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Abstract

Similarity solutions are obtained for unsteady, one-dimensional, self-similar

flow of a perfectly conducting mixture of a non-ideal gas and small solid parti-

cles, behind a strong shock (cylindrical or spherical) driven by a piston moving

according to power law in the presence of an azimuthal magnetic field. The

small solid particles are considered as pseudo-fluid and assumed to be continu-

ously distributed in the mixture. Effects of change in the values of parameters

Kp, Ga (dust parameters), b (non-idealness parameter of the gas) and M−2
A

(magnetic parameter) on the shock strength, piston position and on the flow-

variables in the flow-field behind the shock front are obtained. It is found that

there is a decrease in the shock strength and the value of piston position due to

the non-idealness of gas as well as due to the presence of dust-particles and the

magnetic field. This decrease in the shock strength and the value of piston po-

sition is interpreted as a result of decrease in the compressibility of the mixture.

Mutual effects of parameters are also obtained to investigate the deviations in

the effects of parameters Kp, Ga and b due to the presence of magnetic field. It

is observed that effects of parameters Kp, Ga and b on the shock strength and

on the piston position are reduced due to the presence of magnetic field while

the effects of these parameters on the flow-variables are enhanced due to the

presence of magnetic-field.
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1. Introduction

The study of shock wave propagation in a mixture of a gas and small solid

particles is of great importance due to its application in nozzle flow, lunar ash

flow, bomb blast, coal-mine blast, underground, volcanic and cosmic explosions,

metallized propellent rocket, supersonic flight in polluted air, collision of coma

with planet and many other engineering problems. Also, there are many natural

phenomena such as explosion of supernova, sand storms, aerodynamic ablation,

cosmic dusts etc. which include gas particle two-phase mixture in which shock

wave appears. So, its study in gas-particle mixture becomes more important.

So far, a number of papers have been reported on the shock wave propagation

in a mixture of gas and dust particles.

Miura and Glass [1] obtained an analytic solution of a planer dusty gas

with constant velocities of the shock and the piston moving behind it. As they

neglected the volume occupied by the solid particles mixed into the perfect

gas, the dust virtually has a mass fraction but no volume fraction. Their re-

sults reflect the influence of the additional inertia of the dust upon the shock

propagation. Vishwakarma and Pandey [2] obtained a self-similar solution for a

one-dimensional, unsteady, adiabatic flow of a mixture of a perfect gas and small

solid particles behind a strong spherical shock wave with time dependent energy

input. They analysed that the presence of solid particles affects the medium in

two ways: first, the volume fraction of solid particles lowers the compressibility

of the mixture and second, the particle load increases the inertia of the mixture

(Pai et al. [3], Narasimhula Naidu, Venkatanandam and Ranga Rao [4], Steiner

and Hirschler [5]).

In extreme conditions that prevail in most of the problems associated with

shock wave, the assumption that the gas is ideal is no longer vaild. Therefore,

several authors studied the problem of shock wave propagation in non-ideal

gases, for example, Anisimov and Spiner [6], Ranga Rao and Purohit [7], Ojha

and Tiwari [8], Vishwakarma, Patel and Chaube [9], Vishwakarma and Nath

[10]. Anisimov and Spiner [7] have taken an equation of state for non-ideal

gases in simplified form, and investigated the effect of parameter for non-ideal

gas on the problem of a strong point explosion. Vishwakarma and Nath [10]

obtained the similarity solution for a strong shock driven by a piston moving

according to power law in a medium which is assumed to be a mixture of non-

ideal gas and small solid particles, in both the cases when the flow is isothermal

and adiabatic.
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Since at high temperature that prevail in most of the problems associated

with shock waves a gas is ionized, electromagnetic effects may also be significant.

A complete analysis of such a problem should therefore consist of the study of

gas-dynamic flow and the electromagnetic field simultaneously. The study of

shock wave propagation in a medium under the influence of magnetic field al-

ways creates a great interest since its study is very useful in many space research

and astrophysical phenomena like formation of magnetor during supernova ex-

plosion, flare produced in solar wind, central part of burst of galaxies, nuclear

explosion etc. Many authors studied the problem of shock wave propagation in

presence of magnetic field.

