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Abstract

The present paper deals with the study of Ricci solitons on submanifolds,

specially invariant and anti-invariant submanifolds of Kenmotsu manifolds with

respect to Riemannian connection, quarter symmetric metric connection and

quarter symmetric non-metric φ-connection, respectively.
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1. Introduction

In 1982, Hamilton [11] introduced the notion of Ricci flow to find the canon-

ical metric on a smooth manifold. Then Ricci flow has become a powerful tool

for the study of Riemannian manifolds, especially for those manifolds with pos-

itive curvature. Perelman ([25], [26]) used Ricci flow and its surgery to prove

Poincare conjecture. The Ricci flow is an evolution equation for metrics on a

Riemannian manifold defined as follows:

∂

∂t
gij(t) = −2Rij

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A

solution to the Ricci flow is called Ricci soliton if it moves only by one parameter

group of diffeomorphism and scaling. A Ricci solitons (g, V, λ) on a Riemannian

User
Typewritten Text
https://doi.org/10.56424/jts.v10i01.10572




80 S. K. Hui, J. Mikes and P. Mandal

manifold (M, g) is a generalization of an Einstein metric such that [12]

(1.1) £V g + 2S + 2λg = 0,

where S is Ricci tensor, £V is the Lie derivative operator along the vector field

V onM and λ is a real number. The Ricci soliton is said to be shrinking, steady

and expanding according as λ is negative, zero and positive respectively.

During the last two decades, the geometry of Ricci solitons has been the

focus of attention of many mathematicians. In particular it has become more im-

portant after Perelman applied Ricci solitons to solve the long standing Poincare

conjecture posed in 1904. In [27] Sharma studied the Ricci solitons in contact ge-

ometry. Thereafter, Ricci solitons in contact metric manifolds have been studied

by various authors such as Bejan and Crasmareanu [2], Hui et al. ([4], [17]-[21]),

Chen and Deshmukh [5], Deshmukh et al. [7], He and Zhu [13], Nagaraja and

Premalata [23], Tripathi [29] and many others.

In [28] Tanno classified connected almost contact metric manifolds whose

automorphism groups possess the maximum dimension. For such a manifold, the

sectional curvature of plane sections containing ξ is a constant, say c. He proved

that they could be divided into three classes: (i) homogeneous normal contact

Riemannian manifolds with c > 0, (ii) global Riemannian products of a line or

a circle with a Kähler manifold of constant holomorphic sectional curvature if

c = 0 and (iii) a warped product space R ×f C
n if c < 0. It is known that

the manifolds of class (i) are characterized by admitting a Sasakian structure.

The manifolds of class (ii) are characterized by a tensorial relation admitting a

cosymplectic structure. Kenmotsu [22] characterized the differential geometric

properties of the manifolds of class (iii) which are nowadays called Kenmotsu

manifolds and later studied by several authors ([14]-[16]) etc.

As a generalization of both Sasakian and Kenmotsu manifolds, Oubiña [24]

introduced the notion of trans-Sasakian manifolds, which are closely related

to the locally conformal Kähler manifolds. A trans-Sasakian manifold of type

(0, 0), (α, 0) and (0, β) are called the cosympletic, α-Sasakian and β-Kenmotsu

manifolds respectively, α, β being scalar functions. In particular, if α = 0, β = 1;

and α = 1, β = 0 then a trans-Sasakian manifold will be a Kenmotsu and

Sasakian manifold respectively.

In modern analysis, the geometry of submanifolds has become a subject

of growing interest for its significant applications in applied mathematics and

theoretical physics. Recently De and Majhi [6] studied invariant submanifolds of
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Kenmotsu manifolds. The present paper deals with the study of Ricci solitons

on submanifolds of Kenmotsu manifolds. The paper is organized as follows.

Section 2 is concerned with some preliminaries. Section 3 is devoted to the

study of Ricci solitons on submanifolds of Kenmotsu manifolds.

In [8] Friedmann and Schouten introduced the notion of semisymmetric

linear connection on a differentiable manifold. Then in 1932 Hayden [10] in-

troduced the idea of metric connection with torsion on a Riemannian manifold.

A systematic study of the semisymmetric metric connection on a Riemannian

manifold has been given by Yano in 1970 [30]. In 1975, Golab [9] introduced

the idea of a quarter symmetric linear connection in differentiable manifolds.

