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Abstract

In this paper we discuss a class of non-stationary solutions of Einstein’s

field equations based on the non-stationary de Sitter space-time. These solu-

tions include Schwarz-schild-de Sitter and Vaidya-de Sitter black holes with a

cosmological variable Λ(u). Schwarzschild-de Sitter solution with variable Λ(u)

is regarded as a generalization of Schwarzschild-de Sitter solution with constant

Λ. Vaidya-de Sitter black hole with variable Λ(u) is also a generalization of

the radiating Vaidya black hole embedded into the stationary de Sitter space

with constant Λ. It is shown the interaction of the Vaidya null fluid with the

non-stationary de Sitter field expressing in an energy-momentum tensor. The

energy-momentum tensor of the embedded de Sitter black holes satisfies the

energy conservation law. The energy conditions (like weak, strong and domi-

nant conditions) for the energy-momentum tensor are also studied. The physical

properties of the time-like vector fields for both the embedded solutions are dis-

cussed. It is also found that the space-time geometry of Schwarzschild-de Sitter

and Vaidya-de Sitter solution with variable Λ(u) are type D in the Petrov clas-

sifications of space-times. We also discuss the surface gravity, temperature and

entropy of the space-time on the cosmological black hole horizons. It is also sug-

gested that the modified Einstein’s field equations associated with a variable cos-

mological Λ(u) will take the form Rab−(1/2)Rgab+Λ(u)gab = −K{Tab+T
(NS)
ab }

for any type of matter field distribution Tab.
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1. Introduction

The original de Sitter cosmological model is conformally flat space-time

with constant curvature [1] and is also a non-rotating and stationary solution.

Therefore, the non-rotating stationary de Sitter model is a solution of Einstein’s

field equations for an empty space with constant curvature, whereas the rotating

stationary de Sitter model proposed in [2] is a solution for non-empty space with

non-constant curvature. Because of the stationary and non-rotating properties

of the original de Sitter space, the non-rotating Schwarzschild black hole with

constant mass can embed to produce Schwarzschild-de Sitter cosmological black

hole with two event horizons - one for black hole and other for cosmological [3].

Similarly, the rotating stationary de Sitter cosmological universe [2] can conve-

niently embed into the rotating stationary Kerr-Newman solution to produce

rotating Kerr-Newman-de Sitter cosmological black hole with constant cosmo-

logical term. This Kerr-Newman-de Sitter black hole metric can be expressed

in terms of Kerr-Schild ansatz with different backgrounds. The expressibility of

an embedded black hole in different Kerr-Schild ansatze means that, it is always

true to talk about either Kerr-Newman black hole embedded into the rotating

de Sitter space as Kerr-Newman-de Sitter or the rotating de Sitter space into

Kerr-Newman black hole as rotating de Sitter-Kerr-Newman black hole - geo-

metrically both are the same. That is, physically one may not be able to predict

which space starts first to embed into what space. One thing we found from the

study of Hawking’s radiation of Kerr-Newman-de Sitter black hole [4], is that,

there is no effect on the cosmological constant Λ during the evaporation process

of electrical radiation. The cosmological constant Λ always remains unaffected

in Einstein’s field equations during Hawking’s radiation process. That is, unless

some external forces apply to remove the cosmological term Λ from the space-

time geometry, it continues to exist along with the electrically radiating objects,

rotating or non-rotating. This means that it might have started to embed from

the very early stage of the embedded black hole, and should continue to embed

forever. It is noted that the Kerr-Newman-de Sitter black hole proposed in [2] is

different from the one obtained by Carter [5] in the terms involving cosmological

constant.

The black hole embedded into de Sitter space plays an important role in

classical general relativity that the cosmological constant is found present in
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the inflationary scenario of the early universe in a stage where the universe is

geometrically similar to the original de Sitter space [6]. Also embedded black

holes can avoid the direct formation of negative mass naked singularities during

Hawking’s black hole evaporation process [4]. Here our aim is to study black

holes embedded into the non-stationary de Sitter space with variable Λ(u) and

find the effect of variable Λ(u).

In this paper, Section 2 deals with a brief introduction of the Einstein’s field

equations associated with the mass function M̂(u, r) in Newman-Penrose (NP)

formalism [7] for future references. We obtain the energy conditions for a general

energy-momentum tensor field. The field equations in NP formalism help in

deriving the line-element of non-stationary de Sitter space-time having variable

cosmological Λ(u) in Section 3. Sections 4 and 5 develop the derivations of

embedded Schwarzschild-de Sitter and Vaidya-de Sitter black holes with variable

Λ(u) based on the power series expansion of the mass function [8] respectively.

We show that the time-like vector field of an observer in the Vaidya-de Sitter

space is expanding, accelerating, shearing but non-zero twist. We also obtain

the temperatures proportional to the surface gravities of the embedded space-

times. The paper is concluded in Section 6 with reasonable remarks and physical

interpretations of the solutions presented here.

2. Field equations in Newman-Penrose formalism

We consider a line-element of a general canonical metric in Eddington-

Finkestein coordinate systems {u, r, θ, ϕ}

ds2 =
{
1− 2

r
M̂(u, r)

}
du2 + 2du dr − r2dΩ2, (2.1)

where dΩ2 = dθ2 + sin2θ dϕ2 is the line-element on the unit two-sphere, and

M̂(u, r) is referred to as the mass function and related to the gravitational fields

within a given range of radius r. Here u is the retarded time coordinate u = t−r.

Here ℓa, na and ma are given as follows

ℓa = δ1a, na =
1

2

{
1− 2rM̂(u, r)

}
δ1a + δ2a,

ma = − r√
2

{
δ3a + i sin θ δ4a

}
, (2.2)

where ℓa, na are real null vectors and ma is complex having its conjugate m̄a

with the normalization conditions ℓan
a = 1 = −mam̄

a and other inner products

are zero.
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The NP spin coefficients for the non-stationary metric (2.1) can be obtained

from those of the general rotating metric in [2, 9] by setting rotational parameter

a = 0 and are given as:

κ∗ = σ = λ = ϵ = π = τ = ν = 0,

ρ∗ = −1

r
, β = −α =

1

2
√
2r

cot θ,

µ∗ = − 1

2r

{
1− 2

r
M̂(u, r)

}
, (2.3)

γ =
1

2r2

{
M̂(u, r)− rM̂(u, r)r

}
.

