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Abstract

The object of the present paper is is to study some curvature. condition on LP—
Sasaklan mamfolds which satisfy P. W2 =0, W2 W2 =0, L. Wg =0, Wg
WQ.WQ =0 and WQ.R =0.
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1. Introduction

In 1989, K. Matsumoto introduced the notion of LP-Sasakian manifold.
Then I. Mihai and R. Rosca [3] introduced the same notion independently and
they obtained several results on this manifold. LP-Sasakian manifold have also
been studied by K. Matsumoto and I. Mihai [6], B. Prasad [1], U. C. De, K. Mat-
sumoto and A. A. Shaikh [9], M. Trafdar and A. Bhattacharyya [7], Venkatesha
and C. S. Bagewadi [10], Shaikh, Prakasha and Ahmad [11], Prasad and Haseeb
[12], Berman [13] and others.

2. Preliminaries

A differentiable manifold M™ of dimension n is called LP-Sasakian manifold
Matsumato [4, 6], if it admits a (1,1) tensor field ¢, a contravariant vector field
&, a covariant vector field n and a Lorentzian metric g which satisfy

n(§) = -1, (2.1)

¢*(X) = X +n(X)E, (2.2)
9(¢X,9Y) = g(X,Y) +n(X)n(Y), (2.3)
9(X,8) =n(X), Dx§=¢X, (2.4)
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(Dxn)(Y) = g(¢X,Y), (2.5)
Let us put
F(X,Y) = g(¢X,Y). (2.6)
Then the tensor field F of (0,2) type is symmetric i.e.
FXY) = F(Y, X), (2.7)
(Dx¢)Y = g(X,Y)E +n(Y)X + 2n(X)n(Y)¢. (2.8)

where D denotes the operator of covariant differention with respect to the
Lorentzian metric g.

It can easily be seen that in an LP-Sasakian manifold the following relation
hold:

¢ =0, n(¢X)=0. (2.9)
Also, an LP-Sasakian manifold M™ are said to be Einstein and n-Einstein
if its Ricci tensor S is of the form
S(X,Y)=dg(X,Y)

, , (2.10)
and S(X,Y)=4d ¢g(X,Y)+b n(X)nY),

for any vector field X,Y where o/, 0 are function on M™. Further on such
a LP-Sasakian manifold with (¢,n,&, g) structure the following relation holds
(Matsumoto and Mihai [6] and De, Matsumoto and Shaikh [9])

9(R(X,Y)Z,&) = n(R(X,Y)Z) = g(Y, Z)n(X) — g(X, Z)n(Y), ~ (2.11)
R(§, X)Y = g(X,Y)€ —n(Y)X, (2.12)

R(& X)§ = X +n(X), (2.13)

R(X,Y)¢ =n(Y)X —n(X)Y, (2.14)

S(X,€) = (n = 1n(X), (2.15)

Q¢ = (n—1)¢ (2.16)

S(¢X,9Y) = S(X,Y) + (n — L)n(X)n(Y). (2.17)

The notion of pseudo-Ws curvature tensor Wg was given by (Prasad and Maurya

2])

Wa(X,Y)Z =aR(X,Y)Z + blg(Y, Z2)QX — g(X, Z)QY]—
(2.18)

[ ay “’} l9(Y, 2)X — (X, 2)Y).

r
ni|n—
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If a=1, b= ——1;, then (2.18) takes the form

1
W2(X.Y)Z = R(X.Y)Z — —[9(Y. 2)QX — 9(X. Z)QY] (2.19)

= Wy(X,Y)Z.

Thus Was-curvature is particular case of Wg—curvature, where a and b are real
constant and R, and r are the Riemannian curvature tensor of type (1,3),
the Ricci operator defined by ¢(QX,Y) = S(X,Y) and scalar curvature respec-
tively. Prasad et. al [15] and Kumar [14] extended this notation on LP-Sasakian
manifold and LP-Sasakian manifold with coefficient «.

