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Abstract

The vector fields associated with Ricci flow and Ricci solitons in Riemann

manifold has been studied and the correspondence between these vector fields

and symmetries of spacetime manifold of general relativity has been established.

The relationships between the symmetries of Petrov type D and N pure radiation

fields and Ricci solitons have been explored. The solitons corresponding to

Schwarzschild solution and Reissner-Nordstrom spacetime have been obtained.
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1. Introduction

The Ricci flow (named after Gregorio Ricci-Curbastro) was introduced by

Richard S. Hamilton in 1982 [1] to study compact three dimensional manifolds

with positive Ricci curvature and he calls equation defining Ricci flow as evo-

lution equation. Hamilton proved many important and remarkable results for

Ricci flow, and laid the foundation for the programme to approach the Poincare’s

and Thurston’s conjectures [Poincare’s conjecture (Henry Poincare in 1904) is a

theorem about the characterization of 3-sphere, which is the hypersurface that

bounds the unit ball in 4-dimensional space. The conjecture states that: “Ev-

ery simply connected closed 3-manifold is homeomorphic to the 3-sphere” (that

is, the conjecture says that the 3-sphere is the only type of bounded three di-

mensional space possible that contains no holes). While Thurston’s conjecture

states that every closed 3-manifold can be decomposed in a canonical way into

pieces that each have one of eight types of geometric structures (that is, a com-

plete characterization of geometric structure on 3-dimensional manifold). Thus

Thurston’s conjecture extends Poincare’s conjecture]. Hamilton’s idea was to
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define a kind of non-linear diffusion equation which would tend to smooth out

singularities in the metric. The Ricci flow has been extensively studied since

1982. Some recent work has focussed on the question of precisely how higher

dimensional Riemannian manifolds evolve under Ricci flow, and in particular,

what types of parametric singularities may form.

The concept of Ricci solitons was introduced by Hamilton [2]. They are

natural generalizations of Einstein metrics, which have been a subject of intense

study in differential geometry and geometric analysis. Ricci solitons also cor-

respond to special solutions of Hamilton’s Ricci flow. They can be viewed as

fixed points of the Ricci flow and that is why it is very important to understand

the geometry of Ricci solitons and to classify them both topologically and geo-

metrically. The motivation for the study of Ricci solitons comes from different

problems. The ultimate aim of the different geometric evolution equations is to

produce (or deduce the existence of) manifolds with an optimal behavior with

respect to the given invariants: the Ricci flow makes it possible to construct Ein-

stein metrics under certain conditions, whereas the mean curvature flow makes

it possible to deform certain surfaces in other ones whose mean curvature is con-

stant. However, there are conditions under which the initial structure does not

evolve under the flow but remains as a fixed point of it. Ricci solitons are the

geometric fixed points (modulo homotheties and diffeomorphisms) of the Ricci

flow. Moreover, since they appear as singular models for the flow, analyzing

their geometry is an important step towards an understanding of the Ricci flow

itself. During the last two decades, a lot of work has been done on Ricci solitons

(for a detailed survey of the work done on Ricci solitons, Cao [3]).

Motivated by the roles of Ricci flow and Ricci solitons in differential geoeme-

try, in this paper, we have made a detailed study of Ricci solitons on the space-

time of general relativity. In Section 2, we have discussed the concepts of Ricci

flow and Ricci solitons along with some immediate consequences of the definition

of Ricci solitons. The importance of Ricci solitons in the study of symmetries

of the spacetime has been dealt in Section 3, and a number of results has been

obtained for the spacetime of general relativity. The role of Ricci solitons in

the study of Petrov type D and N pure radiation fields has been investigated

in Section 4. In Sections 5 and 6, the geometry of Schwarzchild and Reissner-

Nordström solitons, respectively has been discussed and it is seen that the soli-

tons are responsible for the deformation in the metric and hence in the geometry

of the spacetime under consideration.



Ricci Solitons and the Spacetime of General Relativity 51

2. Ricci flow and Ricci solitons

The Ricci flow is a way of evolving a Riemannian metric over time t. If we

consider the metric tensor (and the associated Ricci tensor) to be a function of

a variable t, then the Ricci flow is defined by the partial differential equation

(geometric evolution equation)

∂gij
∂t

= −2Rij (1)

This equation may be considered as the ”heat equation” for Riemanninan space.