The Ricci scalars for the metric are found as

ϕ00 = ϕ01 = ϕ10 = ϕ20 = ϕ02 = ϕ12 = ϕ21 = ϕ22 = 0

ϕ11 =
1

4r2

{
2M̂(u, r),r − r M̂(u, r),r r

}
ϕ22 = − 1

r2
M̂(u, r),u (2.4)

Λ∗ =
1

12r2

{
2M̂(u, r),r + r M̂(u, r),r r

}
.

where Λ∗ is the Ricci scalar (Λ∗ ≡ 1
24g

abRab). The Weyl scalars are as follows

ψ0 = ψ1 = ψ3 = ψ4 = 0

ψ2 =
1

r3

{
− M̂(u, r) +

2r

3
M̂(u, r),r −

r2

6
M̂(u, r),rr

}
. (2.5)

From the Einstein’s field equations Rab−(1/2)Rgab = −KTab associated with the

line-element (2.1), we find an energy-momentum tensor describing the matter

distribution in the gravitational field as

Tab = µℓaℓb + 2 ρ ℓ(a nb) + 2 pm(am̄b), (2.6)

where the quantities are found as

µ = − 2

Kr2
M̂(u, r),u,

ρ =
2

Kr2
M̂(u, r),r, p = − 2

Kr
M̂(u, r),rr (2.7)

with the universal constant K = 8πG/c4. These quantities are obtained from

the relations with the Ricci scalars (2.4) K µ = 2ϕ22, K ρ = 2ϕ11 + 6Λ, and

K p = 2ϕ11 − 6Λ.

It is to emphasize that the energy-momentum tensor (2.6) does not describe

a perfect fluid, i.e. for a perfect fluid, one has T
(pf)
ab = (ρ+ p)uaub − p gab with a
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unit time-like vector ua and its trace T (pf) = ρ− 3p, which is different from the

one given in [2, 9].

Energy conditions: The energy-momentum tensor (2.6) is a general form of

gravitational fields. For the analysis of the energy conditions of the energy-

momentum tensor, we shall introduce an orthonormal tetrad with a unit time-

like ua and three unit space-like vector fields va, wa, za using the null tetrad

vectors (2.2) such as

ua =
1√
2
(ℓa + na), va =

1√
2
(ℓa − na),

wa =
1√
2
(ma +ma), za = − i√

2
(ma −ma), (2.8)

with the normalization conditions uau
a = 1, vav

a = waw
a = zaz

a = −1 and

other inner products being zero. Then the metric tensor takes the form

gab = uaub − vavb − wawb − zazb. (2.9)

Now we shall consider a non-space like vector fields for an observer

Ua = α̂ua + β̂va + γ̂wa + δ̂za, (2.10)

where α̂, β̂, γ̂ and δ̂ are arbitrary constants [2, 18], subjected to the condition

that

UaUa = α̂2 − β̂2 − γ̂2 − δ̂2 ≥ 0. (2.11)

Then the energy-momentum tensor (2.6) can be written in terms of the or-

thonormal tetrad vectors given in (2.8) as

Tab = µℓaℓb + (ρ+ p)(uaub − vavb)− pgab. (2.12)

Now Tab U
aU b will represent the energy density as measured by the observer

with the tangent vector Ua (2.10). It is to emphasize that this Tab is a general

energy-momentum tensor of non-stationary space-times [2]. It includes those of

electromagnetic field, monopole, de Sitter cosmological model etc. However, it

does not include a perfect fluid with unit time-like vector ua. Hence, the energy-

momentum tensor (2.12) is different from the one of a perfect fluid T
(pf)
ab =

(ρ+p)ua ub−p gab with unit time-like vector ua, and it is convenient to introduce

all the energy conditions for Tab for future use:

(a) Weak energy condition: The energy momentum tensor obeys the in-

equality TabU
aU b ≥ 0 for any future directed time-like vector Ua which

implies that

µ ≥ 0, ρ ≥ 0, ρ+ p ≥ 0. (2.13)
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(b) Strong energy condition: The Ricci tensor for Tab satisfies the inequality

Rab U
aU b ≥ 0 for any time-like vector Ua, i.e. TabU

aU b ≥ (1/2)T , which

yields

µ ≥ 0, p ≥ 0, ρ+ p ≥ 0. (2.14)

(c) Dominant energy condition: For any future directed time-like vector Ua,

TabU
b should be a future directed non-space like (time-like or null) vector

field. This condition is equivalent to

µ ≥ 0, ρ2 ≥ 0, ρ2 − p2 ≥ 0. (2.15)

It is noted that the strong energy condition does not imply the weak energy

condition.

From (2.7) we observe that there is no straightforward way for solving the

non-linear Einstein’s field equations with the mass function M̂(u, r) to generate

exact solutions of physical interest. In order to have a meaningful physical inter-

pretation of the line-element (2.1) we have to consider some certain assumptions

on the mass function M̂(u, r) as the line-element having the energy-momentum

tensor (2.6) with the quantities (2.7) has no reasonable interpretation to regard

it as exact solution of Einstein’s field equations. In order to obtain the physi-

cally meaningful line-element, we have to assume the mass function M̂(u, r) or

rather to restrict it in some forms. Thus we consider, without lose of generality,

the mass function in the form of power series expansion as follows:

M̂(u, r) ≡
+∞∑

n=−∞
qn(u) r

n. (2.16)

Here qn(u) is referred to Wang-Wu function [9] of the retarded time coordinate.

The u-constant surfaces are null cones open to the future and the r-constant is

null coordinate. The retarded time coordinate is used to evaluate the radiating

(or outgoing) energy-momentum tensor around the astronomical body [11].

For instance, when M̂(u, r) sets to a constant M for n = 0, it is the

Schwarzschild solution with µ = ρ = p = 0. The Vaidya null radiating solution

can be obtained, when one assumes the mass function to be M̂(u, r) = M(u),

leading to the condition ρ = p = 0 in (2.7). This type of assumption on the

mass function M̂(u, r) turns out to be the case of n = 0 in the power se-

ries expansion (2.16). However, to generate charged solutions like Reissner-

Nordstrom and Vaidya-Bonnor, we have to use the combination n = 0 and

n = −1 together in the power series expansion, that will provides the mass
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function M̂(u, r) = M(u) − e2(u)r−1 for Vaidya-Bonnor solution. When M(u)

and e(u) become constant with M̂(u, r) = M − e2r−1, it gives the Reissner-

Nordstrom solution. Therefore, the mass function M̂(u, r) can, without loss of

generality, be expressed in the powers of r as in (2.16). The above line-element

(2.1) with the mass function (2.16) includes most of the known solutions of

Einstein’s field equations, that can be seen with the identifications of the index

n(= −1, 0, 1, 3), depending on the system (rotating or non-rotating) mentioned

in the introduction above.