On the other hand, the projective curvature tensor P and the concircular
tensor L in a Riemannian manifold (M", g) defined by (Mishra [8])

P(X,Y)Z =R(X,Y)Z — %[S(Y, Z2)X - S(X, 2)Y], (2.20)

and

L(X,Y)Z = R(X,Y)Z — [9(Y, 2)X —g(X, 2)Y]. (2.21)

o
n(n—1)
Putting £ for X in (2.18), (2.19) (2.20) and (2.21) and using (2.14),(2.15) and
(2.16), we have

Wa(&,Y)Z = klg(Y, 2)6 = n(Z2)Y] +bl(n = D)g(Y, 2) = n(2)QY],  (2:22)

Wherek‘:a—%[ﬁ—i—b].

Wa(&,Y)Z =[g(Y,2)§ —n(Z)Y] - [(n—1)g(Y,Z2)§ —n(Z2)QY], (2.23)

n—1
P& Y)Z = 4(¥, 2)¢ ~ ——=5(Y, 2)¢, (224
L7 = |1 s v 2 - )y, (2.25)

Now, we define P(X,Y).Wa, L(X,Y).Wa, Wa(X,Y).Wa, Wa(X,Y).L, Wa(X,
Y). W5 and Wa(X,Y).R as follows:

(P(X,Y) Wo)(U, V)W =P(X,Y)Wo(U, V)W — Wa(P(X,Y)U, V)W — (2.36)
Wa(U, P(X,Y)V)W — Wy (U, V)P(X, Y)W,

(L(X,Y).Wo) (U, V)W =L(X,Y)Wa(U, V)W — Wa(L(X, YU, V)W — .27
Wa(U, L(X,Y)V)W — Wa(U,V)L(X, Y)W,
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(Wa( X, Y). W) (U, VYW =W (X, Y)Wa(U, V)W — Wo(Wa (X, YU, V)W —
Wa (U, Wa(X,Y)V)W — Wy(U, V) Wa(X, Y)W,
(2.28)

(Wa(X,Y).Wa) (U, V)W =Wy (X, Y)Wa(U, V)W — Wa(Wa(X,Y)U, V)W~

Wa (U, Wa (X, Y)V)W — Wa(U, V)Wa(X, Y)W,
(2.29)
(Wa(X, V) L)U V)W =Wo(X V)L VIW — LI VO VW=
L(U, Wa(X,Y)V)W — L(U, V) Wa(X, Y)W, (2.50)
(Wa(X,Y).R)(U, V)W =Wa(X,Y)R(U,V)W — R(W2(X,Y)U, V)W~ .

R(U, Wa(X,Y)V)W — R(U, V)W (X, Y)W.

3. LP-Sasakian manifold satisfying P (&, Y)ﬁfvz

In this section we consider a LP-Sasakian manifold M™ satisfying the con-
dition
P(£,Y). Wy = 0. (3.1)
From (2.26), we have
Wa(U, P(&,Y)V)W — Wa(U,V)P(£, Y)W,
Using (3.1), we have

P(&,Y)Wo(U, V)W — Wa(P(£,Y)U, V)W —

Wa(U. P&, Y)V)W = Wa(U, V)P(E, Y)W = 0. .
Taking the inner product with X and using (2.24) and (3.2), we get
9V, Wa(UVIW)n(X) — g(Y.U)g(Wa(&, V)W, X) -
g, V)g(Wa(U. W, X) = (Y, W)g(Wa(U, V)&, X))~ 59
1 3.3

L[S Wa (U V)W )n(X) = S(Y,U)g(Wa(€, V)W, X)

— S(Y,V)g(Wa(U, )W, X) — S(Y, W)g(W2(U, V), X)] = 0.
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Taking £ for U in (3.3) and using (2.4) and (2.15), we have
[9(Y. Wa (&, VIW)n(X) — (Y. W)g(Wa(&, V)&, X)] -

— _ 3.4
! [S(K W2(§7 V)W)U(X) - S(Y7 W)g(W2 (57 V)§7 X)] =0, ( )

n—1
Using (2.23) in (3.4), we have
= k[{g(Y, V)n(W)n(X) + g(¥, W)n(V)n(X) + g(Y, W)g(V, X)}
LSV )R(X) + S W (V)X + S W)g(V: X))
= b(n = DESY, V)n(W)n(X) + g(¥, W)n(V)n(X) + g(Y,W)S(V, X)}
L {S(QY, VIn(WIn(X) + SV, W)n(V)n(X) + SV, W)g(V, X)}] = 0,
(3.5)
where S(QY,Z)=5%(Y,Z).
Putting e; for X and W in (3.5), {e;} is an orthonormal basis of the tangent

