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Abstract

Using the Newman-Penrose formalism, the Lanczos potential for Petrov

type D spacetimes has been found. It is seen that the Lanczos scalars can be

expressed in terms of the spin-coefficients. The non-uniqueness character of the

Lanczos potential has been established and a possible justification to the name

“the Lanczos potential” is given.

1. Introduction

C. Lanczos generated the gravitational field through the equation (c.f.,[27],

[32])

Chijk = L[hi][j;k] + L[jk][h;i] − ∗L∗
[hi][j;k] − ∗L∗

[jk][h;i] (1)

where dual operation is applied to each pair of skew-symmetric brackets as

indicated. The double dual is defined as ∗A∗
hijk = 1

4ηhilmηjknoA
lmno and Lijk

is a rank three tensor field which satisfies the following properties

Lijk = −Ljik (2)

Li
t
t = 0 (or, gklLkil = 0) (3)

Lijk + Ljki + Lkij = 0 (or, ∗Li
t
t = 0) (4)

Lij
k
;k = 0 [or, (Lk

ij + Lij
jk );k] = 0 (5)

Eqn (1) can also be expressed as ([14])

Chijk = Lhij;k −Lhik;j +Ljkh;i −Ljki;h +L(hk)gij +L(ij)ghk −L(hj)gik −L(ik)ghj

+
2

3
Lpq

p;q(ghjgik − ghkgij) (6)
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where

Lhk = Lt
hk;t − Lt

ht;k (7)

and round bracket denotes symmetrization.

Using eqns (3), (5) and (7), eqn (6) can also be written as

Chijk = Lhij;k−Lhik;j+Ljkh;i−Ljki;h+
1

2
(Lp

hk;p+Lp
kh;p)gij+

1

2
(Lp

ij;p+Lp
ji;p)ghk

−1

2
(Lp

hj;p + Lp
jh;p)gik −

1

2
(Lp

ik;p + Lp
ki;p)ghj (8)

Eqn (1)/(6)/(8) is known as Weyl-Lanczos equation and the tensor field

Lijk is now commonly known as Lanczos potential or Lanczos spin tensor. The

role of Lanczos potential Lijk with respect to Weyl tensor Chijk (gravitational

field) is same as that of the vector potential for the electromagnetic field tensor.

In this paper, we shall consider the Weyl-Lanczos equation (8).

In 1962 Lanczos proved the existence of the tensor Lijk as a potential to

the Weyl tensor Cijkl, since then this potential has attracted the attention of

a number of workers (cf., [2-8], [10-20], [22-23], [25], [27-28], [31-33]). The list

of workers in this particular field is very large, here we have mentioned only

few (for a detailed discussion of Lanczos potential , see [1]). The construction

of Lijk, for a given spacetime geometry, is equivalent to solving Weyl-Lanczos

equation (8) with eqns (2-5) as constraints. Given the Weyl tensor, it is very

difficult to construct the Lanczos potential by integrating directly the eqn (8)

through tensorial approach. However, Newman-Penrose formalism ([29]) offers

some simplifications.

It is known that most of the physically significant spacetime solutions are

of Petrov type D. Some of the familiar members of this class are Schwarzchild,

Riessner-Nördstrom, Kerr, Kerr-Newman, Vaidya and Gödel metrics. In this

paper, we shall obtain the Lanczos potential for a number of Petrov type D

metrics using the prescription given by Ahasn and Bilal [2]; which in turn leads

to the solution of Weyl-Lanczos equations.

2. Petrov D spacetimes

Using Newman-Penrose formalism, a possible general solution of Weyl-

Lanczos equations for Petrov type D spacetimes is given by ([2])

L0 = κ , L1 =
1

3
ρ
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L2 =
1

3
π , L3 = λ

L4 = σ , L5 = −1

3
τ (9)

L6 = −1

3
µ , L7 = ν

But for Petrov type D fields, Goldberg-Sachs theorem demands that κ =

σ = ν = λ = 0 and eqn (9) thus reduces to

L0 = L3 = L4 = L7 = 0

L1 =
1

3
ρ, L2 =

1

3
π, L5 = −1

3
τ, L6 = −1

3
µ (10)