Parker [11] pointed out that the hydrodynamic blast wave theory can use-

fully describe the large-scale regime to which flow due to a sudden expansion

of solar corona asymptotically converge. Using similarity assumptions, he pre-

sented a number of solutions for his idealized adiabatic “solar wind” model.

These solutions correspond to the flow driven by a spherical piston in power

law motion whose surface is the contact discontinuity enveloping the fresh flare

corona in the centre core. Rosenau and Frankenthal [12] extended the work of

Parker [11] to the hydromagnetic case. Lee and Chen [13] and Summers [14]

have studied an idealized model of a magnetohydrodynamic spherical blast wave

applied to a flare produced in magnetic-field. Christer and Helliwell [15] stud-

ied the cylindrical shock and detonation waves in magneto-hydrodynamics. In

recent years the propagation of shock wave in the presence of magnetic field has

been described by many authors, particularly, by Vishwakarma and Yadav [16],

Nath [17], Vishwakarma, Maurya and Singh [18], Nath [19] and Vishwakarma,

Nath and Srivastava [20]. Vishwakarma and Srivastava [20] obtained the self-

similar solution for a cylindrical shock wave in a weakly conducting dusty gas.

In all the works, mentioned above, where the effect of magnetic field is

considered on the shock wave propagation, the medium has been taken to be

either a non-ideal gas, a perfect gas or a dusty gas (mixture of perfect gas and

small solid particles). No author has studied the effects of magnetic field on the

propagation of shock wave in a mixture of a non-ideal gas and dust particles.

Therefore, in the present work, we extend the work of Vishwakarma and Nath

[10] by taking a magnetic field in the perfectly conducting mixture of non-ideal

gas and small solid particles through which shock wave propagates.

To get some essential features of shock wave propagation, small solid par-

ticles are considered as pseudo-fluid, and it is assumed that the equilibrium
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flow condition is maintained in the whole flow-field and viscous stress and heat

conduction of the mixture are negligible (Pai et al. [3], Higashino and Suzuki

[21], Steiner and Hirschler [5]). Also, it is assumed that the medium is perfectly

conducting and it is permeated by a variable azimuthal magnetic field.

Because of high temperature in the flow, transfer of heat takes place be-

hind a strong shock by the mode of radiation. So, for such flows the assumption

of adiabaticity may not be valid. Therefore, an alternative assumption of zero

temperature gradient throughout the flow (flows which satisfy this condition

are also known as isothermal flow) may approximately be taken (Korobeinikov

[22], Laumbach and Probstein [23], Sachdev and Ashraf [24]). With these as-

sumptions, we therefore derive a similarity solution for both the isothermal and

adiabatic flows behind a strong cylindrical or spherical shock propagating in a

medium (mixture of non-ideal gas and small solid particles) driven by a piston

moving according to power law in presence of a variable azimuthal magnetic

field. Effects of change in the values of different parameters (dust parameter

Kp, Ga, non-idealness parameter of the gas b, magnetic parameter M−2
A ) are

obtained. A comparison is also made between the solutions of isothermal and

adiabatic flows. Through this study our main purpose is to find out that how

the effects of the non-idealness of the gas and the dust particles on the shock

strength, on the piston position and on the flow variables in the flow field behind

the shock deviate due to the presence of the azimuthal magnetic field. For this

purpose, we obtain the mutual effects of parameters Kp, Ga, b and M−2
A on the

shock strength, piston position and on the different flow variables.

2. Fundamental Assumptions

We take the medium to be a perfectly conducting mixture of a non-ideal

gas and small solid particles. Here the small solid particles are taken as pseudo

fluid. The equation of state for non-ideal gas is taken to be (Anisimov and

Spiner [6], Ranga Rao and Purohit [7], Vishwakarma and Nath [10])

pg = R∗ρ′g(1 + bρ′g)T, (1)

where pg and ρ′g are the partial pressure and the partial density of the gas in

the mixture, T is the temperature of the gas (and of the solid particles as the

equilibrium flow condition is maintained), R∗ is the specific gas constant and b is

the internal volume of the molecules of the gas. Because of intermolecular force

of interaction present among the component molecules of the gas, the deviations

of an actual gas from the ideal state results in this equation. The density of the

non-ideal gas is assumed to be so small that the triple, quadruple and higher
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order collisions among the molecules of the gas are negligible and therefore the

gas molecules interact through binary collisions only.