space at a point of the manifold and taking summation over e;, 1 < i < n, we
get

[r—n(n—1)]b(n—-1)S(V,X)+ kg(V,X) 4+ {k+b(n—1)}n(V)n(X)] =0.
(3.6)
From (3.6), we have
[r—nn—1)]=0, and bn—1)S(V,X)+ kg(V,X) .
{0+ bl D} (V)n(X) =0, &0
respectively. In the case of r — n(n — 1) #0, if b = 0, then from (3.7), we get
afr —n(n—1)] = 0.

But r —n(n — 1) #0, we get a = 0.
This is the contradiction. Thus we find b#0.
In view of (3.7), we have

SV, X) = [b(

% 4

b(1 —n)
which is an n-Einstein manifold.
Hence we have the following theorem:
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Theorem 3.1. Let M™ be an n-dimensional (n > 2) LP-Sasakian manifold
satisfying the condition P(§,Y).W5=0. Then M™ is a part of

(i) r =n(n — 1), that is, scalar curvature is constant or
(ii) an n-Einstein manifold, provided, a # 0, and b # 0.

4. LP-Sasakian manifold satisfying ﬁ//z(ﬁ, Y)f/V:

In this section we consider a LP-Sasakian manifold M™ satisfying the con-

dition
Wa(,Y). W =0. (4.1)

From (2.28), we have

(Wa(&,Y).Wa) (U, V)W =W (&, Y)W (U, V)W = Wa(Wa(&, Y)U, V)WV —

Wo(U, Wa(&,Y)V)W = Wa(U, V)Wa (&, Y)W,
Using (4.1), we have
Wa (&, Y)W (U, V)W = Wa(Wa(&, Y)U, V)WV —

—~ __ __ (4.2)
WZ(Ua W2(§7 Y)V>W - W2<U7 V)W2(§7 Y)W =0.
Taking the inner product with X and putting £ for U in (4.2), we have
9(Wa(&, Y)Wa(&, VIW, X) — g(Wa(Wa (€, Y)E, V)W, X)— (43)

g(Wa(&, W (&, Y)V)W,, X) — g(Wa(€, V)Wa(€, Y)W, X) = 0.

Putting e; for X in (4.3), {e;} is an orthonormal basis of the tangent space at
a point of the manifold and taking summation over e;, 1 < i < n, we get

g(Wa(&,Y)Wal(€, e)W, e;) — g(Wa(Wa(€,Y)E, &)W, e;)—

— _ N _ 4.4
g(Wa (& Wa(&,Y)e) W, ei) — g(Wa(€, ei)Wa(&, Y)W, e;) = 0. Y
In view of (2.18),(2.22) and (4.4), we have
b
(@) [psiQram) - (k=) sr.w)] )

+(n—-1) [k{a+b(n—2)}—b2{r—(n—l)}]g(Y,W):O.

fb=0and k=a [1 - ﬁ] , then veiw of (4.5), we have

a [n(r) - 1} [S(Y, W) — (n— 1)g(Y,W)] = 0.

n—1
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If a #0, then
SY,W)=(n-1g(Y,W), or r=n(n-1).
Hence we have the following theorem:

Theorem 4.1. Let M"™ be an n-dimensional (n > 2) LP-Sasakian manifold
satisfying the condition W5(&,Y).W5=0. Then we get

(i) if b= 0, then M" is an Einstein manifold,

(i) if b # 0, then we get

- (4 psw] -2

[k{a+0b(n—2)} - b {r —(n— D} (Y, W) =0.