Therefore, if Li (i = 0, 1, ..., 7) [from eqns (10)] are known, then from the

completeness relation

Lijk = Mijk + M̄ijk (11)

between the Lanczos tensor Lijk and Lanczos scalars Li we can construct the

Lanczos spin tensor which in turn generates the gravitational field (the Weyl

tensor) through Weyl-Lanczos eqns (8) where

Mijk = L0Uijnk + L1(Wijnk − Uijmk) + L2(Vijnk −Wijmk)− L3Vijmk

−L4Uijm̄k + L5(Uijlk −Wijm̄k) + L6(Wijlk − Vijm̄k) + L7Vijlk (12)

and

Uij = −nim̄j + njm̄i , Vij = limj − ljmi

Wij = linj − ljni +mim̄j −mjm̄i (13)

Here we shall find the Lanczos potential for some well known metrics using

eqn (10). In each case, we shall write down the null tetrad for the metric under

consideration, its non-vanishing spin-coefficients, intrinsic derivatives etc. and

then the Lanczos scalars.

2.1. Kerr-Newman black hole

Newman et al ([30]) have obtained a solution of Einstein-Maxwell equations

which, in (r, θ, ϕ, u) coordinates, is described by the metric ([24])

ds2 = [1−A−2(2mr − e2)]du2 + 2dudr + 2aA−2(2mr − e2) sin2 θdudϕ

−2a sin2 θdrdϕ−A2dθ2 − [(r2 + a2)2 −Ba2 sin2 θ]A−2 sin2 θdϕ2 (14)

where A2 = r2+a2 cos2 θ and B = r2−2mr+a2+e2. The solution (14) represents

the exterior gravitational field of a charged rotating mass and contains three

parameters - m (mass), e (charge) and a (angular momentum per unit mass).
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The metric (14) is known as Kerr-Newman solution and defines a black hole

with an event horizon only when a2 + e2 ≤ m2.

It is known that rotating black holes are formed due to gravitational collapse

of a massive spinning star or from the collapse of a collection of stars or gas

with a total non-zero angular momentum. Since most of the stars rotate, it

is expected that most of the black holes in nature are rotating and thus Kerr-

Newman solution represents the gravitational field outside a charged rotating

black hole (see also [9]).

The null tetrad vectors for the metric (14) are

li = δi2, ni =
1

A2

[
(r2 + a2)δi1 −

B

2
δi2 + aδi4

]
,

mi =
1

C
√
2

[
ia sin θδi1 + δi3 + i csc θδi4

]
(15)

where C = r + ia cos θ. The non-zero spin-coefficients are given by

ρ = −C̄−1, µ = − B

2C̄A2
, α =

2ia− C cos θ

2
√
2(C̄C̄ sin θ)

, β =
cot θ

2
√
2C

τ = − ia sin θ√
2A2

, π =
ia sin θ√
2CC̄

, γ =
(r −m)C̄ −B

2C̄A2
(16)

while the non-zero components of Weyl and Maxwell scalars, respectively, are

Ψ2 = − m

C̄3
+

e2

CC̄3
and ϕ1 =

e√
2C̄C̄

(17)

which shows that Kerr-Newman solution (14) is of Petrov type D with non-null

electromagnetic field.

Therefore, from eqns (10) and (16), the Lanczos scalars for the charged

rotating black hole are given by

L0 = L3 = L4 = L7 = 0

L1 = − 1

3C̄
, L2 =

ia sin θ

3
√
2C̄C̄

, L5 =
ia sin θ

3
√
2C

, L6 =
B

6C̄A2
(18)

2.2. Kerr black hole

When e = 0 and a ̸= 0, eqn (14) reduces to Kerr solution ( a rotating black

hole) which can be expressed as

ds2 =
[
1− 2mr

r2 + a2 cos θ

]
du2 + 2dudr +

[ 4amr sin2 θ

r2 + a2 cos θ

]
dudϕ− 2a sin2 θdrdϕ
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−(r2 + a2 cos2 θ)dθ2 −
[(r2 + a2)2 − (r2 − 2mr + a2)a2 sin2 θ

r2 + a2 cos2 θ

]
sin2 θdϕ2 (19)

The non-zero spin-coefficients are given by

ρ = −C̄−1, µ = −2mr − r2 − a2

2C̄A2
, α =

2ia− C cos θ

2
√
2(C̄C̄ sin θ)

, β =
cot θ

2
√
2C

τ = − ia sin θ√
2A2

, π =
ia sin θ√
2CC̄

, γ =
(r −m)C̄ − (r2 − 2mr + a2)

2C̄A2
(20)

where C = r + ia cos θ and A2 = r2 + a2 cos θ.