An immediate consequence of Ricci flow is that:

“If the space is Ricci-flat (i.e., Rij = 0) then
∂gij
∂t

= 0 and the Ricci flow leaves

the metric unchanged. Conversely, any metric which is unchanged by Ricci flow

is Ricci-flat.”

In differential geometry, the Ricci flow is an intrinsic geometric flow (a

process which deforms the metric of a Riemannian manifold). It is a kind of

diffusion equation. To see how the evolution equation defining the Ricci flow is

analogous to diffusion equation, consider a 2-dimensional metric (in exponential

isothermal co-ordinate chart - as these co-ordinates provide an example of a con-

formal co-ordinate chart, because angles, but not the distances, are represented

correctly) given by

ds2 = e2p(x,y)[dx2 + dy2] (2)

Here

g11 = g22 = e2p, g11 = g22 = e−2p, g = e4p, gij = gij = 0, i ̸= j

and

Γ1
11 = Γ2

12 = Γ2
21 = −Γ1

22 = px; Γ
1
12 = Γ1

21 = −Γ2
11 = Γ2

22 = py

where px =
∂p

∂x
and py =

∂p

∂y
. Using the definition of Riemann curvature tensor

Ri
jkl = −

∂Γi
jk

∂xl
+

∂Γi
jl

∂xk
− Γa

jkΓ
i
al + Γb

jlΓ
i
bk

we have

R1
212 = −(pxx + pyy) = −∇2p

While the definition of Ricci tensor

Rjk = Ri
jki = −

∂Γi
jk

∂xi
+

∂Γi
ji

∂xk
− Γa

jkΓ
i
ai + Γb

jiΓ
i
bk
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leads to

R11 = R22 = −∇2p

which can be expressed as

Rxx = Ryy = −∇2p

Thus
∂p

∂t
= −∇2p = −Rij (3)

which is analogous to the heat equation (the best known of all diffusion equa-

tions)
∂u

∂t
= ∇2u (4)

Soliton. A solution of an evolution equation that evolves along symmetries of

the equation is called a soliton (or, self-similar solution).

If we imagine the Ricci flow as the flow of some vector field on the spaces

of metrics, then the solitons may act as attractors to this flow. In case of 2-

dimensional sphere, the flow is known to converge to a soliton.

To illustrate what we mean by “evolving along symmetries”, consider one

dimensional heat equation

ft = fxx

It can easily be seen that the following vector fields are infinitesimal symme-

tries of the equation - that is, each one generates a one-parameter group of

transformations that transform solutions to solutions:

X1 =
∂

∂x
− translation in space

X2 =
∂

∂t
− translation in time

X3 = f
∂

∂f
− scaling inf

X4 = x
∂

∂x
+ 2t

∂

∂t
− scaling in space and time

For the fundamental solution

f(x, t) =
1√
t
e−x2/4t

we see that

f(λx, λ2t) = λ−2f(x, t)
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for any λ > 0 so this solution is a soliton that evolves along the vector field

X = X4 − 2X3 [In fact, X is tangent to the graph of f(x, t)].

Einstein metric. A Riemannian metric is an Einstein metric if

Rij = λgij (5)

for some constant λ. If λ =
R

n
, where R = gijRij is the scalar curvature then

the Riemannian manifold is an Einstein manifold.

Ricci soliton. A Ricci sliton is a natural generalization of Einstein metric and

is defined on a (pseudo-) Riemannian manifold (M, g, ξi) by

Rij −
1

2
Lξ gij = λgij (6)

where ξi is a smooth vector field on M , λ is a real number and Lξ denotes the

Lie derivative along the vector field ξi.

The presence of constant λ in equation (6) means that the metric is not

fixed by the flow (up to a diffeomorphism) but is expanded/contracted by a

scalar λ. This is similar to the fact that Einstein metrics (5) are not fixed

points of the flow, they are fixed upto a scalar. They become fixed points for

the normalized Ricci flow. Accordingly, a Ricci soliton is said to be shrinking,

steady (or translating) and expanding if λ > 0, λ = 0 and λ < 0, respectively. If

ξ is a gradient field, i.e., ξ = ∇f , then equation (6) can be expressed as

Rij −∇i∇jf = λgij (7)

and in this case, the Ricci soliton is said to be gradient. The smooth function f

on M is called a potential function of the Ricci soliton. If ξi in equation (6) is

zero then the soliton is trivial.