For future reference, we note down the role of the power n in the expansion

series for the known spherically axisymmetric solutions as in [2], [8] and [9]:

(i) n = 0 corresponds to the term containing mass of the vacuum Kerr

family solutions such as Schwarzschild, Kerr;

(ii) n = −1 is equivalent to the charged term of Kerr family such as Reissner-

Nordstrom, Kerr-Newman;

(iii) n = 1 furnishes the term of the global monopole solution;

(iv) n = 3 provides the de Sitter cosmological models, rotating and non-

rotating [12];

(v) n = 2 produces dark energy solution having equation of state parameter

w = −1/2 [10].

These values of n are conveniently used for generating stationary non-rotating

and rotating solutions. Here in this paper for deriving black holes in non-

stationary de Sitter space we will combine two values of power n (i.e. n = 0 and

n = 3) in both Sections 4 and 5 below. Similar combinations of the values of n

for obtaining embedded exact solutions, rotating or non-rotating, may be seen

in [2].

3. Non-stationary de Sitter solution

In this section we shall show the derivation of a non-stationary de Sitter

metric [12] with a cosmological term of variable Λ(u) by using the power series

expansion (2.8). In view of this, we consider the Wang-Wu function as

qn(u) =

{
Λ(u)/6, when n = 3

0, when n ̸= 0,
(3.1)

such that the mass function (2.16) becomes

M̂(u, r) =
1

6
r3Λ(u). (3.2)
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Then using this mass function, the line element (2.1) becomes the form, describ-

ing a non-stationary de Sitter line-element with cosmological function Λ(u) in

the null coordinates (u, r, θ, ϕ) as

ds2 =
{
1− 1

3
r2Λ(u)

}
du2 + 2du dr − r2(dθ2 + sin2θ dϕ2). (3.3)

Here Λ(u) is an arbitrary non-increasing function of the retarded time coordinate

u. The non-stationary de Sitter metric (3.3) has singularity horizons at r =

±{3Λ(−1)(u)}1/2 [12]. From Einstein’s field equations Rab−(1/2)Rgab = −KTab,
we find that the above metric possesses an energy-momentum tensor as

KTab = −1

3
rΛ(u),uℓaℓb + Λ(u)gab (3.4)

where ℓa = δ1a is a null vector and the universal constant K = 8πG/c4. The

trace of the tensor (3.4) is given by KT = 4Λ(u). Here it is to mention

that the energy-momentum tensor (3.4) involves a Vaidya-like null radiation

term −1
3rΛ(u),uℓaℓb, which arises from the non-stationary state of motion of

an observer traveling in the non-stationary de Sitter universe (3.3). This non-

stationary part of the energy-momentum tensor (3.4) contributes the nature

of null radiating matters present in (3.3) whose energy-momentum tensor will

vanish when r → 0, and has zero trace. However, it still maintains the non-

stationary status that Λ(u) ̸= constant, showing that the space-time of the

observer is naturally time dependent even at r → 0. Let us denote it as T
(NS)
ab ,

where ‘NS’ stands for non-stationary as it arises from the non-stationary state

of the universe.

Using the energy-momentum tenor (3.4) we could write Einstein’s field

equations as follows

Rab −
1

2
Rgab + Λ(u)gab = −T (NS)

ab , (3.5)

It is noted that the right side of the equation (3.5) does not involve the uni-

versal constant K. The derivation of this non-stationary de Sitter cosmological

universe (3.3) is in agreement with the original stationary de Sitter model [1]

when Λ(u) takes a constant value in (3.4).

Now expressing the metric tensor in terms of complex null tetrad vectors

[7] gab = 2ℓ(anb) − 2m(am̄b), we can write the energy-momentum tensor (3.4) as

follows

Tab = µ ℓaℓb + 2 ρ ℓ(anb) + 2 pm(amb), (3.6)
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where ρ and p are the density and pressure of the non-stationary de Sitter models

respectively and are found as:

ρ = − p =
Λ(u)

K
, µ = − r

3K
Λ(u),u. (3.7)

The trace of energy-momentum tensor (3.6) is given as

T ≡ gabTab = 2(ρ− p) =
4

K
Λ(u). (3.8)

Here it is observed that ρ− p > 0 for the non-stationary de Sitter model. From

(3.8) we find the equation of state

w =
p

ρ
= −1 (3.9)

with the negative pressure of variable Λ(u). This shows the fact that the non-

stationary de Sitter solution (3.3) is in agreement with the cosmological constant

Λ de Sitter model possessing the equation of state w = −1 in the dark energy sce-

nario [13, 14, 15], when Λ(u) takes a constant value Λ. The energy-momentum

tensor (3.6) satisfies the energy conservation equation

T ab
;b = 0. (3.10)

The energy-momentum tensor (3.6) with µ, ρ and p given in (3.7) is the same

form of (2.6) with the coefficients in (2.7). So the tensor of the form (2.6) is

the general form of energy-momentum tensor whose coefficients µ, ρ and p may

vary depending on the choice of the matter present in a particular space-time.

The metric (3.3) has an apparent singularity at r = ±{3Λ(−1)(u)}1/2.
The root r+ = 31/2Λ(u)−1/2 corresponds to a cosmological horizon at r+ =

31/2Λ(u)−1/2. According to Carter [5] and York [16], we introduce a scalar κ

defined by the relation nb∇bn
a = κna, where the null vector na is parameterized

by the coordinate u, such that d/du = na∇a. On the horizon r = r+, the scalar

κ is referred to the surface gravity of the de Sitter model and is obtained as

κ = 3−1/2Λ(u)1/2.

The entropy S on the horizon is related with the area A of the horizon as

S = A/4 and is obtained as

S = 3πΛ(u)−1.