The non-zero components of Weyl scalar is

Ψ2 = − m

C̄3
(21)

which shows that Kerr metric (19) is of Petrov type D. Hence, using eqn (10),

the Lanczos scalars for Kerr black hole are given by

L0 = L3 = L4 = L7 = 0

L1 =
1

3
ρ, L2 =

1

3
π, L5 = −1

3
τ, L6 = −1

3
µ (22)

where the spin-coefficients ρ, π, τ and µ are given by eqn (20).

It may be noted that Petrov type D fields have only Coulomb

component of the gravitational field and thus the Lanczos scalars, given by

eqn (22), can act as the potential of the gravitational field of Kerr black hole

(in analogy with the electromagnetism).

2.3. Reissner-Nördstrom metric

If the angular momentum a is zero, then the line-element (14) reduces to

Reissner-Nördstrom solution given by

ds2 =
(
1− 2m

r
+

e2

r2

)
du2 + 2dudr − r2(dθ2 + sin2 θdϕ2) (23)

The null tetrad for the metric (23) can be taken as ([24])

li = δi2, ni = δi1 −
1

2

(
1− 2m

r
+

e2

r2

)
δi2, mi =

1

r
√
2

(
δi3 + i csc θδi4

)
(24)

so that the non-zero spin-coefficients are

ρ = −1

r
, µ = − 1

2r

(
1− 2m

r
+

e2

r2

)
,

α = −β =
1

2
√
2r

cot θ, γ =
1

2r3
(mr − e2) (25)
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and the non-zero components of Weyl and Maxwell scalars are, respectively,

given by

Ψ2 =
e2

r4
− m

r3
, ϕ1 =

e

r2
√
2

(26)

Hence following the prescription (10), the Lanczos scalars for the Reissner-

Nördstrom metric are

L0 = L2 = L3 = L4 = L5 = L7 = 0

L1 = − 1

3r
, L6 =

1

6r

(
1− 2m

r
+

e2

r

)
(27)

which clearly indicates that the Lanczos potential for Reissner-Nördstrom so-

lution depends upon the radial coordinate r, as well as on mass m and charge

e.

2.4. quad Schwarzchild exterior solution

Consider the Schwarzchild metric as

ds2 = −
(
1− 2m

r

)−1
dr2 − r2(dθ2 + sin2 θ2dϕ2) +

(
1− 2m

r

)
dt2 (28)

Using Kinnersley null tetrad ([15])

li =
1

r2 − 2mr
(r2, r2 − 2mr, 0, 0), ni =

1

2r2
(r2, 2mr − r2, 0, 0),

mi =
1

r
√
2
(0, 0, , 1, i csc θ) (29)

the non-vanishing spin-coefficients are given by

ρ = −1

r
, µ = − 1

2r

(
1− 2m

r

)
, α = −β = − 1

2
√
2r

cot θ, γ =
m

2r2
(30)

while the non-zero components of Weyl is

Ψ2 = −m

r3
(31)

The intrinsic derivatives used here are given by

D = li∇i,=
r2

A

∂

∂t
+

∂

∂r
, △ = ni∇i =

1

2

∂

∂t
− A

2r2
∂

∂r
,

δ = mi∇i =
1

r
√
2

( ∂

∂θ
+ icscθ

∂

∂ϕ

)
where A = r2 − 2mr.
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From eqn (31), it may be noted that the Schwarzchild exterior solution is

of Petrov type D, and thus using eqn (10), the Lanczos scalars are

L0 = L2 = L3 = L4 = L5 = L7 = 0,

L1 = − 1

3r
, L6 =

1

6r
(1− 2m

r
) (32)