Some of the aspects, among many others (cf., [3]), that why we are inter-

ested in the study of Ricci solitons on a Riemanninan manifold are as follows:

(i) for a given vector field ξi find the nature of the Riemannian manifold.

(ii) find the nature of the vector field ξi if the properties of the Ricci tensor are

given.

If M is the spacetime manifold of dimension four then some of the imme-

diate consequences of equation (6) are as follows:
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(a) If ξi is a Killing vector field [cf., equation (8)], then equation (6) leads to

Rij = λgij and the spcetime M is an Einstein manifold provided that λ =
R

4
.

(b) For a steady Ricci soliton (i.e., λ = 0), equation (6) yields

Rij =
1

2
Lξ gij

and thus if ξi is a Killing vector field then the spacetime is Ricci-flat and con-

versely.

Remarks.

(i) It may be noted that the solution to Ricci-flat metric is the Schwarzchild

exterior solution which describes the spacetime due to an isolated, static and

spherically symmetric gravitating mass and the metric is

ds2 = −(1− 2m

r
)−1dr2 − r2dθ2 − r2 sin2 θdϕ2 + (1− 2m

r
)dt2

If we consider λ = Λ in equation (5) as the cosmological constant, then the

corresponding Schwarzchild solution is

ds2 = −(1− 2m

r
− Λr2

3
)−1dr2 − r2dθ2 − r2 sin2 θdϕ2 + (1− 2m

r
− Λr2

3
)dt2

so that when m = 0 and Λ = 0, this solution reduces to flat spacetime whose

metric is

ds2 = −dr2 − r2dθ2 − r2 sin2 θdϕ2 + dt2

(ii) It is known that (cf., [4]) if a space has maximum number of Killing vectors

then it is said to bemaximally symmetric space, and is a space of constant curva-

ture; and consequently an Einstein space. The significance of spaces of constant

curvature is very well known in cosmology. To obtain a model of the universe,

certain simplifying assumptions have to be made and one such assumption is

that the universe is isotropic and homogeneous. This is known as cosmological

principle. By isotropy we mean that all spatial directions are equivalent, while

homogeneity means that it is impossible to distinguish one place in the universe

from the other. This cosmological principle, when translated into the language

of Riemannian geometry, asserts that the three dimensional position space is

a space of maximal symmetry; and consequently a space of constant curvature

whose curvature can depend upon time. In the spaces of constant curvature no

points and no directions are preferred, that is, the spaces of constant curvature

are isotropic and homogeneous and thus these spaces find their applications in
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cosmology. The cosmological solutions of Einstein equations which contain a

three dimensional space-like surface of a constant curvature are the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metrics, while a four dimensional space

of constant curvature is the deSitter model of the universe. de Sitter universe

possess a three dimensional space of constant curvature and thus belongs to

Friedmann-Lemaitre-Robertson-Walker metrics.

3. Symmetries of the spacetime and Ricci solitions

The construction of gravitational potential satisfying Einstein field equa-

tions is the principal aim of all investigations in the gravitational physics and this

has often be achieved by imosing symmetries on the geometry compatible with

the dynamics of the chosen distribution of matter. The geometrical symmetries

of the spacetime are expressible through the vanishing of the Lie derivative of

certain tensor with respect to a vector. The role of symmetries in general the-

ory of relativity has been introduced by Katzin, Levine, Davis and co-workers

in a series of papers ([5]-[8]). These symmetries, also known as collineations,

were further studied by Ahsan ([9]-[13]), Ahsan and Ali [14], [15] and Ahsan

and Husain [16]. So far more than twentysix different types of collineations

have been studied and the literature on such collineation is very large and still

expanding with results of elegance (cf., [13], [14] and [15]). Here we shall con-

sider only those symmetries which are required for our investigation and we have

(i) Motion. A spacetime is said to admit motion if there exists a vector field

ξi such that

Lξ gij = ξi;j + ξj;i = 0 (8)

Equation (8) is known as Killing equation and the vector field ξi is called a

Killing vector field.