5. LP-Sasakian manifold satisfying L(&, Y)W;

In this section we consider a LP-Sasakian manifold M™ satisfying the con-
dition
L(£,Y). Wy = 0. (5.1)
From (2.27), we have
(L(E,Y).Wa) (U, V)W =L(£,Y)Wo(U, V)W — Wa(L(€,Y)U, V)W~
Wa(U, L(&,Y)V)W — Wa(U, V) L(,Y)W.
Using (5.1), we have

L(EYYWa (U, V)W — Wa(L(E,Y)U, V)W —

Wa(U, L(&,Y)V)W — Wa(U, V)L(E, Y)W = 0. o
Taking the inner product with X in (5.2) and using (2.25), we have
1 0 B () — (a0, VWX, Y)
— g(Y, U)g(Wa(&, V)W, X) + n(U)g(Wa(Y, V)W, X)— (5.3)

9(Y, V) g(Wa(u, W, X) + n(V)g(Wa(U, Y)W, X)—
g(Wa(U,V)E, X)g(Y, W) + g(Wa(U, V)Y, X )n(W)] = 0.
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Again from (2.25), we have r # n(n — 1). Thus from (5.3), we have
g(Y, Wa(U,V)W)n(X) = n(Wa(U, V)WV)g(X,Y)
— gV, U)g(Wa(&, VIW, X) +n(U)g(Wa(Y, V)W, X) -
g(Y,V)g(Wa(U, )W, X) +n(V)g(Wa(U, Y)W, X)—
g(W2(U, V)&, X)g(Y, W) + g(Wa(U, V)Y, X)n(W) = 0.
Taking £ for U in (5.4) and using (2.15), we have
[g(V,W)g(X,Y) — g(Y,W)g(V, X)] + b[(n — 1)g(V, W)g(X,Y)—
S, V)in(W)n(X) + (n = 1)g(X, Y)n(V)n(W) + S(V, X)n(Y)n(W)
= S(X,Y)n(V)n(W) — g(Y,W)S(V,X) 4 (n — 1)g(V,Y)n(W)n(X)
— S(V, X)n(Y)n(W)] —d R(Y,V,W, X) — b[S(X,Y)g(V, W) (5.5)

— 5V, X)g(Y,W)] + % <nf1 + b> 9(X, Y )g(V, W)
—g(V. X)g(Y,W)] = 0.

Putting e; for Y and W in (5.5), {e;} is an orthonormal basis of the tangent
space at a point of the manifold and taking summation over e;, 1 < i < n, we
get

(a=b)S(V,W) =[a(n — 1) + bn(n — 1) = brlg(V, W)+
b[n(n — 1) = rln(V)n(W).

Hence we have the following theorem :

(5.6)

Theorem 5.1. An n-dimensional (n > 2) LP-Sasakian manifold M™ satisfying
the condition L(§,Y).Wy=0 is an n-Einstein manifold, provided a — b # 0 and
r#n(n—1).

6. LP-Sasakian manifold satisfying ﬁ/';(ﬁ, Y).L

In this section we consider a LP-Sasakian manifold M™ satisfying the con-
dition
Wa(€,Y).L = 0. (6.1)
From (2.30), we have
(Wa(&,Y).L) (U, V)W =Wa(&,Y) LU, V)W = L(Wa(&, Y)U, V)W —
L(U, Wa(&. Y)V)W — L(U,V)Wa(€, Y)W,
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Using (6.1), we have

v%(&f)L(U, VIW = LW(&, Y)U, V)W~ 62)
L(U,Wo (&, V)V)W — L(U, V)Wa(£, Y)W = 0.
Taking the inner product with X in (6.2) and using (2.22), we have
(Wa(&,Y)L(U, V)W, X) — g(L(Wa(&, YU, V)W, X)— 63

9(L(U W&, Y)V)W. X) = g(L(U.V)W(&, Y)W, X) = 0.
Putting ¢ for U in (6.3) and using (2.4),(2.1) and (2.25), we have

[1 _ n(nr_l)] [k +0][g(V,W)g(X,Y) — g(Y,W)g(V, X )+

29(V,W)S(X,Y) — (n— 1)g(Y, V)n(W)n(X) +n(V)n(X)S(Y, W)-
(n—=1D)g(Y,W)n(V)n(X) — (n — 1)g(Y, W)g(V, X) + n(W)n(X)S(V,Y)]-

k [g<R<Y, V)W, X) - (V. W)g(X.Y) — g(V,W)g(V, X)}} -

(n(n— 1)

b [g(R(QY, VW, X) — oD

{g(V,W)S(X,Y) = S(Y, W)g(V,X)}] = 0.
(6.4)

