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Abstract

The purpose of the present paper is to study the confromal transformation

of generalized m−th root Finsler metric. The spray co-effecients, Riemannian

curvature and Ricci curvature of conformally transformed generalized m-th root

metric are shown to be rational function of direction. Further, under certain

conditions it is shown that a conformally transformed generalized m−th root

metric is locally dually flat if and only if the conformal transformation is ho-

mothetic. Moreover, the condition for the conformally transformed metrics to

be Einstein then, it is Ricci flat and Isotropic mean Berwald curvature are also

found.
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1. Introduction

The theory of m−th root metric has been first developed by the author H.

Shimada [20], applied to biology as an ecological metric by P. L. Antonelli [2]

and it has been studied by several authors ([3], [21], [22], [23] and [18]). It is

regarded as a generalization of Riemannian metric in the sense that the second

root metric is a Riemannian metric. The third and fourth metrics are called

the cubic and quadratic metric respectively [13]. In four dimension, the special

fourth root metric in the form F = 4
√

y1y2y3y4 is called the Berwald-Moor
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metric([9] and [10]), which is considered by physicists as an important subject

for a possible model of space time.

Recent studies shows that m-th root Finsler metric play a very important

role in physics, space time and general relativity ([6] and [17]). The authors Z.

Shen and B. Li [13] were studied the geometric properties of locally projectively

flat fourth root metric in the form F = 4
√

aijkl(x)yiyjykyl and generalized fourth

root metric in the form
√√

aijkl(x)yiyjykyl + bijyiyj .

In [23], the authors Yaoyong Yu and Ying You were proved the m-th root

Einstein Finsler metric is Ricci flat. In 2011, A. Tayebi and B. Najafi have been

characterized locally dually flat. In [21], A. Tayebi, Peyghan and Shahbazi have

found a condition, which is a generalized m-th root metric is projectively related

to an m-th root metric. In 2013, the authors Abolfazl Taleshian and Dordi

Mohamad Saghali were got the result every generalized m-th root metric with

almost vanishing H-curvature has vanishing H-curvature and also expressed a

necessary and sufficient condition for the metric F = m
√
A is locally projectively

flat and locally dually flat.

This paper is organized as following: we find the spray coefficients of confor-

mally transformed generalized m-th root Finsler metric and it shows that, it is

rational function of y. Then, we prove that conformally transformed generalized

m-th root metric is locally dually flat if and only if the conformal transformation

is homothetic. Further, according to [23], we will study the Einstein metric is

Ricci flat. Finally, we show that conformally transformed given metric is weakly

Berwald metric.

2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM be the tangent

space at x ∈ M and TM =
∪

x∈M TxM be the tangent bundle of M . Each

element of TM has the form (x, y) where x ∈ M and y ∈ TxM called the

supporting element and let TM0 = TM\{0}.

A Finsler metric on a manifold M is a function ([6]) F : TM −→ [0,∞)

which has the following properties: (i) F is C∞ on TM0, (ii) F is positively

1-homogeneous on the fiber of tangent bundle TM , (iii) for any tangent vector

y ∈ TxM , the following quadratic form gy on TxM is positive definite given by

gy(u, v) =
1

2

∂2

∂s∂t
[F 2(y + su+ tv)]|s,t=0, u, v ∈ TxM.
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Let x ∈ M and Fx = F/TxM . To measure the non-Euclidian feature of Fx,

define Cy : Tx ⊗ Tx ⊗ Tx −→ R by

Cy(u, v, w) =
1

2

d

dt
[gy + tw(u, v)]|t=0, u, v, w ∈ TxM.

The family C = {Cy}y∈TM0 is called the Cartan torsion. It is well known that

C = 0 if and only if F is Riemannian.

Given Finsler manifold (M,F ), then global vector field G is induced by F

on TM0, which is a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where, Gi(y) are local functions on TM given by

Gi =
1

4
gil
{

∂2F 2

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

Here, Gi is called the associated spray to (M,F ). The projection of on

integral curve of G is called a geodesics in M . In local co-ordinates a curve c(t)

is a geodesics if and only if its co-ordinates ci(t) satisfy, c̈i + 2Gi(ċ) = 0.