(ii) Conformal motion (Conf M). If

Lξ gij = σgij (9)

where σ is a scalar, then the spacetime is said to admit conformal motion.

(iii) Special conformal motion (SCM). A spacetime is said to admit SCM

if

Lξ gij = σgij , σ;ij = 0 (10)
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(iv) Homothetic motion (HM). A spacetime is said to admit homothetic

motion if

Lξ gij = σgij (11)

where σ is a constant.

(v) Weyl conformal collineation (WCC). A spacetime is said to admit

WCC if

Lξ Ci
jkl = 0 (12)

where Ci
jkl is the Weyl conformal curvature tensor.

(vi) Curvature collineation (CC). If

Lξ Ri
jkl = 0 (13)

then the spacetime is said to admit CC, where Ri
jkl is the Riemann curvature

tensor.

(vii) Ricci collineation (RC). A spacetime is said to admit RC if

Lξ Rij = 0 (14)

where Rij is the Ricci tensor.

(viii) Affine collineation (AC). If

Lξ Γi
jk = ξi;jk +Ri

jmkξ
m = 0 (15)

then the spacetime is said to admit an AC.

(ix) Conformal collineation (Conf C). A spacetime is said to admit Conf

C if there is vector field ξi such that

Lξ Γi
jk = δijσ;k + δikσ;j − gjkg

ilσ;l, σ;jk = 0 (16)

(x) Special conformal collineation (S Conf C). If

Lξ Γi
jk = δijσ;k + δikσ;j − gjkg

ilσ;l, σ;jk = 0; σ;jk = 0 (17)

then the spacetime admits S Conf C along the vector field ξi.

We shall now investigate the role of Ricci solitons in the study of symmetries

of the spacetime.

If ξi is a Killing vector field, equation (6) then reduces to

Rij = λgij (18)
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Taking the covariant derivative of both sides of this equation, we get

∇kRij = 0 (19)

We thus have

Theorem 1. If the vector field ξi associated with the Ricci soliton (M, g, ξi) is

Killing then the manifold M is Ricci parallel.

Now taking the Lie derivative of equation (18), we get

Lξ Rij = λ Lξ gij

We thus have

Theorem 2. If the vector field ξi associated with the Ricci soliton is Killing

then the spacetime admits Ricci collineation.

From equations (6) and (8), we have

2Rij = ξi;j + ξj;i + 2λgij (20)

Contracting this equation with gij , we get

R = ξi;i + λn = θ + λn (21)

where θ = ξi;i is the expansion scalar. We thus have

Corollary 1. If the Ricci soliton is steady then the scalar curvature is expand-

ing.

Equation (21) can also be expressed as

div ξi = ξi;i = R− λn (22)

where R = gijRij is the Ricci scalar.. From equations (20) and (22), we have

n−1Rgij −Rij = −1

2
Lξ gij + n−1ξi;igij (23)

Now choosing λ as (n−1R) in equation (5), equations (23) and (9) lead to

Lemma 1 ([17]). The vector field associated with Ricci soliton (M, g, ξi) is

conformally Killing if and only if M is an Einstein manifold.

It is known that [18]

Lξ Γi
jk =

1

2
gil(∇jLξ gkl +∇kLξ glj −∇lLξ gjk) (24)
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If ξi is conformally Killing vector field, then equations (9) and (24) lead to

Lξ Γi
jk = δijσ;k + δikσ;j − gilgjkσ;l (25)

Thus we have

Lemma 2. If ξi is a conformal Killing vector field then it is also a conformal

collineation vector field.

From Lemmas 1 and 2, we thus have

Theorem 3. A vector field ξi associated with a Ricci soliton is conformal

collineation vector field if and only if M is an Einstein manifold.

While using equation (10), we have

Corollary 2. If σ;jk = 0, the vector field associated with a Ricci soliton is spe-

cial conformal collineation vector field if and only if the manifold is an Einstein

manifold.

From equation (23), we have

Rij −
R

n
gij =

1

2
Lξ gij −

1

n
θgij

where θ = ξi;i. Also, an Einstein space is characterized by Rij =
R

n
gij and thus

we have

Theorem 4. For Einstein spaces, the vector field ξi associated with Ricci

soliton is Killing if and only if it is expansion-free.