Putting e; for X and V in (6.4), {e;} is an orthonormal basis of the tangent
space at a point of the manifold and taking summation over ¢;, 1 <17 < n, we
get

bS(QY, W) — [ Zfl —k—b} S(Y, W)
Cn—1) [m(n—l)b—ﬂ oY W) =0,

when b = 0, then above equation can be written as

which means that k[r —n(n —1)] = 0. From (2.25), we find r # n(n — 1). Thus
we get k = 0; namely a = 0. This is the contradiction. Therefore we get b #£ 0
and

r k

sQvv) = |
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Hence we have the following theorem:

Theorem 6.1. In an n-dimensional (n > 2) LP-Sasakian manifold M" satis-
fying the condition W5(&,Y).L = 0 holds on M™, then the equation (6.5) is
satisfied on M™, provided a # 0 and b # 0.

7. LP-Sasakian manifold satisfying W5 (&, Y).WQ

In this section we consider a LP-Sasakian manifold M™ satisfying the con-

dition
Wo(,Y). Wy =0 (7.1)

From (2.29), we have

(Wa(&,Y).Wo) (U, V)W =W (&, Y)W (U, V)W — Wa(Wa(&, Y)U, V)WV —

Wa(U, Wa (&, Y)V)W = Wa(U,V)Wa(&, Y)W,
Using (7.1), we have
Wa (&, Y)W (U, V)W = Wa(Wa(&, Y)U, V)WV —

N — (7.2)

WZ(Ua WQ(&a Y)V)W - WQ(Ua V)WZ(gv Y)W =0.

Taking the inner product with X and putting £ for U, we have
9(Wa (&, Y)Wa (&, V)W, X) — g(Wa(Wa(&, Y)E, V)W, X) - (73)

g(Wa(&, Wa(&,Y)V)W, X) — W (Wa(&, V)Wa(E, Y)W, X) = 0.

Putting e; for X and V in (7.3), {e;} is an orthonormal basis of the tangent
space at a point of the manifold and taking summation over e;, 1 < ¢ < n, we
get

r

m—w[ﬂ@xm@-{Z+@—D}ﬂKW@+Mn_n

gY,W)| =0.
Hence we have the following theorem:

Theorem 7.1. In an n-dimensional (n > 2) LP-Sasakian manifold satisfying
the condition W5(&,Y). Wy = 0, then we get

(i) fa—b=0, or
(ii) if a — b # 0, then

S@quz{%+m—n}ﬂqu—————



On LP-Sasakian Manifolds satisfying certain Curvature Tensors 21

8. LP-Sasakian manifold satisfying ‘//sz(ﬁ, Y).R

In this section we consider a LP-Sasakian manifold M™ satisfying the con-
dition
Wa(£,Y).R=0. (8.1)
From (2.31) and (8.1), we have

(Wa(&,Y).R)(U, V)W =Wa(€,Y)R(U, V)W — L(Wa2(,Y)U, V)W~

R(U, Wal&, Y)V)W — R(U, V)Wa(€, Y)W, (8.2)

Taking the inner product with X and putting £ for U in (8.2), we have
klg(V,W)g(X,Y) — g(R(Y, V)W, X) — g(Y,W)g(V, X) — g(V, X)(W)n(Y)]
+blg(V.W)S(X,Y) — (nfl)n( n(X)g(Y,V) — g(R(QY, V)W, X)
+n(V)(X)SY, W) = (n—1)n(V)(X)g(Y, W)

— (n=1)g(Y,W)g(V, X) + n(W)n(X)S(V.Y)] =
(8.3)

Putting e; for X and V in (8.3), {e;} is an orthonormal basis of the tangent
space at a point of the manifold and taking summation over e;, 1 <i<n , we
get,

bS(QY, W)+ EkS(Y,W)—(n—1)k—(n—1)]g(Y,W)=0. (8.4)
If b = 0, then equation (8.4) will be
afr —n(n = D[S, W) — (n — 1)g(Y, W)] =0,
Thus, we have
S, W) = (n—1)g(Y,W).
Hence we have the following theorem:

Theorem 8.1. In an n-dimensional (n > 2) LP-Sasakian manifold M" satisfy-
ing the condition W5(£,Y).R = 0, then we get

(i) if b =0, then the manifold is Einstein manifold, provided a # 0.

(ii) if b # 0, then

S(QY,W) =~ SOV, W) + (n = DIk~ (n — ]g(Y, W),
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