It is also found that the non-stationary de Sitter space-time is conformally flat

Cabcd = 0, i.e. all the Weyl scalars are vanished

ψ0 = ψ1 = ψ2 = ψ3 = ψ4 = 0. (3.11)
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The Kretschmann scalar for non-rotating de Sitter model (3.3) takes the form

K ≡ RabcdR
abcd =

8

3
Λ(u)2, (3.12)

which does not involves any derivative term of Λ(u), and will not change its value

at r → 0 and r → ∞. The above Kretschmann scalar will become the one of

original de Sitter model when Λ(u) takes a constant value Λ(u). That is, though

the energy-momentum tensor (3.4) for non-stationary model is found different

from the one of stationary de Sitter solution, the forms of Kretschmann scalar

for both non-stationary (3.3) and stationary models [1] have similar structures

with a difference in nature of the cosmological function Λ(u).

de Sitter solution as dark energy: The stationary de Sitter with a cosmolog-

ical constant Λ is a solution of Einstein’s field equations for an non-empty space

Tab ̸= 0 possessing a ratio of pressure (p = −Λ/K) to the density (ρ = Λ/K) as

an equation of state parameter w = p/ρ = −1. This negative parameter w = −1

is the most important characteristic property of de Sitter space to be considered

as a candidate of dark energy solution of Einstein’s field equations [13, 14, 15]

and references there in. We have seen from (3.9) above that the non-stationary

de Sitter solution with variable Λ(u) admits the equation of state parameter

w = p/ρ = −1 associated with the pressure (p = −Λ(u)/K) and the den-

sity (ρ = Λ(u)/K). Also due to the negative pressure, the energy-momentum

tensor (3.6) of the non-stationary de Sitter solution violates the strong energy

condition (2.14) above. This violation of strong energy condition implies the

repulsive gravitational field of the non-stationary de Sitter solution. The space-

time geometry of de Sitter solution with parameter w = −1 (either stationary

or non-stationary) is conformally flat (3.11).

Here it will be better to introduce other dark energy solution of mass m

possessing negative pressure p = −(2/Kr)m and density ρ = (4/Kr)m, and

having an equation state parameter w = −1/2 with minus sign [10]. The energy-

momentum tensor of this dark energy solution also violates the strong energy

condition (2.14) leading to a repulsive gravitational field in the space-time ge-

ometry. The dark energy solution with equation state parameter w = −1/2

(either stationary or non-stationary) of Ibohal et al. [10] is conformally flat. It

is emphasized that the equations of state parameter w = −1/2 for the dark en-

ergy solution is belonged to the range −1 < w < 0 focussed for the best fit with

cosmological observations [14] and references there in as −1 < −1/2 < 0. In

general we may summarize the properties of dark energy solutions of Einstein’s

field equations that the energy-momentum tensor of a space-time geometry (i)
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possesses a negative pressure, (ii) has an equation of state with minus sign, (iii)

violates the strong energy condition. It is to mention that the energy-momentum

of a matter field satisfying the strong energy condition indicates the attractive

gravitational field of the matter.

4. Schwarzschild black hole in non-stationary de Sitter space

In this section we propose the derivation of an exact solution describing

the Schwarzschild-de Sitter solution with the variable Λ(u) of the above section.

which may be treated as the Schwarzschild black hole in the non-stationary de

Sitter background with variable Λ(u). It is emphasized that the Schwarzschild

solution embedded into the constant Λ de Sitter space is known [3]; however, we

have not seen published the Schwarzschild solution embedded into the variable

Λ(u) de Sitter space. For deriving the Schwarzschild-de Sitter solution with

Λ(u) we consider the Wang-Wu functions q(u) in (2.16) as follows:

qn(u) =


M, when n = 0

Λ(u)/6, when n = 3

0, when n ̸= 0, 3,

(4.1)

such that the mass function takes the form

M(u, r) =M +
1

6
r3Λ(u). (4.2)

The function M(u, r) is the combination of two values of n (n = 0 and n = 3)

together to get one embedded solution. Now using this mass function in the met-

ric (2.1), we obtain a non-stationary metric, describing the Schwarzschild metric

embedded into the non-stationary de Sitter space to produce Schwarzschild-de

Sitter solution with Λ(u) as

ds2 =
{
1− 2M

r
− 1

3
r2Λ(u)

}
du2 + 2du dr − r2(dθ2 + sin2θ dϕ2), (4.3)

where M is the mass of the Schwarzschild black hole and Λ(u) denotes the

de Sitter cosmological function of retarded time coordinate u. When we set

the function Λ(u) to be a constant Λ, the line element (4.3) will become the

Schwarzschild-de Sitter space-time with cosmological constant [3]. When the

Schwarzschild mass vanishes M = 0, and function Λ(u) is set to be a constant

Λ, the line element will recover the original de Sitter solution [1].

The complex null vectors for the Schwarzschild-de Sitter solution can be

found as follows:

ℓa = δ1a, na =
1

2 r2
∆ δ1a + δ2a,
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ma = − r√
2

{
δ3a + i sin θ δ4a

}
(4.4)

where ∆ = r2 − 2rM − Λ(u) r4/3. Here ℓa, na are real null vectors and ma is

complex with the normalization conditions ℓan
a = 1 = −mam̄

a and the other

inner products of the null vectors are zero. From Einstein’s field equations

Rab− (1/2)Rgab = −KTab, we find the energy-momentum tensor describing the

matter field for the Schwarzschild-de Sitter space-time (4.3) as

Tab = µ ℓaℓb + 2 ρ ℓ(anb) + 2 pm(am̄b), (4.5)

which is the same as that of non-stationary de Sitter solution with the quantities

(3.7)

ρ = − p =
Λ(u)

K
,

µ = − r

3K
Λ(u),u. (4.6)

The trace of energy momentum tensor Tab is given in (3.8). This is because the

Schwarzschild solution is a vacuum space-time. Here it is observed that ρ−p > 0

for the non-stationary de Sitter model and the trace T does not involve the

Schwarzschild mass M , showing the vacuum space-time (4.3). The Ricci scalar

Λ∗ (≡ 1
24g

abRab), takes the form Λ∗ = 1
6Λ(u) describing the existence of matter

field in Schwarzschild-de Sitter space-time (4.3). The energy-momentum tensor

for the solution (4.3) may be written in the following decomposition form as:

Tab = T
(NS)
ab + T

(dS)
ab , (4.7)

where the T
(NS)
ab the non-stationary contribution of de Sitter field Λ(u) associated

with the derivative term Λ(u),u and T
(dS)
ab the cosmological de Sitter matter are

given, respectively

T
(NS)
ab = µ(NS)ℓaℓb, (4.8)

T
(dS)
ab = 2ρ(dS)ℓ(anb) + 2p(dS)m(am̄b)}, (4.9)

where the coefficients are given by

µ(NS) = − r

3K
Λ(u),u

ρ(dS) = − p(dS) =
Λ(u)

K
. (4.10)

Here µ(NS) the non-stationary null density associated with the derivative of

Λ(u), ρ(dS) and p(dS) are the density and the pressure of de Sitter matter. When
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the function Λ(u) becomes constant, it will provide T
(NS)
ab = 0, then the space-

time will be that of the Schwarzschild-de Sitter with constant Λ. If M = 0,

Λ(u) ̸= constant then the remaining space-time (4.3) will be the non-stationary

de Sitter model with variable Λ(u) (3.3). At that time the T
(NS)
ab and T

(dS)
ab

will exist indicating the non-stationary de Sitter matter distribution; and for

constant Λ, T
(NS)
ab = 0, then the energy-momentum tensor (4.7) will reduce to

Tab = T
(dS)
ab = Λgab for the well-known de Sitter model with constant Λ.

For the metric (4.3) the energy-momentum tensor (4.7) can be written in

the form of Guth’s modification of Tab → Tab + Λgab for early inflation of the

universe [6] as

Tab = T
(NS)
ab + Λ(u)gab, (4.11)

where gab is the Schwarzschild-Sitter metric tensor. This may represent the

inflation of vacuum Schwarzschild space in the non-stationary de Sitter space

with cosmological variable Λ(u).

Here we shall justify the nature of the embedded solution in the form of

Kerr-Schild ansatze in different backgrounds. The Schwarzschild-de Sitter met-

ric can be expressed in Kerr-Schild ansatz on the non-stationary de Sitter back-

ground

g
(SchdS)
ab = g

(dS)
ab + 2Q(u, r)ℓaℓb (4.12)

where Q(u, r) = −M r−1. Here, g
(dS)
ab is the non-stationary de Sitter metric (3)

and ℓa is geodesic, shear free, expanding and zero twist null vector for both

g
(dS)
ab as well as g

(SchdS)
ab . The above Kerr-Schild form can also be recast on the

Schwarzschild background as

g
(SchdS)
ab = g

(Sch)
ab + 2Q(u, r)ℓaℓb (4.13)

where Q(u, r) = −Λ(u)r2/6. These two Kerr-Schild forms (4.12) and (4.13)

show the fact that the non-stationary Schwarzschild-de Sitter space-time (4.3)

with variable Λ(u) is a solution of Einstein’s field equations. They establish

the structure of embedded black hole that either “the Schwarzschild black hole

is embedded into the non-stationary de Sitter cosmological universe to pro-

duce Schwarzschild-de Sitter black hole” or the non-stationary de Sitter uni-

verse is embedded into the Schwarzschild black hole to obtain the de Sitter-

Schwarzschild black hole – both nomenclature possess the same geometrical

meaning. That is, we cannot physically predict which space started first to

embed into another [2].
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Surface gravity: The metric (4.3) will describe a cosmological black hole with

the horizons at the values of r for which the polynomial equation ∆ = r2 −
2rM − Λ(u) r4/3 = 0 has three roots r1, r2, and r3(= r̄2). The explicit roots

are given as

r1 = − 1

(3Q)
1
3

− 1

Λ(u)
(3Q)

1
3

r2 =
1

2Λ(u)

[
(1 + i

√
3)Λ(u)(3Q)−

1
3 + (1− i

√
3)(3Q)

1
3

]
, (4.14)

where Q = Λ2(u){M+(1/3)Λ(u)(−1/2)
√

9Λ(u)M2 − 1}. These roots satisfy the

following relation

(r − r1)(r − r2)(r − r3) = − 3

Λ(u)

{
r − 2M − Λ(u)

3
r3
}

(4.15)

Here we are interested only the real root r1 which may describe the horizon of

the Schwarzschild-de Sitter cosmological black hole, as the complex roots have

less physical interpretation.

The surface gravity κ of a horizon is defined by the relation nb∇bn
a = κna,

where the null vector na in (3.4) above is parameterized by the coordinate u,

such that d/du = nb∇b [5], [16]. ∇b is the covariant derivative. The surface

gravities at r = ri, (i = 1, 2, 3) are as

κ =
1

r2

{
M − r +

Λ(u)r3

6

}∣∣∣
r=ri

, (4.16)

and the entropy of the horizon is found as,

S = π r2
∣∣∣
r=ri

. (4.17)

Here we consider a case of extreme Schwarzschild-de Sitter black hole having

the mass function M = ±(1/3)Λ(u)(−1/2), if Λ(u) > 0 for a particular constant

value of u. This implies that the real root r1 take the values r1 = −2Λ(u)(−1/2)

at that point, and the two complex roots are coincided r2 = r3 = Λ(u)(−1/2).

The surface gravity on the cosmological black hole horizon r = r1 takes the form

κ = −(3/4)Λ(u)(−1/2). However, it is vanished at r = r2 = r3. Then we obtain

the Hawking’s temperature of the cosmological black hole horizon at r = r1
from the relation T̂ = κ/2π as

T̂ = − 3

8π
Λ(u)(−

1
2
) (4.18)

for a particular constant value of u. The temperature associated with the real

root r1 in (4.14) will never vanish for the existence of variable Λ(u) in the
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space-time geometry of the Schwarzschild-de Sitter black hole. The condition

−(1/3)Λ(u)(−1/2) ≤ M ≤ +(1/3)Λ(u)(−1/2) for some constant value of u with

the Schwarzschild mass M may be the non-stationary generalization of the con-

dition −(1/3)Λ(−1/2) ≤M ≤ +(1/3)Λ(−1/2) of the Schwarzschild-de Sitter black

hole with constant mass and constant Λ [3].

