is called an almost complex golden structure of rank r . If the rank of F  is constant and ( )r r F=
, then M  is called an almost complex 

golden manifold. Let us introduce the operators as follows

( ) ( )
( )

2 22 2
, # 1.2

3 3

F F F F
l m I

− −
= − = +

                                                               (1.2)
where I  denotes the identity operator on M .

Theorem 1.1 Let M  be an almost complex golden manifold. Then

( )2 2, ,  and  # 1.3l m I l l m m+ = = =                                                                     (1.3)
Proof: In the view of equation (1.1), the proof is trivial.
For 0F ≠  satisfying equation (1.1), there exist complementary distributions lD  and mD  corresponding to the projection 
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operators l  and m  respectively. If the ( )rank F =  constant and ( )r r F=  on M , then dim lD r=  and ( )[ ]dim 17mD n r= − .
Theorem 1.2 Let M  be an almost complex golden manifold. Then

( )

( ) ( ) ( )
( )

2 2 2

 , 0# 1.4

2 2 2
,  , 0.# 1.5

3 3 3

Fl lF F Fm mF

F F F F F F
l l l m

= = = =

− − −
= − = − =

                                                                                (1.4)( )

( ) ( ) ( )
( )

2 2 2

 , 0# 1.4

2 2 2
,  , 0.# 1.5

3 3 3

Fl lF F Fm mF

F F F F F F
l l l m

= = = =

− − −
= − = − =

                                                        (1.5)

Thus 
( )

1
2 22

3

F F −
 
 
 

 acts on lD  as an almost complex structure and on mD  as a null operator.

Proof: In the view of equation (1.1), the proof is trivial.

2. Nijenhuis tensor
The Nijenhuis tensor ( ),N X Y  of F  satisfying (1.1) in M  is expressed as follows for every vector field ,X Y  on M .

                          ( ) [ ] [ ] [ ] [ ] ( )2, , , , , # 2.1N X Y FX FY F FX Y F X FY F X Y= − − +                                                            (2.1)

We state the following proposition [6].
Proposition 2.1 A necessary and sufficient condition for an almost complex golden structure F  to be integrable is that 

( ), 0N X Y =  for any two vector fields X  and Y  on M .

Definition 2.1 If ,X Y  are two vector fields in M , then their Lie bracket [ ],X Y  is defined by
     [ ] ( ), # 2.2X Y XY YX= −                                                                                   (2.2)

3. CR-structure
Let M  be a differentiable manifold and cT M  be its complexified tangent bundle. A CR-structure on M  is a complex subbundle 

H  of cT M  such that 0p pH H∩ =  and H  is involutive, i.e., for complex vector fields X  and Y  in [ ], ,H X Y  is in H . In 

this case, we say M  is a CR-manifold. Let F  be an almost complex golden integrable structure satisfying equation (1.1) of 

rank 2r m=  on M . We define complex subbundle H  of cT M  by ( ){ }1 ,p lH X FX X X D= − − ∈ , where ( )lDχ  is the 

( )mDη  module of all differentiable sections of lD . Then ( )Re lH D=  and 0H Hp∩ = , where pH  denotes the complex 
conjugate of [ ]7H .

Theorem 3.1 If P  and Q  are two elements of H , then the following relations hold

 [ ] [ ] [ ] [ ]( ( ), , , 1 , , ).# 3.1P Q X Y FX FY X FY FX Y = − − − +                                                               (3.1)

Proof: Let us define 1P X FX= − −  and 1Q Y FY= − − . Then by direct calculations and simplification, we obtain

[ ]
[ ] [ ] [ ](

, 1 , 1

 , , 1 , , ).

P Q X FX Y FY

X Y FX FY X FY FX Y

 = − − − − 
= − − − +   

Theorem 3.2 If an almost complex golden structure satisfying (1.1) is integrable, then we have

 ( )[ ] [ ] [ ] [ ]( ) ( )2 3, , , , # 3.2
2

F I FX FY F X Y l FX Y X FY− + = − +                                                  (3.2)
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Proof: From equation (2.1) we have
 ( ) [ ] [ ] [ ] [ ]2, , , , , .N X Y FX FY F FX Y F X FY F X Y= − − +

Since ( ), 0N X Y = , we obtain

 [ ] [ ] [ ] [ ]( ) ( )2, , , , # 3.3FX FY F X Y F FX Y X FY+ = +                                                (3.3)

operating (3.3) by ( )2
3

F I−
− , we get

( ) [ ] [ ]
( )

[ ] [ ]

( )[ ] [ ] [ ] [ ]( )

2
2

2

22
, ,  ( , ,

3 3

3, ,  , ,
2

F FF I
F X FY F X Y FX Y X FY

F I FX FY F X Y l FX Y X FY

−−
− + = − +

− + = − +

∣                            (3.4)( ) [ ] [ ]
( )

[ ] [ ]

( )[ ] [ ] [ ] [ ]( )