For a tangent vector y ∈ TxM , define By : TxM ⊗ TxM ⊗ TxM −→ TxM

and Ey : TxM ⊗ TxM −→ R by By(u, v, w) = Bi
jkl(y)u

jvkwl and Ey(u, v) =

Ejk(y)u
jvk where,

Bi
jkl(y) =

∂3Gi

∂yj∂yk∂yl
(y), Ejk(y) =

1

2
Bm

jkm(y),

u = ui
∂

∂xi
|x, v = vi

∂

∂xi
|x, and w = wi ∂

∂xi
|x.

Here, B and E are called the Berwald curvature and mean Berwald curvature

if B = 0 and E = 0 respectively.

Let F be a Finsler metric defined by F =

√
A

2
m +B, where A and B are

given by,

A = ai1i2,...,im(x)y
i1yi2 , ..., yim and B = bij(x)y

iyj , (2.1)

with ai1i2,...,im and bij are symmetric in all its indices [21]. Then, F is called

generalized m-th root metric. Clearly, A is homogeneous of degree m in y. Put

Ai =
∂A

∂yi
, Aij =

∂2A

∂yi∂yj
, Axi =

∂A

∂xi
, A0 = Axiyi, A0l = Axiyly

i,

Bi =
∂B

∂yi
, Bij =

∂2B

∂yi∂yj
, Bxi =

∂B

∂xi
, B0 = Bxiyi, B0l = Bxiyly

i.
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The normalized supporting element li of F is given by

li = Fyi =
∂F

∂yi
=

1

2F

(
2

m
A

2−m
m Ai +Bi

)
. (2.2)

Consider the conformal transformation F̄ (x, y) = e2σ(x)F (x, y) of generalized

m-th root metric F =

√
A

2
m +B. Clearly, F̄ is also an generalized m-th root

Finsler metric on Mn. Throughout the paper we call the Finsler metric F̄ as

to conformally transformed generalized m-th root metric and (Mn, F̄ ) = F̄n

as conformally transformed Finsler space. The quantities corresponding to the

transformed Finsler space F̄n will be denoted as, by putting bar on the top of

that quantity, for instance,

Ā = emσA, Āi = emσAi, and, Āij = emσAij ,

B̄ = emσB, B̄i = emσBi, and, B̄ij = emσBij .

3. Fundamental tensor and Spray coefficients of Conformally trans-

formed Generalized m-th root metric

The fundamental metric tensor gij of Finsler space Fn is given by

gij =
1

2

∂2F 2

∂yi∂yj
= FFyiyj + FyiFyj . (3.1)

In view of equation (2.1) and (2.2) in (3.1) we have

gij =
A

2
m
−2

m2
[mAAij + (2−m)AiAj ] + bij . (3.2)

The contravariant metric tensor gij of Finsler space Fn is given by

gij = A− 2
m

(
mAAij +

(m− 2)

(m− 1)
yiyj

)
, (3.3)

where matrix (Aij) denotes inverse of (Aij) [23]. Here, we have used AijAj =

Ai = yi.

The covariant and contravariant metric tensor of conformally transformed

Finsler space F̄n are given as: ḡij = e2σgij and ḡij = e2σgij .

Therefore, the covariant metric tensor ḡij and contravariant metric tensor

ḡij of conformally transformed generalized m-th root Finsler space F̄n are given

as;

ḡij = e2σ

(
A

2
m
−2

m2
[mAAij + (2−m)AiAj ] + bij

)
, (3.4)



Conformally Transformed Einstein Generalized m-th root with Curvature Properties 5

and

ḡij = e−2σ

(
A− 2

m [mAAij +
(m− 2)

(m− 1)
yiyj ]

)
. (3.5)

The geodesic curves of F̄n are characterized by a system of equations:

d2xi

dt2
+ Ḡi(x,

dx

dt
) = 0,

where,

Ḡi =
1

4
ḡil
{
[F̄ 2]xkyly

k − [F̄ 2]xl

}
. (3.6)

are called the spray coefficients of F̄ .