The Schwarzschild-de Sitter metric (4.3) describes a non-stationary embed-

ded spherically symmetric solution whose Weyl curvature tensor is type D

ψ2 ≡ −Cpqrsℓ
pmqmrns = −Mr−3 (4.19)

in Petrov classification possessing a repeated null direction ℓa which is geodesic,

shear free, expanding and zero-twist, as other Weyl scalars are vanished ψ0 =

ψ1 = ψ3 = ψ4 = 0. It is observed that the variable Λ(u) does not involve in the

expression of ψ2 above, showing the conformally flat character of non-stationary

de Sitter space [12]. The Kretschmann scalar for Schwarzschild-de Sitter model

(4.3) takes the form

RabcdR
abcd =

48

r6
M2 +

8

3
Λ2(u), (4.20)

This invariant does not diverge at the origin.

5. Vaidya black hole in non-stationary de Sitter solution

We shall discuss the derivation of the Vaidya-de Sitter solution with a non-

stationary variable Λ(u), which may be treated as the non-stationary Vaidya-de

Sitter black hole or the Vaidya black hole on the non-stationary de Sitter back-

ground with variable Λ(u). It is emphasized that the Vaidya solution embedded

into the constant Λ de Sitter space is known [17, 18]. For deriving the Vaidya-de

Sitter solution with Λ(u) we consider the Wang-Wu functions q(u) in (2.16) as

follows:

qn(u) =


M(u), when n = 0

Λ(u)/6, when n = 3

0, when n ̸= 0, 3,

(5.1)

such that the mass function (2.16) takes the form

M(u, r) =M(u) +
1

6
r3Λ(u). (5.2)

Then using this mass function in the metric (2.1), we obtain a non-stationary

metric, describing the Vaidya metric embedded into the non-stationary de Sitter
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model to produce Vaidya-de Sitter solution with variable cosmological function

Λ(u) as

ds2 =
{
1− 2M(u)

r
− 1

3
r2Λ(u)

}
du2 + 2du dr − r2(dθ2 + sin2θ dϕ2), (5.3)

where M(u) is the mass of the Vaidya black hole and Λ(u) denotes the de Sitter

cosmological function of retarded time coordinate u. When we set the function

Λ(u) to be a constant Λ, the line element (5.3) will become the Vaidya-de

Sitter space-time with cosmological constant. When the Vaidya mass vanishes

asM(u) = 0, and function Λ(u) to be a constant Λ, the line element will recover

the original de Sitter solution.

The complex null vectors for the Vaidya-de Sitter solution can be chosen

as follows:

ℓa = δ1a, na =
1

2 r2
∆ δ1a + δ2a,

ma = − r√
2

{
δ3a + i sin θ δ4a

}
(5.4)

where ∆ = r2 − 2rM(u) − Λ(u) r4/3. Here ℓa, na are real null vectors and

ma is complex with the normalization conditions ℓan
a = 1 = −mam̄

a and the

other inner products of the null vectors are zero as before. From Einstein’s field

equations we find the energy-momentum tensor describing the matter field for

the non-stationary space-time (5.3) as

Tab = µ ℓaℓb + 2 ρ ℓ(anb) + 2 pm(am̄b), (5.5)

where the coefficients ρ, p and µ are the density, the pressure and the null

density, respectively and are given below:

ρ = − p =
Λ(u)

K
,

µ = − 1

K r2
M(u),u − r

3K
Λ(u),u. (5.6)

The trace of energy momentum tensor Tab (5.5) is found as

T =
4

K
Λ(u). (5.7)

Here it is observed that ρ−p > 0 for the non-stationary Vaidya-de Sitter solution

and the trace T does not involve the Vaidya mass M(u), showing that Vaidya

solution is the null fluid distribution of the space-time (5.3). The Ricci scalar Λ∗

(≡ 1
24g

abRab), describing matter field takes the form Λ∗ = 1
6Λ(u). The energy-

momentum tensor (5.5) satisfies the energy conservation equations, written in
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NP formalism [12]

T ab
;b = 0. (5.8)

As in general relativity the physical properties of a space-time geometry are

determined by the nature of the matter distribution in the space, we must

express the energy-momentum tensor (5.5) in such a way that one should be

able to understand it easily. Thus, the total energy-momentum tensor for the

solution (5.3) may be written in the following decomposition form as:

Tab = T
(V)
ab + T

(NS)
ab + T

(dS)
ab , (5.9)

where the T
(V)
ab being for the Vaidya null radiating fluid, T

(NS)
ab the non-stationary

contribution of de Sitter field Λ(u) associated with the derivative term Λ(u),u.

and T
(dS)
ab the cosmological de Sitter matter are given, respectively

T
(V)
ab = µ(V)ℓaℓb, (5.10)

T
(NS)
ab = µ(NS)ℓaℓb, (5.11)

T
(dS)
ab = 2ρ(dS)ℓ(anb) + 2p(dS)m(am̄b)}, (5.12)

where the coefficients are given by

µ(V) = − 1

K r2
M(u),u, µ(NS) = − r

3K
Λ(u),u

ρ(dS) = − p(dS) =
Λ(u)

K
(5.13)

where µ(V) is the null density for the Vaidya null fluid T
(V)
ab , µ(NS) the non-

stationary null density associated with the derivative of Λ(u), ρ(dS) and p(dS)

are the density and the pressure of de Sitter matter. When the function Λ(u)

becomes constant, it will provide T
(NS)
ab = 0, then the space-time will be that of

the Vaidya-de Sitter with constant Λ. If M(u) = 0, Λ(u) ̸= constant we have

T
(V)
ab = 0, then the remaining space-time (5.3) will be the non-stationary de

Sitter model with variable Λ(u). At that stage the T
(NS)
ab and T

(dS)
ab will exist

indicating the non-stationary de Sitter matter distribution; and for constant

Λ, T
(NS)
ab = 0, then the total energy-momentum tensor (5.9) will reduce to

Tab = T
(dS)
ab = Λgab for the well-known de Sitter model with constant Λ.

For the metric (5.3) the energy-momentum tensor (5.9) can be written in

the form of Guth’s modification of Tab → Tab+Λgab [6] for early inflation of the

universe as

Tab = T
(V)
ab + T

(NS)
ab + Λ(u)gab, (5.14)
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where gab is the Vaidya-Sitter metric tensor. This shows the inflation of radiating

Vaidya space in the non-stationary de Sitter space with cosmological variable

Λ(u).