The specific volume of solid particle is assumed to remain unchanged by

variation in the temperature and pressure. Thus, the equation of state of solid

particles in the mixture is, simply,

ρsp = constant, (2)

where ρsp is the specific density of the solid particles. Proceeding on the same

line as Pai [25], we obtain the equation of state of the mixture as

p =
1−Kp

1− Z
[1 + bρ(1−Kp)]ρR

∗T, (3)

where p and ρ are the pressure and density of the mixture, Z =
Vsp

V is the volume

fraction and Kp =
Msp

M is the mass fraction (concentration) of the solid particles

in the mixture. Here Msp and Vsp are the total mass and volumetric extension

of the solid particles and V and M are the total volume and total mass of the

mixture.

The relation between Kp and Z is given by (Pai [25])

Kp =
Zρsp
ρ

. (4)

In equilibrium flow, Kp is constant in whole flow field. Therefore from (4)

Z

ρ
= constant. (5)

Also, we have the relation (Pai [25])

Z =
Kp

G(1−Kp) +Kp
, (6)

where G =
ρsp
ρg

is the ratio of the density of the solid particles to the species

density of the gas. The internal energy per unit mass of the mixture may be

written as

Em = [KpCsp + (1−Kp)Cv]T = CvmT, (7)

where Csp is the specific heat of the solid particles, Cv is the specific heat of the

gas at constant volume and Cvm is the specific heat of the mixture at constant

volume. The specific heat of the mixture at constant pressure is

Cpm = KpCsp + (1−Kp)Cp, (8)

where Cp is the specific heat of the gas at constant pressure.
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The ratio of the specific heats of the mixture is given by (Pai et al. [3], Pai

[25], Marble [26]),

Γ =
Cpm

Cvm
= γ

1 + δβ′/γ

1 + δβ′
, (9)

where γ =
Cp

Cv
, δ =

Kp

1−Kp
and β′ =

Csp

Cv
.

Now

Cpm − Cvm = (1−Kp)(Cp − Cv) = (1−Kp)R
∗, (10)

where R∗ = (Cp−Cv), neglecting the term b2ρ2 (Anisimov and spiner [7], Singh

[27]). The internal energy per unit mass of the mixture is, therefore, given by

Em =
p(1− Z)

ρ(Γ− 1)[1 + bρ(1−Kp)]
. (11)

3. Equations of Motion and Shock Conditions- Isothermal Flow

The equations of motion for a one-dimensional, unsteady, isothermal flow

of a perfectly conducting mixture of a non-ideal gas and small solid particles

in the presence of an azimuthal magnetic field, may in Eulerian co-ordinates be

written as-
∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+

jρu

r
= 0, (12)

∂u

∂t
+ u

∂u

∂r
+

1

ρ

[∂p

∂r
+ µh

∂h

∂r
+

µh2

r

]

= 0, (13)

∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
+ (j − 1)

hu

r
= 0, (14)

∂T

∂r
= 0, (15)

where u is the flow velocity, h is the azimuthal magnetic-field, µ is the magnetic

permeability, r and t are the space and time co-ordinates and j = 1 or 2 for

cylindrical or spherical symmetry.

From equation (3), we have

(∂p

∂ρ

)

T
=

p{1 + bρ(1−Kp)(2− Z)}
ρ(1− Z){1 + bρ(1−Kp)}

. (16)

Thus, the isothermal sound speed ais is given by

a2is =
(1−Kp)R

∗T{1 + bρ(1−Kp)(2− Z)}
(1− Z)2

. (17)
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Equation (15) together with (3) give

p

pn
=

ρ(1− Zn)[1 + bρ(1−Kp)]

ρn(1− Z)[1 + bρn(1−Kp)]
. (18)

We consider that a strong shock (cylindrical or spherical) driven by a moving

piston is propagated into the medium (a perfectly conducting mixture of a non-

ideal gas and small solid particles) of constant density at rest, in the presence

of an azimuthal magnetic field which is varying as h = Ar−m, where A and m

are constants.