The spray coefficients Ḡi of F̄n can be written as;

Ḡi =
1

4
e−2σgil

{
∂2(e2σF 2)

∂xk∂yl
yk − ∂(e2σF 2)

∂xl

}
,

=
1

4
e−2σgil{e2σ(F 2

xkyly
k − F 2

xl) + 2FFyle
2σ2σxkyk − F 2e2σ2σxl}.

which implies that,

Ḡi = Gi +
1

2
gil{2FFylσxkyk − F 2σxl}. (3.7)

By direct computation, Gi is given by

Gi = ξil[(
2−m

m
)AlA0A

−1 +A0l +Axl +
m

2
A

m−2
m (B0l −Bxl)], (3.8)

where,

ξil =
Ail

2
+ (

m− 2

2m(m− 1)
)A−1yiyl.

Further, the equation (3.5) in (3.7) we have

Ḡi = Gi +
1

2
A− 2

m

(
mAAil +

(m− 2)

(m− 1)
yiyl

)
{2Fljσxkyk − F 2σxl},

= Gi +
1

2
A− 2

m

(
mAAil +

(m− 2)

(m− 1)
yiyl

)
F 2(2σxk − σxl),

= Gi +
1

2
A− 2

m (A
2
m +B)

(
mAAil +

(m− 2)

(m− 1)
yiyl

)
(2σxk − σxl).

Put, ζ = (2σxk − σxl).

Thus,

Ḡi = Gi +
1

2
(1 +A− 2

mB)

(
mAAilζ +

m− 2

m− 1
ζyiyl

)
. (3.9)

Hence, we state the following:
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Proposition 3.1. The spray coefficients Ḡi of the conformally transformed

Finsler space F̄n are given by (3.9) , where Gi are spray coefficients of Finsler

space Fn.

In view of equation (3.8) and in [23] we observed that, Gi are rational

functions of y . Hence from equation (3.9), we have;

Corollary 3.1. The spray coefficients Ḡi of the conformally transformed Finsler

space F̄n are rational functions of y.

4. Locally Dually flat Conformally transformed generalized m-th

root metric

In [4], Amari-Nagaoka introduced the notion of dually flat Riemannian

metrics when they studied the information geometry on Riemannian manifolds.

In Finsler geometry,Z. Shen extended the notion of locally dually flatness for

Finsler metrics [19]. Dually at Finsler metrics form a special and valuable class

of Finsler metrics in Finsler information geometry, which play a very important

role in studying at Finsler information structure. In [21] the authors, A. Tayebi,

E. Peyghan and M. Shahbazi were characterize locally dually flat generalized

m-th root Finsler metric.

A transformed Finsler metric F̄ = F̄ (x, y) on a manifold Mn is said to be

locally dually flat, if at any point there is a standard coordinate system (xi, yi)

in TM such that [F̄ 2]xkyly
k = 2[F̄ 2]xl . In this case, the coordinate (xi) is called

an adapted local coordinate system [19]. And simple example is: Every locally

Minkowskian metric is locally dually flat.

Consider the conformal transformation F̄ = e2σF , where F is an generalized

m-th root metric.

Since, [F̄ 2]xk = 2e2σσk + e2σF 2
xk = e2σ[F 2

xk + 2F 2σk], where, σk =
∂σ

∂xk
.

[F̄ 2]xkyl = e2σ[F 2
xkyl + 2F 2

ylσk],

[F̄ 2]xkyly
k = e2σ[F 2

xkyly
k + 2Fllσky

k].

Therefore,

2F̄ 2
xk − F̄ 2

xkyly
k = e2σ[2F 2

xl + 4F 2σl − F 2
xkyly

k − 2ylσ0],

where, σ0 = σky
k.
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Thus, F̄ is locally dually flat metric if and only if

e2σ
{
2

(
2

m
A

2
m
−1Axl +Bxl

)
+ 4(A

2
m +B)σl

}
−e2σ

{
2

m
A

2
m
−1

(
(
2−m

m
)AlA0A

−1 +A0l +
m

2
A

m−2
m B0l

)
−2ylσ0

}
= 0, (4.1)

where, A0 = Axkyk and A0l = Axkyly
k.

The equation (4.1) can be written as;

Axl =
m

4
A

m−2
m

{
2

m
A

2
m
−1

(
2−m

m
A0AlA

−1 +A0l

)
−4A

2
m + (Bol − 4Bσl) + 2ylσ0

}
. (4.2)

Hence, we get the following

Theorem 4.1. Let F̄ be a conformally transformed generalized m-th root

Finsler metric on a manifold Mn. Then, F̄ is locally dually flat metric if and

only if the equation (4.2) holds.