Here we shall show that the Vaidya-Sitter metric is an embedded solution

by writing in the form of Kerr-Schild ansatze in different backgrounds. The

Vaidya-de Sitter metric can be expressed in Kerr-Schild ansatz

g
(VdS)
ab = g

(dS)
ab + 2Q(u, r, θ)ℓaℓb (5.15)

where Q(u, r) = −M(u) r−1. Here, g
(dS)
ab is the non-stationary de Sitter metric

and ℓa is geodesic, shear free, expanding and zero twist null vector for both g
(dS)
ab

as well as g
(VdS)
ab . The above Kerr-Schild form can also be recast on the Vaidya

background as

gVdS
ab = gVab + 2Q(u, r, θ)ℓaℓb (5.16)

where Q(u, r) = −Λ(u)r2/6. These two Kerr-Schild forms (5.15) and (5.16)

support the fact that the non-stationary Vaidya-de Sitter space-time (5.3) with

variable Λ(u) is a solution of Einstein’s field equations. They establish the

structure of embedded black hole that either “the null radiating Vaidya black

hole is embedded into the non-stationary de Sitter cosmological universe to

produce Vaidya-de Sitter black hole” or the non-stationary de Sitter universe

is embedded into the Vaidya black hole to obtain the de Sitter-Vaidya black

hole – both nomenclature possess the same geometrical meaning. That, it is not

physically possible to predict which space started first to embed into another.

However, in the context of combination of exact solutions, it is worth to

mention the fact that the two metrics g
(V)
ab and g

(dS)
ab cannot be added to obtain

g
(VdS)
ab as

g
(VdS)
ab ̸= 1

2

{
g
(V)
ab + g

(dS)
ab

}
.

This indicates that it is not possible to derive a new embedded solution by

adding two physically known solutions in general relativity [2].

Surface gravity: The metric (5.3) will describe a cosmological black hole with

the horizons at the values of r for which the polynomial equation ∆ = r2 −
2rM(u)−Λ(u) r4/3 = 0 has three roots r1, r2, and r3(= r̄2). The explicit roots

are given as

r1 = − 1

(3Q)
1
3

− 1

Λ(u)
(3Q)

1
3
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r2 =
1

2Λ(u)

[
(1 + i

√
3)Λ(u)(3Q)−

1
3 + (1− i

√
3)(3Q)

1
3

]
, (5.17)

where

Q = Λ2(u){M(u) + (1/3)Λ(u)(−1/2)
√

9Λ(u)M2(u)− 1}. (5.18)

These roots satisfy the following relation

(r − r1)(r − r2)(r − r3) = − 3

Λ(u)

{
r − 2M(u)− Λ(u)

3
r3
}
.

Here we are interested only the real root r1 which may describe the horizon

of the Vaidya-de Sitter cosmological black hole, as the complex roots have less

physical interpretation.

The surface gravity κ of a horizon is defined by the relation nb∇bn
a = κna,

where the null vector na in (5.4) above is parameterized by the coordinate u,

such that d/du = nb∇b [5], [16]. ∇b is the covariant derivative. The surface

gravities at r = ri, (i = 1, 2, 3) are as

κ =
1

r2

{
M(u)− r +

Λ(u)r3

6

}∣∣∣
r=ri

. (5.19)

Consequently, the temperatures of the horizons r = ri proportional to the sur-

face gravities can be obtained from the Bekenstein-Hawking relation T̂ = κ/2π.

Then the entropies of the horizons are found from the area-entropy relation

S = A/4 are found as,

S = π r2
∣∣∣
r=ri

. (5.20)

Extreme black hole case: Here we shall consider a case of extreme Vaidya-de

Sitter black hole from (5.18) having the mass function

M(u) = ±(1/3)Λ(u)(−1/2),

if Λ(u) > 0 . This implies that the real root r1 take the values r1 = −2Λ(u)(−1/2),

and the two complex roots are coincided r2 = r3 = Λ(u)(−1/2). The sur-

face gravity on the cosmological black hole horizon r = r1 takes the form κ

= −(3/4)Λ(u)(−1/2). However, it is vanished at r = r2 = r3. Then we obtain

the Hawking’s temperature of the cosmological black hole horizon at r = r1
from the relation T̂ = κ/2π as

T̂ = − 3

8π
Λ(u)(−

1
2
). (5.21)

The temperature associated with the real root r1 in (5.17) will never vanish as

long as the de Sitter Λ(u) exists in the space-time geometry of the Vaidya-de
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Sitter black hole. The condition −(1/3)Λ(u)(−1/2) ≤ M(u) ≤ +(1/3)Λ(u)(−1/2)

of the Vaidya mass m(u) is the non-stationary generalization of the condition

−(1/3)Λ(−1/2) ≤ M ≤ +(1/3)Λ(−1/2) of the Schwarzschild-de Sitter black hole

with constant mass and Λ [3].

Here, we find that the pressure p with the minus sign given in (5.13) does

not satisfy the strong energy condition (2.14). This violation of the strong energy

condition is due to the negative pressure, and leads to a repulsive gravitational

force of the matter field in the space-time (5.3). The violation indicates different

properties of the energy-momentum tensor (5.5) or (5.9) with (5.13) from those

of the ordinary matter fields, like perfect fluid, electromagnetic field etc., having

positive pressures. In particular, it is to note that this strong energy condition

is satisfied by the energy-momentum tensor of electromagnetic field with ρ =

p = e2/(Kr4) of Reissner-Nordstrom space-time.

Properties of the time-like vector: The motion of a matter field distribution

is determined by the nature of the time-like vector field ua = 1√
2(ℓa + na)

associated with energy-momentum tensor (5.5). It is found that the fluid flow

of the Vaidya-de Sitter model having variable Λ(u) is expanding (Θ = ua;a ̸= 0),

accelerating (u̇a = ua;bu
b ̸= 0), shearing σab ̸= 0 and zero twist (wab = 0).

Θ =
1√
2r2

{
r +M(u) +

2

3
r3Λ(u)

}
(5.22)

u̇a =
1√
2r2

{
M(u)− 1

3
r3Λ(u)

}
va (5.23)

σab = − 1

3
√
2r2

{
r + 4M(u)− 1

3
r3Λ(u)

}(
vavb −m(am̄b)

)
, (5.24)

where va = 1√
2(ℓa − na) is a space-like vector field vava = −1. From these

we observe that both the mass M(u) and the variable Λ(u) are appeared in

all the three equations. When M(u) = 0, the remaining equations will be for

non-stationary de Sitter space, whereas, if Λ(u) = 0, these will be for Vaidya

radiating black hole. This means that the time-like observer in the Vaidya space

will have a four velocity vector field ua which is expanding, accelerating, shearing

but zero-twist for Λ(u) = 0. This is also true for the observer in non-stationary

de Sitter space, when M(u) = 0.