The flow variables immediately ahead of the shock are

u = 0,

ρ = ρa = constant,

h = ha = Ar−m
s ,

p = pa =
(1−m)µA2

2mr2ms
, 0 < m < 1,

(19)

where rs is the radius of the shock and variables with subscript ‘a’ denote their

values immediately ahead of the shock.

From relation (6) we have

Za =
Kp

Ga(1−Kp) +Kp
, (20)

where Ga =
ρsp
ρga

is the ratio of the density of the solid particles to the initial

density of gas.

Jump conditions across the strong shock front are as follows:

ρn(Ws − un) = ρaWs,

hn(Ws − un) = haWs,

pn + ρn(Ws − un)
2 +

µh2n
2

= ρaW
2
s +

µh2a
2

,

Emn
+

pn
ρn

+
1

2
(Ws − un)

2 +
µh2n
ρn

=
W 2

s

2
+

µh2a
ρa

,

Zn

ρn
=

Za

ρa
,

(21)

where subscript ‘n’ refers to the values immediately behind the shock and Ws =
drs
dt is the velocity of the shock front.
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From shock conditions (21), we have

un = (1− β)Ws,

pn =
{

(1− β) +
M−2

A

2

(

1−
1

β2

)}

ρaW
2
s ,

ρn =
1

β
ρa,

hn = (1− β)Ws,

(22)

where β(0 < β < 1) is given by the relation

(Γ + 1)β3 + [{b(1−Kp)− 1}(Γ− 1)− 2Za − ΓM−2
A ]β2

+ [{(Za − 2) + Γ− b(1−Kp)(Γ− 1)}M−2
A − b(1−Kp)(Γ− 1)]β

+ {b(1−Kp)(Γ− 1) + Za}M−2
A = 0,

(23)

and b = bρa. Also, the Alfven Mach number MA is defined by

M2
A =

ρaW
2
s

µh2a
. (24)

4. Self-similarity Transformations

The whole flow-field is bounded by the shock front and the piston. In the

frame work of self -similarity (Sedeov [28]) the velocity Wp =
drp
dt of the piston

is assumed to obey a power law given by

Wp =
drp
dt

= Wo

( t

to

)n
, (25)

where rp is the radius of piston and to denotes the time at reference state, Wo

is the piston speed at time to and n is a constant.

Due to the ambient magnetic field there is a restriction on n, −1
2 < n < 0.

Thus the piston velocity jumps almost instantaneously from zero to infinity,

leading to the formation of a shock of high strength in the initial phase. Self-

similarity requires that the velocity of shock should be proportional to the ve-

locity of piston. Therefore

Ws =
drs
dt

= CWo

( t

to

)n
, (26)

where C is dimensionless constant.
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The time and space coordinates can be transformed into a dimensionless

self-similarity variable η as

η =
r

rs
=

(n+ 1)tno
CWO

( r

tn+1

)

. (27)

The variable η possess the value ‘1’ at the shock front and ηp =
rp
rs

at the piston.

To obtain the self-similar solutions, we write the unknown variables in the

following form (Steiner and Hirschler [5])

u =
r

t
U(η), ρ = ρaD(η), p = ρa

r2

t2
P (η), Z = ZaD(η), µ

1
2h = ρ

a
1
2

r

t
H(η),

(28)

where U , P , H and D all are functions of η only.

For existence of similarity solutions MA should be constant. Thus using

(19) and (26) in (24), we have n+ (n+ 1)m = 0.

Now, since

0 < m < 1, −
1

2
< n < 0. (29)

From equation (18) with aid of equation (28) and (22), we get

P (η) =
(n+ 1)2(1− β)(β − Za)D[1 + bD(1−Kp)][β

2 − 1
2M

−2
A (1 + β)]

η2(1− ZaD)β[β + b(1−Kp)]
. (30)

Using similarity transformations (28) in the set of partial differential equation

(12)-(14), we get the following system of ordinary differential equations with

respect to η

[U − (n+ 1)]
dD

dη
+D

dU

dη
+ (j + 1)

DU

η
= 0, (31)

[U − (n+ 1)]
dH

dη
+H

dU

dη
+ (j + 1)

HU

η
−

H

η
= 0, (32)

[U − (n+ 1)]
dU

dη
+

H

D

dH

dη
+Q

dD

dη
+

U(U − 1)

η
+

2H2

Dη
= 0, (33)

where

Q = Q(η)

=
(n+ 1)2(1− β)(β − Za)[1 + bD(1−Kp)(2− ZaD)][β2 − 1

2M
−2
A (1 + β)]

η2(1− ZaD)2βD[β + b(1−Kp)]
.