Corollary 4.2. Let F̄ be a conformally transformed generalized m-th root

metric. Then, F̄ is locally dually flat if and only if conformal transformation is

homothetic.

Proof. From theorem 4.1, since F̄ is locally dually flat if and only if

2ylσ0 − 4Bσl = 0. (4.3)

Contracting equation (4.3) by yl yields;

σ0F
2 − 4Bσ0 = 0.

which implies that, σ0 = 0.

Hence from equation (4.3), we have σl = 0. i.e., ∂σ
∂xl = 0. So, σ is constant.

Therefore, the transformation is homothetic. The converse is trivial.

5. Conformally transformed Einstein Generalized m-th root metric

In Finsler geometry, the flag curvature is an analogue of sectional curva-

ture in Riemannian geometry. A natural problem is to study and characterize
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Finsler metrics of constant flag curvature. There are only three local Riemann-

ian metrics of constant sectional curvature, up to a scaling. However there are

lots of non-Riemannian Finsler metrics of constant flag curvature. For example,

the Funk metric is positively complete and non-reversible with K = −1
4 and the

Hilbert-Klein metric is complete and reversible with K = −1 [11] .

In this section, we characterize the conformally transformed Einstein gen-

eralized m-th root Finsler metric is Ricci flat.

For a Finsler metric F̄ , the Riemannian curvature R̄y : TxM −→ TxM is

defined by

R̄y(u) = R̄i
k(x, y)u

k ∂

∂xi
, u = uk

∂

∂xi
,

where,

R̄i
k = 2

∂Ḡi

∂xk
− yj

∂2Ḡi

∂xj∂yk
+ 2Ḡj ∂2Ḡi

∂yj∂yk
− ∂Ḡi

∂yj
∂Ḡi

∂yk
. (5.1)

The Finsler metric F̄ is said to be of scalar flag curvature if there is a scalar

function K̄ = K̄(x, y) such that

R̄i
k = K̄(x, y)F̄ 2

{
δik −

F̄yky
i

F̄

}
. (5.2)

Moreover, F̄ is said to be of constant flag curvature if K̄ in equation (5.2) is

constant.

The Ricci curvature of a transformed Finsler metric F̄ on a manifold is a scalar

function Ric : TM −→ R defines to be the trace of R̄y. i.e.,

Ric(y) = R̄k
k.

satisfying the homogeneity Ric(λy) = λRic(y) for λ > 0. A Finsler metric F̄ is

an n-dimensional manifold Mn is said to be Einstein metric if there is a scalar

function K̄ = K̄(x) on Mn such that Ric = K̄(n − 1)F̄ 2. A Finsler metric is

said to be Ricci flat if Ric = 0.

By formula (5.2) and corollary we get the following:

Lemma 5.1. R̄i
k and Ric = R̄k

k are rational functions in y.

Proposition 5.2. Let F̄ be a non-Riemannian conformally transformed gen-

eralized m-th root Finsler metric with m > 2 on a manifold Mn of dimensions

n > 1. If F̄ is Einstein metric then it is Ricci flat.
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Proof. In view of equation (5.2) and Ricci curvature obviously it is Einstein.

If F̄ is an Einstein metric, i.e., Ric = K̄(n − 1)F̄ 2 and F̄ 2 is an irrational

function, as m > 2 and Ric are rational function of y. Therefore, K̄ = 0 and so

Ric = 0. Hence, F̄ is Ricci flat.

Corollary 5.3. Let F̄ = e2σF be a non-Riemannian conformally transformed

generalized m-th root Finsler metric with m > 2 on manifold Mn. If F̄ is of

constant flag curvature K̄ then K̄=0

Proof. By Schur lemma and corollary 3.6 of [7], immediately, we obtain the

proof of the corollary.

6. Conformally transformed Generalized m-th root metric with Iso-

tropic E-curvature

Let Ḡi be spray coefficients of a Finsler space F̄n then the Berwald curva-

ture of F̄n is defined as

B̄i
jkl =

∂3Ḡi

∂yj∂yk∂yl
.