Consider now the Schwarzchild solution in null coordinates xi = (u, r, θ, ϕ)

as

ds2 =
(
1− 2m

r

)
du2 + 2dudr − r2(dθ2 + sin2 θdϕ2) (33)

and taking the intrinsic derivatives as ([33])

D =
∂

∂r
, △ =

∂

∂u
− 1

2

(
1− 2m

r

) ∂

∂r
, δ =

1

r
√
2

( ∂

∂θ
+ icscθ

∂

∂ϕ

)
(34)

the non-zero spin-coefficients are given by

ρ = −1

r
, µ = − 1

2r
, α =

α◦

r
, β = − ᾱ◦

r
, γ = − 1

2r
+

m

r2
(35)

where α◦ = ᾱ◦ = − cot θ√
2
. Thus, from eqn (10), the Lanczos scalars for Schwarzchild

solution in null coordinates are given by

L0 = L2 = L3 = L4 = L5 = L7 = 0, 2L6 = −L1 =
1

3
(
1

r
) (36)

Remark. It may be noted from eqn (32) that the Lanczos scalars depend upon

two parameters r (the radial coordinate) and m (the mass), while eqn (36)

shows that the Lanczos scalars depend only on radial coordinate r. This clearly

indicates the non-uniqueness character of Lanczos potential and this feature

of Lanczos potential is in close analogy with that of the potential for electro-

magnetic field. Moreover, eqn (36) tells us that Lanczos scalars are inversely

proportional to the radial distance. The Vaidya’s metric, recently studied by

Hasmani and Panchal ([23]), also exhibit the same feature. Moreover, since

Petrov type D fields have only Coulomb component Ψ2 of the gravitational field

with li and ni as the propagation vectors, therefore Lanczos scalars can act

as the potential of the gravitational field; and thus justifying the name - the

Lanczos potential.

2.5. Kantowski-Sachs solution

A solution of Einstein field equations without cosmological constant for dust

particles was given by Kantowski and Sachs ([26]) and the metric in spherical
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coordinates (r, θ, ϕ, t) is given by

ds2 = dt2 −X2(t)dr2 − Y 2(t)[dθ2 + sin2 θdϕ2] (23)

The null tetrad vectors for this metric are ([24])

li =
1√
2
(δi4+X−1δi1), n

i =
1√
2
(δi4−X−1δi1), m

i =
1

Y
√
2
(δi2+ i sin−1 θδi3) (24)

The non vanishing spin-coefficients are given as

ρ = −µ = − Y ′

Y
√
2
, α = −β =

cot θ

2
√
2Y

, ϵ = −γ =
X ′

2
√
2X

(25)

and the non-zero components of Weyl scalar is

Ψ2 =
1

3

(Y ′′

Y
− X ′′

X

)
where a dash denotes the differentiation with respect to t.

Therefore, from eqn (10), the Lanczos scalars for Kantowski-Sachs metric

are

L0 = L2 = L3 = L4 = L5 = L7 = 0, L1 = L6 = − Y ′

3Y
√
2

(26)

which shows that the Lanczos scalars depends only on time as Y is a function

of time t.

3. Conclusion

The Lanczos potential for some well known solutions of Einstein and Einstein-

Maxwell equations have been obtained using the techniques of Newman-Penrose

formalisms. It has been observed that the Lanczos scalars can be expressed in

terms of the spin-coefficients, and our conjecture is that it shall occur in any

Petrov type if we select an appropriate null tetrad. Moreover, since Lanczos

spin tensor is a geometrical object of spacetime therefore it can be interpreted

physically; and an attempt has been made to assign a possible physical meaning

to this tensor. Thus, for example, for Schwarzchild exterior solution the Lanc-

zos scalars are inversely proportional to the radial distance. The Vaidya metric

also exhibit the same feature. Moreover, since Petrov type D fields have only

Coulomb component Ψ2 of the gravitational field with li and ni as the propaga-

tion vectors therefore Lanczos scalars can act as the potential of the gravitational

field; and thus justifying the name - the Lanczos potential. The non-uniqueness

character of Lanczos potential has also been established and it is seen that this

character can be achieved by the different choices of the tetrad vectors. This



Petrov Type D Spacetimes and Lanczos Potential 105

non-uniqueness property of the Lanczos potential is in close analogy with the

potential of the electromagnetic field.
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