Solving equations (31) to (33), we get

dD

dη
=

XD

η
, (34)
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dD

dη
=

−[U − (n+ 1)]X − (j + 1)U

η
, (35)

dH

dη
=

H +HX{U − (n+ 1)}
η{U − (n+ 1)}

, (36)

where X is a function of similarity variable η given by

X(η) =
DU [{U − (n+ 1)}j − n]− 2H2 − H2

{U−(n+1)}

[(H2 +MD2)−D{U − (n+ 1)}2]
.

After using similarity transformations (28), the shock boundary conditions (22)

take the form

U(1) = (1− β)(n+ 1),

D(1) =
1

β
,

P (1) =
[

(1− β) +
M−2

A

2

(

1−
1

β2

)]

(n+ 1)2,

H(1) = (n+ 1)
M−1

A

β
.

(37)

The piston path coincides at ηp =
rp
rs

with a particle path. Using (28) and (25)

the relation

U(ηp) = (n+ 1) (38)

can be derived. In addition to the shock boundary condition (37) the kinematic

condition (38) must be satisfied at the piston surface.

The ordinary differential equations (34) to (36) can be numerically inte-

grated with shock boundary conditions (37) to obtain the solution of the prob-

lem.

5. Adiabatic Flow

In this section, we present the similarity solution for the adiabatic flow of a

perfectly conducting mixture of a non-ideal gas and small solid particles behind

a strong shock driven by a piston (cylindrical or spherical) moving according to

power law in presence of an azimuthal magnetic field.

Here, the jump conditions are the same as the jump conditions of isothermal

flow given in (21).
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For adiabatic flow, equation (15) is replaced by (Vishwakarma [29], Steiner

and Hirschler [5], Vishwakarma and Nath [10])

∂Em

∂t
+ u

∂Em

∂r
−

p

ρ2

{∂ρ

∂t
+ u

∂ρ

∂r

}

= 0. (39)

For isentropic change of state of gas-particle mixture, under the thermodynamic

equilibrium condition, we may calculate the equilibrium sound speed of mixture

from

am =
(∂p

∂ρ

) 1
2

s
=

[{Γ + (2Γ− Z)bρ(1−Kp)}(1−Kp)R
∗T ]

1
2

(1− Z)2
. (40)

With the help of similarity transformations (28) equations (12), (13), (14) and

(39) can be transformed as

[U − (n+ 1)]
dD

dη
+D

dU

dη
+ (j + 1)

DU

η
= 0, (41)

[U − (n+ 1)]
dH

dη
+H

dU

dη
+ (j + 1)

HU

η
−

H

η
= 0, (42)

[U − (n+ 1)]
dU

dη
+

H

D

dH

dη
+

1

D

dP

dη
+

U(U − 1)

η
+

2(P +H2)

Dη
= 0, (43)

dP

dη
+N

dD

dη
+

2(U − 1)P

η[U − (n+ 1)]
= 0, (44)

where N = N(η) =
PbD(1−Kp)(zaD−2)−P−P (Γ−1){1+bD(1−Kp)}2

D(1−ZaD){1+bD(1−Kp)}
.

Solving equations (41) to (44) for dU
dη ,

dD
dη ,

dH
dη and dP

dη , we have

dD

dη
=

Y D

η
, (45)

dU

dη
=

−[U − (n+ 1)]Y − (j + 1)U

η
, (46)

dH

dη
=

H +HY {U − (n+ 1)}
η{U − (n+ 1)}

, (47)

dP

dη
=

−NYD

η
−

2(U − 1)

η{U − (n+ 1)}
, (48)

where Y = Y (η) =
DU [{U−(n+1)}j−n]−2(P+H2)+

2(U−1)P−H
2

{U−(n+1)}

(H2
−ND)−D{U−(n+1)}2

.