The Vaidya-de Sitter metric (5.3) describes a non-stationary embedded

spherically symmetric solution whose Weyl curvature tensor is type D

ψ2 ≡ −Cpqrsℓ
pmqmrns = −M(u)r−3. (5.25)
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in Petrov classification possessing a repeated null direction ℓa which is geodesic,

shear free, expanding and zero-twist, as other Weyl scalars are vanished ψ0 =

ψ1 = ψ3 = ψ4 = 0. It is observed that the variable Λ(u) does not involve in the

expression of ψ2 above, showing the conformally flat character of non-stationary

de Sitter space [2] in the embedded Vaidya-de Sitter space. The Kretschmann

scalar for Vaidya-de Sitter model (5.3) takes the form

RabcdR
abcd =

48

r6
M2(u) +

8

3
Λ2(u), (5.26)

This invariant does not diverge when r → 0 as the Λ(u) term will remain for

the embedded solution (5.3). This scalar does not involve any derivative terms

of M(u) and Λ(u), and will not affect its form when the mass M(u) and the

variable Λ(u) become the constant.

6. Conclusion

Here we have investigated the non-stationary de Sitter solution with vari-

able Λ(u) from the field equations, expressed in Newman-Penrose formalism.

The dynamical evolution of variable Λ(u) in Einstein’s field equations is seen as

T
(NS)
ab = −1

3rΛ(u),uℓaℓb in (3.5) and also in (5.9). This term will always exist

for the non-stationary de Sitter solution with variable Λ(u). However, this will

vanish for the stationary de Sitter solution with constant Λ. This is to say that a

direct replacement of constant Λ by a variable Λ(u) in Einstein’s field equations

Rab − (1/2)Rgab + Λgab = −KTab as Rab − (1/2)Rgab + Λ(u)gab = −KTab will

not, in general, satisfy the energy conservation equations. Therefore, in order

to study a cosmological variable Λ(u) problem, we needs to introduce the extra

term T
(NS)
ab in the field equations for any type of matter field distribution Tab as

Rab − (1/2)Rgab + Λ(u)gab = −K{Tab + T
(NS)
ab }, (6.1)

where

T
(NS)
ab = −1

3
rΛ(u),uℓaℓb (6.2)

and ℓa is a null vector associated with the matric tensor gabℓ
aℓb = 0. These

equations (6.1) may be treated as the modified Einstein’s field equations asso-

ciated with a variable cosmological Λ(u). For example, the energy-momentum

tensors Tab for electromagnetic field in Reissner-Nordstrom and Vaidya-Bonnor

black holes embedded into the non-stationary de Sitter space with a variable

Λ(u) will satisfy the modified field equations (6.1) [2, 9, 12]. It is also shown

that, according to Guth’s modification [6] of energy-momentum tensor in (5.14)
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above, the Vaidya black hole might have inflated into the non-stationary de

Sitter space with variable Λ(u) in the early stage of the universe. It is worth

to mention that, when r → 0 at the origin, T
(NS)
ab will be vanished without

disturbing the non-stationary status of variable Λ(u).

We discuss exact solutions of Einstein field equations for the black holes em-

bedded in a non-stationary de Sitter background with variable Λ(u). These solu-

tions with variable Λ(u) may be regarded as the generalizations of Schwarzschild-

de Sitter [3] and Vaidya-de Sitter solutions with constant Λ [17]. The Vaidya-de

Sitter solution with constant Λ is also a generalized form of the Schwarzschild-

de Sitter solution with constant mass M and constant Λ. The Schwarzschild-

de Sitter solution is interpreted as a black hole in asymptotically de Sitter

space [3]. Thus, in this regard, the Schwarzschild-de Sitter and Vaidya-de Sit-

ter solutions with variable Λ(u) may be interpreted as black holes in asymp-

totically non-stationary de Sitter space. We have also seen that in the ex-

treme case of Vaidya-de Sitter black hole, the Vaidya mass M(u) has the limit

−(1/3)Λ(u)(−1/2) ≤ M(u) ≤ +(1/3)Λ(u)(−1/2) for Λ(u) > 0 [20] as mentioned

above. This Vaidya mass limit is also regarded as the generalization of the

Schwarzschild mass M limit −(1/3)Λ(u)(−1/2) ≤ M ≤ +(1/3)Λ(u)(−1/2) for a

particular value of u of the Schwarzschild-de Sitter with variable Λ(u). These

two limits are straightforward generalizations of Schwarzschild-de Sitter case

−(1/3)Λ(−1/2) ≤M ≤ +(1/3)Λ(−1/2) for constant mass M and Λ(> 0) [3].

The energy conditions (2.13)–(2.15) are general conditions for any non-

stationary space-time having the energy-momentum tensor of the type (2.6).

Particularly, the energy-momentum tensors of non-stationary de Sitter solution

(3.6), for Schwarzschild-de Sitter solution (4.5) and for Vaidya-de Sitter solution

(5.5) have the same forms of conditions. But, because of the negative pressures

(3.7) or (4.6) and (5.13), black holes in non-stationary de Sitter space do not

satisfy the strong energy condition (2.14). It is also worth to mention that the

above energy conditions are applicable for the energy-momentum tensor of non-

stationary dark energy solution with equation of state parameter w = −1/2

proposed by Ibohal et al. [10]. The de Sitter solutions, stationary or non-

stationary, are conformally flat. That the variable Λ(u) does not disturb the

property of Petrov type D of Schwarzschild and Vaidya space-times in (4.19)

and (5.25). In view of the energy-momentum tensor (3.6), the non-stationary

de Sitter solution with variable Λ(u) is stronger version than the stationary

de Sitter with constant Λ, since the constant Λ cannot produce the dynamical

evolution term T
(NS)
ab .
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It is expected that all known results of Schwarzschild-de Sitter solution as

well as Vaidya-de Sitter solution with constant Λ, done by other authors, may

be extended with the variable Λ(u) of the non-stationary embedded black holes

using the results in Section 4 and 5.
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