A linear connection ∇ in an n-dimensional differentiable manifoldM is said

to be a quarter symmetric connection [9] if its torsion tensor τ of the connection

∇ is of the form

τ(X,Y ) = ∇XY −∇YX − [X,Y ](1.2)

= η(Y )φX − η(X)φY,

where η is a 1-form and φ is a tensor of type (1,1). In particular, if φX = X

then the quarter symmetric connection reduces to the semi-symmetric connec-

tion. Thus the notion of quarter symmetric connection generalizes the notion

of the semi-symmetric connection. Again if the quarter symmetric connection

∇ satisfies the condition (∇Xg)(Y, Z) = 0 for all X, Y , Z ∈ χ(M), where

χ(M) is the Lie algebra of vector fields on the manifold M , then ∇ is said to

be a quarter symmetric metric connection. And if (∇Xg)(Y, Z) ̸= 0, then ∇ is

said to be a quarter symmetric non-metric connection. Furthermore, a quarter

symmetric non-metric connection is said to be a quarter symmetric non-metric

φ-connection [1] if (∇Xφ)(Y ) = 0 for all X,Y ∈ χ(M).

Recently Hui et al. [20] studied Ricci solitons on Kenmotsu manifolds

with respect to quarter symmetric non-metric φ-connection. The Ricci solitons

on invariant and anti-invariants submanifolds of Kenmotsu manifolds with re-

spect to quarter symmetric metric connection are studied in this paper. Also in

this section, we have studied Ricci solitons on invariant and anti-invariant sub-

manifold of Kenmotsu manifolds with respect to quarter symmetric non-metric

φ-connection.

2. Preliminaries

An odd dimensional smooth manifold (˜M2n+1, g) is said to be an almost

contact metric manifold [3] if it admits a (1, 1) tensor field φ, a vector field ξ,
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an 1-form η and a Riemannian metric g which satisfy

(2.1) φξ = 0, η(φX) = 0, φ2X = −X + η(X)ξ,

(2.2) g(φX, Y ) = −g(X,φY ), η(X) = g(X, ξ), η(ξ) = 1,

(2.3) g(φX, φY ) = g(X,Y )− η(X)η(Y )

for all vector fields X,Y on M .

An almost contact metric manifold ˜M2n+1(φ, ξ, η, g) is said to be Kenmotsu

manifold if the following conditions hold [22]:

(2.4) ˜∇Xξ = X − η(X)ξ,

(2.5) (˜∇Xφ)(Y ) = g(φX, Y )ξ − η(Y )φX,

where ˜∇ denotes the Riemannian connection of g.

In a Kenmotsu manifold, the following relations hold [22]:

(2.6) (˜∇Xη)(Y ) = g(X,Y )− η(X)η(Y ),

(2.7) ˜R(X,Y )ξ = η(X)Y − η(Y )X,

(2.8) ˜R(ξ,X)Y = η(Y )X − g(X,Y )ξ,

(2.9) ˜S(X, ξ) = −2nη(X)

for any vector field X,Y on ˜M and ˜R is the Riemannian curvature tensor and
˜S is the Ricci tensor of type (0, 2).

Let M be a (2m + 1)-dimensional (m < n) submanifold of a Kenmotsu

manifold ˜M . Let ∇ and ∇⊥ are the induced connections on the tangent bundle

TM and the normal bundle T⊥M of M respectively. Then the Gauss and

Weingarten formulae are given by

(2.10) ˜∇XY = ∇XY + h(X,Y )

and

(2.11) ˜∇XV = −AVX +∇⊥

XV

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are second funda-

mental form and the shape operator (corresponding to the normal vector field

V ) respectively for the immersion of M into ˜M . The second fundamental form

h and the shape operator AV are related by

(2.12) g(h(X,Y ), V ) = g(AVX,Y )
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for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where g is the Riemannian metric on
˜M as well as on M .

A submanifoldM of a Kenmotsu manifold ˜M is said to be totally umbilical

if

(2.13) h(X,Y ) = g(X,Y )H

for all X,Y ∈ Γ(TM), where H is the mean curvature ofM . Moreover, if H = 0

then M is minimal in ˜M .

Analogous to almost Hermitian manifolds, the invariant and anti-invariant

submanifolds are depend on the behaviour of almost contact metric structure

φ.

A submanifold M of an almost contact metric manifold ˜M is said to be

invariant if the structure vector field ξ is tangent to M at every point of M and

φX is tangent to M for any vector field X tangent to M at every point of M ,

that is φ(TM) ⊂ TM at every point of M .

On the otherhand, M is said to be anti-invariant if for any X tangent to

M , then φX is normal to M , i.e., φ(TM) ⊂ T⊥M at every point of M , where

T⊥M is the normal bundle of M .

Let ˜∇ be a quarter symmetric metric connection on a Kenmotsu manifold
˜M . Then we have [16]

(2.14) ˜∇XY = ˜∇XY − η(X)φY.