In the adiabatic flow, the shock boundary conditions and kinematic condi-

tion at the piston will be same as in the case of isothermal flow.

To obtain the solution of problem behind the shock surface for adiabatic

flow we can numerically integrate the ordinary differential equations (45) to (48)
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with the shock boundary conditions (37). Normalising the variables u, p, ρ and

h with their respective values at the shock, we obtain,

u

un
= η

U(η)

U(1)
,

p

pn
= η2

P (η)

P (1)
,

h

hn
= η

H(η)

H(1)
,

ρ

ρn
=

D(η)

D(1)
.

(49)

6. Results and Discussion

To obtain the solution of differential equations (34) to (36) in the isothermal

flow and (45) to (48) in adiabatic flow, we use numerical integration by Runge

- Kutta method of order four along with the shock boundary conditions (37).

We start numerical integration from shock front (η = 1) and continue it until a

value ηp (piston position) is approached, where

U(ηp) = (n+ 1).

For the purpose of numerical integration the values of constant parameters

are taken to be (Pai et al. [3], Miura and Glass [1], Vishwakarma [29], Steiner

and Hirschler [5]) j = 2; γ = 5
3 ; β

′ = 0.25; Kp = 0, 0.2; Ga = 1, 100; b = 0, 0.1;

M−2
A = 0, 0.005, 0.01 and n = −0.15. The value j = 2 corrensponds to spherical

shock, Kp = 0 to the dust free case, Kp = 0, b = 0 to the perfect gas case,

b = 0.1 to the non-ideal gas, M−2
A = 0 to the non-magnetic case. β′ = 0.25 is

the typical value of ratio of specific heat of small solid particles and specific heat

of gas at constant volume.

Table-1 shows the values of density ratio β across the shock front and the

value of piston position ηp in both the cases, when the flow is isothermal and

adiabatic, for different values of the parameters Kp, Ga, b and M−2
A . Variation

of flow variables in the flow-field behind the shock are shown in figures 1(a, b,

c, d) for isothermal flow and in figures 2 (a, b, c, d) for adiabatic flow, with

respect to dimensionless variable η. It is clear from Table-1 that the distance of

piston is significantly affected due to the presence of dust particles.

Figures 1(a) and 2(a) show that the fluid velocity u
un

increases as we move

from the shock front towards the piston. Figures 1(b, c) and 2(c) show that the
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density ρ
ρn

and pressure p
pn

in isothermal flow and pressure p
pn

in the adiabatic

flow remain almost constant in the region near to the shock front but decrease

rapidly near the piston. Figure 2(b) shows that density ρ
ρn

decreases everywhere.

Figures 1(d) and 2(d) show that as we move inward from the shock front, the

magnetic field h
hn

first increases slowly and then increases rapidly. It is also clear

from figures 1(a, b, c, d) and 2(a, b, c, d) that the effects of parameters Kp, Ga

and b on the flow profile of the variables u
un

, ρ
ρn

and p
pn

are enhanced due to the

presence of magnetic field.

Effects of an increase in the value of M−2
A (strength of ambient magnetic field)

are

(i) to increase the value of β i.e. to decrease the shock strength (see Table

1);

(ii) to decrease ηp i.e. to increase the distance of piston from the shock front

(see Table 1);

(iii) to decrease the fluid velocity u
un

and magnetic field h
hn

at any point in

the flow field behind the shock (see Figures 1(a, d) and 2(a, d)); and

(iv) to decrease the density and pressure in the region near to the shock front

but to increase them near the piston (see Figures 1(b, c) and 2(b, c));

The above effects (i) and (i) can be physically interpreted as:

Since whole gas-particle mixture is perfectly conducting, all the constituent

particles of the mixture interact through Lorentz force. Therefore in this case

shock needs more energy to compress the mixture, resulting an increase in the

distance between the shock and piston, hence a decrease in shock strength.

Effects of an increase in the value of Ga are

(i) to decrease the value of β i.e. to increase the shock strength, (see Table

1);

(ii) to increase ηp (see Table 1);

(iii) to decrease the flow-variables u
un

, ρ
ρn

and p
pn

(see Figures 1(a, b, c) and

2(a, b, c)); and

(iv) to increase the magnetic field h
hn

(see Figures 1(d) and 2(d)).