2
2

2

22
, ,  ( , ,

3 3

3, ,  , ,
2

F FF I
F X FY F X Y FX Y X FY

F I FX FY F X Y l FX Y X FY

−−
− + = − +

− + = − +

∣

                            (3.5)

on making use of equation (1.2) we obtain (4.7)), which proves Theorem (3.2).
Theorem 3.3 The following identities hold

( ) [ ] ( )

( ) ( )
( )

2

,  , # 3.6

22
,  , # 3.7

3 3

mN X Y m FX FY

F FF I
mN X Y m X FY

=

 −−   =      

                                                             (3.6)( ) [ ] ( )

( ) ( )
( )

2

,  , # 3.6

22
,  , # 3.7

3 3

mN X Y m FX FY

F FF I
mN X Y m X FY

=

 −−   =      
                                                 (3.7)

Proof: The proof of (3.6) and (3.7) follows by virtue of Theorems (1.1), (1.2)
and equations (1.2) and (2.1).

Theorem 3.4 For any two vector fields X and Y the following conditions are
equivalent.

( )

[ ]

( )

( )

( )

2

2

 i.  ,  0

 ii. ,  0

2
 iii. ,  0

3

2
 iv. ,  0

3

2
 v. ,  0

3

mN X Y

m FX FY

F I
mN X Y

F F
m X FY

F F
m lX FY

=

=

− 
= 

 

 −
  =
 
 

 −
  =
 
 

Proof: Using equations (1.1), (1.2), (2.1) and Theorems (1.2) and (3.3). The above conditions are equivalent.

Theorem 3.5 If 
( )

1
2 22

3

F F −
 
 
 

 acts on l  as an almost complex structure, then

( )
[ ]

22
, , 0

3

F F
m lX FY m X FY
 −
  = − =
 
 

                                                 (3.8)
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Proof: In view of equation (1.4), we see that 
( )

1
2 22

3

F F −
 
 
 

 acts on l  as an almost complex structure then equation (3.8) 

follows in an obvious manner. To show that 
( )22

,
3

F F
m lX FY
 −
 
 
 

 we use Definition (2.1), i.e., [ ],X Y XY YX= −  where ,X Y  

are C∞  vector fields and in view of equation (1.4), the result follows directly.
Theorem 3.6 For ( ), lX Y Dχ∈ , we have

[ ] [ ]( ) [ ] [ ], , , ,l X FY FX Y X FY FX Y+ = +

Proof: Since [ ],X FY  and [ ] ( ), lFX Y Dχ∈ − . On making use of (1.4) and Definition (2.1), we obtain the result.

Theorem 3.7 The integrable an almost complex golden structure satisfying (1.1) on M  defines a CR-structure H  on it such 
that lReH D≡ .

Proof: After applying equations (3.1), (4.7), and Theorem (3.6), we obtain [ ] ( ), lP Q Dχ∈ , given that [ ],X FY  and 

[ ] ( ), lFX Y Dχ∈ . An almost complex golden structure satisfying (1.1) on M  defines a CR-structure H .

Definition 3.1 Let 
˜
K  be the complementary distribution of ( )Re H  to TM. We define a morphism of vector bundles 

:F TM TM→  given by ( ) 0F X =  for all 
˜

X Kχ  
∈  

 
, such that

( ) ( )1 1
2

F X P P= − −                                                                                   (3.9)
 
where ( )1 pX Y Hχ+ − ∈  and ( ) ( )1 1

2
F X P P= − −  is a complex conjugate of P .

Corollary 3.1 If 1P X Y= + −  and ( ) ( )1 1
2

F X P P= − − 1P X Y= − −


 belong to pH  and ( ) ( ) ( ) ( )1 11 , 1
2 2

F X P P F Y P P= − − = − +  and 

( ) ( )1 1
2

F Y P P− = − +
 
, then ( ) ( )2,F X Y F X X= − = −  and ( )F Y X− = − .

Proof: On using Definition (3.1), we have
 

( ) ( )

( )

1 1 1 1
2

1 1 2 1 1
2

F X X Y X Y

Y

= − + − − − −

= − − = −

Thus, ( )F X Y= − , which on operating by F  yields
 

( )( ) ( )F F X F Y= −

But

 ( ) ( )1 1 1
2

F Y X Y X Y= + − + − −                                                                       (3.10)

which on simplifying gives
 ( )F Y X=

Also,
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( ) ( )1 1 1
2

 

F Y X Y X Y

X

− = − + − + − −

= −                                                          (3.11)

Combining equations (3.10) and (3.12), we get
 

( )2F X X= −

Theorem 3.8 If M  has a CR-structure H , then we have 2 3 0
2

F F I− + =  and consequently an almost complex golden 

structure is defined on M  such that the distributions lD  and mD  coincide with ( )Re H  and K  respectively.