Here the induced connection on submanifold M of a Kenmotsu manifold ˜M

from the connection ˜∇ is denoted by ∇. The corresponding Gauss formula with

respect to quarter symmetric metric connection is

(2.15) ˜∇XY = ∇XY + h(X,Y ),

where h is the second fundamental form with respect to quarter symmetric

metric connection.

Recently Hui et al. [20] studied Ricci solitons on Kenmotsu manifolds with

respect to quarter symmetric non-metric φ-connection. The quarter symmetric

non-metric φ-connection on a Kenmotsu manifold ˜M is given by ([1], [20])

(2.16) ˜∇
′

XY = ˜∇XY + η(X)φY + g(X,Y )ξ − η(Y )X − η(X)Y,

where the induced connection on submanifold M of a Kenmotsu manifold ˜M

from the connection ˜∇′

is denoted by ∇′

. The corresponding Gauss formula
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with respect to quarter symmetric non-metric φ-connection is

(2.17) ˜∇
′

XY = ∇
′

XY + h
′

(X,Y ),

where h
′

is the second fundamental form with respect to quarter symmetric

non-metric φ-connection.

3. Ricci Solitons on Submanifolds of Kenmotsu Manifolds

Let us take (g, ξ, λ) be a Ricci soliton on a submanifold M of a Kenmotsu

manifold ˜M . Then we have

(3.1) (£ξg)(Y, Z) + 2S(Y, Z) + 2λg(Y, Z) = 0.

from (2.4) and (2.10), we get

X − η(X)ξ = ˜∇Xξ(3.2)

= ∇Xξ + h(X, ξ).

Equating tangential and normal components of (3.2), we get

(3.3) ∇Xξ = X − η(X)ξ and h(X, ξ) = 0.

From (2.1), (2.2) and (3.3), we get

(£ξg)(Y, Z) = g(∇Y ξ, Z) + g(Y,∇Zξ)(3.4)

= 2[g(Y, Z)− η(Y )η(Z)].

In view of (3.4), (3.1) yields

(3.5) S(Y, Z) = −(λ+ 1)g(Y, Z) + η(Y )η(Z),

which implies that M is Einstein. Thus we can state the following:

Theorem 3.1. If (g, ξ, λ) is a Ricci soliton on a submanifold M of a Kenmotsu

manifold ˜M then M is η-Einstein.

From (3.5), we get

(3.6) S(Y, ξ) = −(λ− 2)η(Y ) for all Y.

Again using (3.3) we can prove that

(3.7) S(Y, ξ) = −2mη(Y ).

From (3.6) and (3.7) we get λ − 2 = 2m, i.e., λ = 2(m + 1) > 0 always. This

leads to the following:

Theorem 3.2. A Ricci soliton (g, ξ, λ) on a submanifold M of a Kenmotsu

manifold ˜M is always expanding.
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From (2.10), (2.14) and (2.15) we get

∇XY + h(X,Y ) = ˜∇XY − η(X)φY(3.8)

= ∇XY − η(X)φY + h(X,Y ).

If M is invariant submanifold of ˜M then φX ∈ TM for any X ∈ TM and

therefore equating normal and tangential parts from (3.8), we get

(3.9) h(X,Y ) = h(X,Y )

and

(3.10) ∇Xξ = ∇XY − η(X)φY,

which means that M admits a quarter symmetric metric connection.

This leads to the following:

Theorem 3.3. If M is an invariant submanifolds of a Kenmotsu manifolds ˜M

with respect to quarter symmetric metric connection, then

(i) M admits quarter symmetric metric connection,

(ii) the second fundamental forms with respect to quarter symmetric metric

connection and Riemannian connection are same.

Let us now consider (g, ξ, λ) be a Ricci soliton on a submanifold M of a

Kenmotsu manifold ˜M with respect to quarter symmetric metric connection.

Then we have

(3.11) (£ξg)(Y, Z) + 2S(Y, Z) + 2λg(Y, Z) = 0.

Also from (3.10), we get

(3.12) ∇Xξ = X − η(X)ξ

and hence

(3.13) (£ξg)(Y, Z) = 2[g(Y, Z)− η(Y )η(Z)]

Again it is known that [16]

(3.14) S(Y, Z) = S(Y, Z)− 2dη(φZ, Y ) + ω(Y, Z)) + ψη(Y )η(Z),

where ω(Y, Z) = g(φY, Z) and ψ = tr. ω.

In view of (3.13) and (3.14), (3.11) yields

S(Y, Z) = −(λ+ 1)g(Y, Z)− (ψ − 1)η(Y )η(Z)(3.15)

+ 2dη(φZ, Y )− ω(Y, Z).