Effects of an increase in the value of mass concentration of solid particles Kp

are

(i) to increase the value of β at Ga = 1, but to decrease at Ga = 100 i.e. to

decrease the shock strength at Ga = 1, but to increase at Ga = 100 (see

Table 1);
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(ii) to decrease ηp at Ga = 1, but to increase at Ga = 100 (see Table 1);

(iii) to increase the flow variables u
un

, ρ
ρn

and p
pn

at Ga = 1 but to decrease

at Ga = 100 at any point in the flow-field behind the shock (see Figures

1(a, b, c) and 2(a, b, c)); and

(iv) to decrease the magnetic field h
hn

at Ga = 1, but to increase at Ga = 100

(see Figures 1(d) and 2(d)).

The above effect (iii) is more significant in the presence of magnetic field,

i.e. magnetic field enhances the effect of Kp on the profile of the flow-variables
u
un

, ρ
ρn

and p
pn
.

The above effects (i) and (ii) can be physically interpreted as follows. In

the case of Ga = 1, small solid particles of density equal to that of the gas in

the mixture occupy a significant portion of the volume which lowers the com-

pressibility of the mixture. Also, when Ga = 1, the mass concertation of solid

particles Kp equal to their volumetric extension Za. Thus, by an increase in Kp

there is an increase in the distance between the shock and piston, and a decrease

in the shock strength. While for Ga = 100 (at constant Kp), there is high de-

crease in Za, which causes comparatively more compression in the mixture and

decreases the distance between the shock and the piston, and therefore there is

an increase in the shock strength.

Effects of an increase in the value of non-idealness parameter b are

(i) to increase the value of β i.e. to decrease the shock strength, (see Table

1).

(ii) to decrease ηp (see Table 1);

(iii) to increase the flow-variables u
un

, ρ
ρn

and p
pn

(see Figures1(a, b, c) and

2(a, b, c)); and

(iv) to decrease the magnetic field h
hn

(see Figures 1(d) and 2(d)).

The above effects (i) and (ii) can be physical interpreted as:

An increase in the non-idealness parameter b, the volume occupied by the gas

molecules increases, which causes a decrease in the compressibility of the mixture

and so an increase in the distance between the shock and piston. Hence a

decrease in the shock strength.

The above effect (iii) is more significant in the presence of magnetic field, i.e.

magnetic field enhances the effect of non-idealness of gas on the profile of the

flow-variables u
un

, ρ
ρn

and p
pn
.
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Mutual effects of the parameters Kp, Ga, b and M
−2

A
on the shock

strength ( 1

β
), on the piston position (ηp) and on the profiles of the

flow-variables u

un

, ρ

ρn

and p

pn

(i) 1
β and ηp decrease by increasing b, 1

β and ηp decrease by increasing Kp

when Ga = 1; 1
β and ηp increase by increasing Ga. These effects of Kp,

Ga and b on 1
β and ηp are reduced by increasing the value of M−2

A , i.e.

the effects of dust particles and the effects of non-idealness of gas on
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the shock strength and on the piston position are reduced due to the

presence of azimuthal magnetic field.

(ii) Flow-variables u
un

, ρ
ρn

and p
pn

increase at any point in the flow-field by

increasing b, these flow variables increase by increasing Kp when Ga = 1;

also these flow variables decrease by increasing Ga. These effects of Kp,

Ga and b on the flow-variables become more impressive by an increase

in the value of M−2
A i.e. the effect of parameters Kp, Ga and b on

the flow-variables u
un

, ρ
ρn

and p
pn

are enhanced due to the presence of

magnetic-field.

(iii) 1
β and ηp decrease by increasing M−2

A , but this effect of M−2
A is reduced

by by increasing the value of Kp or the value of b, i.e. the effect of

magnetic-field on 1
β and on ηp is reduced due to the presence of dust

particles and the non-idealness of gas.

(iv) b has decaying effect on 1
β and ηp, but this effect is lessimpressive when

medium is dusty (Kp = 0.2), i.e. the effect of non-idealness of gas on 1
β

and on ηp is reduced due to the presence of dust particles.