Proof: Suppose M  has a CR-structure on M . Then in view of Definition (3.1) and Corollary (3.1) we can write

 ( )F X Y= −                                                                                  (3.12)

operating (3.12) by ( )2
3

F I−
 we get

  ( ) ( ) ( ) ( )
2 2

3 3
F I F I

F X Y
− −

= −   (3.13)

On simplifying the above equation we get
 

2 3 0
2

F F I− + =

4. An almost complex golden structure on the frame bundle
Let M  be an n -dimensional differentiable manifold of class C∞  and FM  its frame bundle over the manifold M . Suppose 

the base space M  is covered by a system of coordinate neighborhoods ( ), iU x  such that ( ) ( )1F U Uπ −=  where ( )ix  is a 

system of local coordinates defined in the neighborhood U  and : FM Mπ →  the projection map. The local components of 

the vector Xα  of the frame xp U∈  are given by i
i

x
X X

xα α
∂ =  ∂ 

. Thus ( ){ }, ,i iFU x Xα  is a coordinate system in FM .

Let ∇  be a linear connection and X  a vector field on M  with local components Ãh
ij  and iX , respectively. Let vector fields 

HX  and , 1, 2, .X mα α = … . be the horizontal lift and the thα -vertical lift of X  on FM  and defined by [?]

( )

 

 

H i i h k
iki h

i
i

X X X X
x x

X X
X

α

α

α

∂ ∂
= − Γ

∂ ∂

∂
=

∂

                                                                    (4.1)

( )

 

 

H i i h k
iki h

i
i

X X X X
x x

X X
X

α

α

α

∂ ∂
= − Γ

∂ ∂

∂
=

∂                                                                    (4.2)

Let f  be a differentiable function on M , we write Vf  for function i.e. vertical lift in FM  and 0Hf =  its horizontal lift 
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[?].

If F  is a tensor field on M  of type ( )1,1  with components h
jF  in U , then

 ( )Ã Ã jH h j k i h h i j h
j jk i ik j jh h hF F dx X F F dx F dX

X X X
β

α α β
α α

δ∂ ∂ ∂
= ⊗ + − ⊗ + ⊗

∂ ∂ ∂                                                        (4.3)

is local components of HF  in FU .

Let τ  be a 1-form on M  with local components iτ  in U , then

( )
1

 

 

 

V i
i

H j h i i
ij h i

m
H j h i i

ij h i

dx

X dx dX

X X dx dX

α
α α

α α
α

τ τ

τ τ τ

τ τ
=

=

= Γ +

= Γ +∑

                                                                  (4.4)

are local components of , HV ατ τ  and HX  in FU .
The following formulas of horizontal and vertical lifts are given by

( )
( ) ( )

( )( ) ( )

( ) ( )
( ) ( ) ( )
( ) ( )

( )( )
( )

( )( ) ( )

( ( ) )

0  

( )  

( )  

 

 ( )

 0

 0

 ( )

H V v

V

H

H H H

H C

V H V

V

H H

H V

X f X f

X f

F X F X

F X F X

F A F A F A

X F X

X

X

X X

α

α

α

α α

α

β β
α

λ λ λ

τ

τ

τ

τ δ τ

=

=

=

=

= =

=

=

=

=

                                                                  (4.5)

for all vector fields ,X Y  on M  and Aλ  is fundamental vector field associated to A  where ( ) ( ), , ,A gl n R gl n R∈  is 

general linear group and R  is Euclidean space.
The brackets of vertical and horizontal lifts are expressed by the following formulas

( ) ( )

( ) ( )( )

( )

,  0

,  

, , ,  

H
X

H H H H

X Y

X Y Y

X Y X Y R X Y

α β

αα

γ

  = 

  = ∇ 

   = −   

                                                          (4.6)

 
where ( ) [ ] [ ],, ,X Y X YR X Y = ∇ ∇ −∇ .

Let ( ),M g  be an n -dimensional Riemannian manifold and FM  its frame bundle. Let HX  and ( ) , 1, 2, ,X nα α = … , be 

horizontal and vertical lifts of a vector field X  on FM  with respect to the Levi-Civita connection ∇  of a Riemannian metric 
g .
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Introduce a tensor field , 1, 2, ,F nα α = … , of type ( )1,1  on FM  by

( ) ( ){ }
( ) ( ) ( ){ }

1 2 1
2

1 2 1
2

H H

H

F X X x X

F X X x X

α
α

β ββ
α αδ

= + −

= + −                                                                   (4.7)

 
where ( )1 1 5

2
x i= ±

Theorem 4.1 Let FM  be the frame bundle of M . Then a tensor field Fα , defined by equation (4.7), is an almost complex 
golden structure on FM.

Proof: In order to prove Fα  is an almost complex golden structure, it suffices to show that 2 3 0
2

F F Iα α− + = .

In the view of equation (4.7), then

( )

( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( ) ( ){ } ( ) ( ){ }

2 3 3 
2 2

1 1 3 2 1  2 1
2 2 2

2 11 1 3 2 1  2 1  2 1
4 4 2 2

0

 

H H H H

H H H

H H H H

F F I X F F X F X X

F X x X X x X X

x
X x X X x X X x X X

α α α α α

α α
α

α β α

 − + = − + 
 

= + − − + − +

−
= + − + + − − + − +

=

Similarly, it is easily proved that ( )2 3 0
2

F F I X α
α α

 − + = 
 

 which imply that 2 3 0
2

F F Iα α− + = .

Hence, Fα  is an almost complex golden structure on FM .
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