A transformed Finsler metric F̄ is called a Berwald metric if spray coefficients

Ḡi are quadratic in y ∈ TxM , for any x ∈ Mn or equivalently the Berwald

curvature vanishes. The E-curvature is defined by the trace of the Berwald

curvature. i.e., Ēij =
1
2B̄

m
ijm. A Finsler metric F̄ on an n-dimensional manifold

Mn is said to be isotropic mean Berwald curvature or of isotropic E-curvature

if

Ēij =
c(n+ 1)

2F̄
h̄ij , (6.1)

where, h̄ij = ḡij − ḡipy
pḡjqy

q is the angular metric and c = c(x) is a scalar

function on Mn. If c = 0 then F̄ is called weakly Berwald metric.

From equation (3.2), we have

ḡij = e2σgij = e2σ

{
A 2

m − 2

m2
[mAAij + (2−m)AiAj ] + bij

}
. (6.2)

The angular metric is given by

h̄ij = ḡij − l̄i l̄j .

Since h̄ij = e2σhij . Therefore,

h̄ij = e2σ

{
A

2
m
−2

m2
(mAAij + (2−m)AiAj) + bij − (A

2
m + bijy

iyj)yiyj

}
(6.3)
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From equation (6.3) in (6.1), we have

Ēij =
c(n+ 1)

2F̄
e2σ
{
A

2
m
−2

m2
(mAAij + (2−m)AiAj) + bij − (A

2
m

+bijy
iyj)yiyj

}
,

=
c(n+ 1)

2F

{
A

2
m
−2

m2
(mAAij + (2−m)AiAj) + bij − (A

2
m

+bijy
iyj)yiyj

}
,

Since, F̄ = e2σF the above equation yields;

Ēij =
(n+ 1)

2F

(
A

2
m
−2

m2

)
c{mAAij + (2−m)AiAj}. (6.4)

In view of equation (3.9), we clear that Ēij are rational functions of y. Thus,

from equation (6.4), we have either c = 0 or

mAAij + (2−m)AiAj = 0. (6.5)

Suppose c ̸= 0. Contracting the equation (6.5) with Aik yields

mAδki + (2−m)Aiy
k = 0,

which implies that A(m(n− 1) + 2) = 0. Which is impossible, since hij = 0.

Therefore, c = 0 and consequently Ēij = 0. Thus, we state the following

Proposition 6.3. Let F̄ be a conformally transformed generalized m-th root

Finsler metric is of isotropic mean Berwald curvature. Then, F̄ is weakly

Berwald metric.

7. Conclusion

An m-th root metric F = m
√
A, where A = ai1,i2...im(x)y

i1 ....yim , is regarded

as a direct generalization of Riemannian metric in a sense, i.e., the second root

metric is a Riemannian metric. The theory of m-th root metric has been devel-

oped by M. Matsumoto- H. Shimada. The m-th root Finsler metric play a very

important role in physiscs, space time and general relativity.

Information geometry has emerged from investigating the geometrical struc-

ture of a family of probability distributions and has been applied successfully

to various areas, including statistical inference, control system theory and mul-

titerminal information theory. The notion of dually flat Riemannian metric,
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which comes under the information geometry on Riemannian manifolds. Dually

flat Finsler metrics form a special and valuable class of Finsler metrics in Finsler

information geometry, which play a very important role in studying flat Finsler

information structure. Then, work extended in Finsler geometry, the notion of

locally dual flatness to Finsler metrics.

As we know, in general Einstein metrics is said to Ricci tensor is proportionality

of metric tensor, i.e., Ric ∝ gij , which are a natural extension of those in

Riemannian geometry and they have good properties in Riemann geometry for

some class of Finsler metrics. Some research have been progressed to generalized

m-th root finsler metric is conformal to m-th root metric and also the curvature

properties of an mention metrics.

Especially in this study, we consider the generalized m-th root Finsler met-

ric F =

√
A

2
m +B, first we find the spray coefficients of conformally trans-

formed generalized m-th root Finsler metric and it shows that, it is rational

function of y. Then, we proved conformally transformed generalized m-th root

metric is locally dually flat if and only if the conformal transformation is homo-

thetic. Further, to refer [23], we characterized the Einstein metric is Ricci flat.

Finally, we get conformally transformed metric is weakly Berwald metric.
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