(v) Kp has decaying effect on 1
β and ηp when Ga = 1, whereas Ga has

increasing effect on both 1
β and on ηp. These effects of Kp and Ga are

reduced when the gas is non-ideal in the mixture (b = 0.1), i.e. the

effects of dust particles on 1
β and ηp is reduced due to the non-idealness

of the gas.

Comparison between isothermal and adiabatic flows

(i) The density remains almost constant in the flow-field behind the shock

when there is no magnetic field, in the case of isothermal flow, whereas

in the case of adiabatic flow it decreases everywhere (see Figures 1(b)

and 2(b)).

(ii) The piston position ηp is greater in the case of isothermal flow in com-

parison with that in the case of adiabatic flow, i.e. distance of piston

from the shock front is less in the case of isothermal flow in comparison

with that in the case of adiabatic flow (see table 1).

(iii) The strength of ambient magnetic field M−2
A enhances the effects of

Kp, Ga and b on the density profile more significantly in the case of

isothermal flow in comparison with that in the case of adiabatic flow.



66 J. P. Vishwakarma and Reena Shrivastava

Table 1: Values of the density ratio β across the shock front and the position

of piston ηp at different values of parameters Kp, Ga, b and M−2
A for j = 2,

γ = 5
3 , β

′ = 0.25 and n = −0.15.

M−2
A b Ga Kp β ηp

Isothermal flow Adiabatic flow

0 0 - 0 0.25 0.91236 0.9026775

0 0 1 0.2 0.391045 0.85498 0.8450835

0 0 100 0.2 0.2407042 0.915568 0.9064225

0 0.1 - 0 0.3065522 0.89106 0.8803975

0 0.1 1 0.2 0.4176798 0.84414 0.8330445

0 0.1 100 0.2 0.2879469 0.89785 0.8880115

0.005 0 - 0 0.255571 0.9024595 0.8961045

0.005 0 1 0.2 0.3925079 0.8506335 0.8420475

0.005 0 100 0.2 0.2465791 0.9055355 0.8996055

0.005 0.1 - 0 0.309912 0.8835385 0.875553

0.005 0.1 1 0.2 0.4189384 0.8400425 0.8302835

0.005 0.1 100 0.2 0.2917437 0.8899585 0.8827765

0.01 0 - 0 0.2610386 0.8952085 0.8905195

0.01 0 1 0.2 0.3940022 0.8468465 0.8392345

0.01 0 100 0.2 0.252331 0.8982025 0.8938455

0.01 0.1 - 0 0.3132893 0.8776525 0.8712675

0.01 0.1 1 0.2 0.4202221 0.8364665 0.8277095

0.01 0.1 100 0.2 0.2955502 0.8838325 0.8781825

7. Conclusion

In the present work, similarity solutions are obtained for the isothermal and

adiabatic flows of a perfectly conducting mixture of a non-ideal gas and small

solid particles, behind a strong shock driven out by a piston moving according to

power law in the presence of an azimuthal magnetic field. It is observed that the

parameters of Kp, Ga, b and M−2
A have significant effects on the shock strength

( 1β ), piston position (ηp) and on the flow profiles of the variables u
un

, ρ
ρn

and p
pn
.

On the basis of this work one may draw the following conclusions:

(i) The shock strength ( 1β ) and the value of piston position (ηp) decay due

to the presence of magnetic-field.

(ii) The effects of dust parameters Kp, Ga and the non-idealness parameter

of the gas b on the shock strength and on the piston position are reduced
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due to the presence of magnetic field, while the effects of these parame-

ters on the profiles of the flow-variables u
un

, ρ
ρn

and p
pn

are enhanced due

to the presence of magnetic-field.

(iii) The density and pressure abruptly decrease to zero near the piston due

to presence of the magnetic field.

(iv) Effects of magnetic field on the shock strength and on the piston position

ηp are reduced due to the presence of the dust particles as well as the

non-idealness of gas.

(v) The effects of non-idealness of gas on the shock strength and piston

position are reduced due to the presence of dust particles.

(vi) Due to the presence of the non-idealness of the gas the shock strength
1
β and the piston position ηp are decreased. Also, the non-idealness of

the gas reduces the effect of the presence of dust particles on 1
β and ηp.
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