This leads to the following:
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Theorem 3.4. If (g, ξ, λ) is a Ricci soliton on an invariant submanifold M of

a Kenmotsu manifold ˜M with respect to quarter symmetric metric connection,

then its Ricci tensor S with respect to Riemannian connection is of the form

(3.15).

By virtue of (2.1) and (2.2) we have from (3.15) that

(3.16) S(Y, ξ) = −(λ+ ψ)η(Y ).

From (3.7) and (3.16), it follows that

λ = 2m− ψ,

which means that the Ricci soliton (g, ξ, λ) is shrinking, steady and expanding

according as ψ > 2m, ψ = 2m or ψ < 2m, respectively.

This leads the following:

Theorem 3.5. A Ricci soliton (g, ξ, λ) on an invariant submanifold M of a

Kenmotsu manifold ˜M with respect to quarter symmetric metric connection is

shrinking, steady and expanding according as ψ > 2m, ψ = 2m or ψ < 2m,

respectively.

If M is an anti-invariant submanifold of ˜M , then φX ∈ T⊥M for all X ∈
TM and therefore equating tangential part from (3.8), we get

(3.17) ∇XY = ∇XY ;

which means that quarter symmetric metric connection and Riemannian con-

nection are same. Hence S(X,Y ) = S(X,Y ) for all X,Y ∈M .

Again ∇Xξ = ∇Xξ = X − η(X)ξ and hence (3.13) holds. Consequently, by

virtue of Theorem 3.1, we can state the following:

Theorem 3.6. If (g, ξ, λ) is a Ricci soliton on an anti-invariant submanifold M

of a Kenmotsu manifold ˜M with respect to quarter symmetric metric connection,

then M is η-Einstein.

In similar as above Theorem 3.2, we can state the following:

Theorem 3.7. A Ricci soliton (g, ξ, λ) is on an anti-invariant submanifoldM of

a Kenmotsu manifold ˜M with respect to quarter symmetric metric connection

is always expanding.
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We can consider (g, ξ, λ) is a Ricci soliton on a submanifold M of a Ken-

motsu manifold ˜M with respect to quarter symmetric non-metric φ-connection.

Then we have

(3.18) (£′

ξg)(Y, Z) + 2S′(Y, Z) + 2λg(Y, Z) = 0.

From (2.10), (2.16) and (2.17), we get

∇
′

XY + h
′

(X,Y ) = ˜∇XY + η(X)φY + g(X,Y )ξ(3.19)

− η(Y )X − η(X)Y

= ∇XY + h(X,Y ) + η(X)φY

+ g(X,Y )ξ − η(Y )X − η(X)Y.

If M is an invariant submanifold of ˜M then φX ∈ TM for any X ∈ TM

and ξ ∈ TM . Therefore equating the tangential parts of (3.19), we get

(3.20) ∇
′

XY = ∇XY + η(X)φY + g(X,Y )ξ − η(Y )X − η(X)Y,

which means that M admits quarter symmetric non-metric φ-connection.

From (3.20), we obtain

(3.21) ∇
′

Xξ = −η(X)ξ

and hence

(£
′

ξg)(Y, Z) = g(∇
′

Y ξ, Z) + g(Y,∇
′

Zξ)(3.22)

= −2η(Y )η(Z).

Also using (3.20), we can calculate that

(3.23) S
′

(Y, Z) = S(Y, Z) + 2m[g(Y, Z) + η(Y )η(Z)],

where S
′

and S are the Ricci tensor of invariant submanifold M of a Kenmotsu

manifold ˜M with respect to quarter symmetric non-metric φ-connection and

Riemannian connection respectively.

By virtue of (3.22) and (3.23), it follows from (3.18) that

(3.24) S(Y, Z) = −(λ+ 2m)g(Y, Z)− (2m− 1)η(Y )η(Z),

which implies that M is η-Einstein. This leads to the following:

Theorem 3.8. If (g, ξ, λ) is a Ricci soliton on an invariant submanifold M

of a Kenmotsu manifold ˜M with respect to quarter symmetric non-metric φ-

connection, then M is η-Einstein.
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By virtue of (2.1) and (2.2), we have from (3.24) that

(3.25) S(Y, ξ) = −(λ+ 4m− 1)η(Y ).

From (3.7) and (3.25), we have λ = −2(m− 1
2
) < 0.

This leads the following:

Theorem 3.9. A Ricci soliton (g, ξ, λ) on an invariant submanifoldM of a Ken-

motsu manifold ˜M with respect to quarter symmetric non-metric φ-connection

is always shrinking.
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