Moreover, if ξi defines a homothetic motion then by taking the covariant

derivative of equation (11), we get

∇kLξ gij = 0

and equation (6) now yields

∇kRij = 0

Thus we have

Theorem 5. If the vector field ξi associated with Ricci soliton defines a homo-

thetic motion then the manifold is Ricci parallel.
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It is known that [4] for the spacetime of general relativity, the Weyl con-

formal tensor Ci
jkl is given by

Ci
jkl = Ri

jkl +
1

2
(δikRjl − δilRjk + gjlR

i
k − gjkR

i
l) +

R

6
(δilgjk − δikgjl) (26)

where Ri
jkl is the Riemann curvature tensor. Also, we have ([18])

Lξ Ri
jkl = ∇jLξΓ

i
kl −∇kLξΓ

i
jl (27)

which on using equation (25) leads to

Lξ Ri
jkl = −2δi[j∇k]σ;l − 2(∇[jσ

;i)gk]l (28)

Contraction of this equation yields

LξRkl = −(n− 2)∇kσ;l − gkl∇mσ;m (29)

Multiplying this equation by gkl, we get

LξR = −2σl
;lR− 2(n− 1)∇mσ;m

which for 4-dimensional spacetime reduces to

LξR = −2ϕR− 6∇mσ;m (30)

where ϕ = div σ.

Now taking the Lie derivative of equation (26) and using equations (28) -

(30), we get

LξC
i
jkl = 0 (31)

Thus, from equation (12), we have

Lemma 3. For the spacetime of general relativity every conformal Killing

vector field is Weyl conformal collineation vector field.

From Lemmas 1 and 3, we thus have

Theorem 6. A vector field ξ associated with Ricci soliton is Weyl conformal

collineation vector field if and only if the spacetime is an Einstein space.

Remark. For further details, see [19].

4. Petrov type D and N pure radiation fields and Ricci solitons

The study of Petrov type D gravitational field is an important activity in

general relativity as most of the physically significant metrics belong to this

type of field. The most familiar members of this class are Schwarzchild exterior
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solution, Reissner-Nordström metric, Kerr solution, Gödel solution and Vaidya’s

metric of a radiating star. Recently Ahsan and Ali [14] have studied the sym-

metries of Petrov type D pure radiation fields and have established a number of

relations between different types of collineations. From [14], we have

Lemma 4. In pure radiation type D fields, conformal motion, special conformal

motion and homothetic motion all degenerate to motion.

Thus, from Lemmas 1 and 4, we have

Theorem 7. Type D pure radiation fields do admit motion along a vector field

ξi associated to Ricci soliton (M, g, ξi) if and only if M is an Einstein space.

Moreover, for a Killing vector field, equation (6) yields

Rij = λgij

Now taking the Lie derivative of this equation with respect to ξi, we have

Theorem 8. Type D pure radiation fields admit Ricci collineation along a

vector field ξi associated to Ricci soliton (M, g, ξi) if and only if M is an Einstein

space.

Remark. A number of similar results can easily be obtained as motion implies

almost all symmetries of the spacetime (cf., [5]).

While on the other hand, Petrov type N solutions of Einstein vacuum equa-

tions are amongst the most interesting, rather difficult and little explored of all

empty spacetime metrics (cf., [20], [21]). From the physical point of view, they

represent spacetimes filled up entirely with gravitational radiation while math-

ematically they form a class of solutions of Einstein equations which should be

possible to determine explicitly. The behaviour of gravitation radiation from

a bounded source is an important physical problem. Even reasonably far from

the source, however, twisting type N solutions of the vacuum field equations

are required for an exact description of that radiation. Such solutions would

provide small laboratories in which to understand better the complete nature

of singularities of type N solutions and could also be used to check numerical

solutions that include the gravitational radiation (cf., [22]).

Different types of symmetries of Petrov type N gravitational fields have been

the subject of interest since last few decades (cf., [23]). Recently, Ahsan and

Ali [15] have focussed their attention on the interaction of pure electromagnetic
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radiation field and pure gravitational radiation field, and have made a detailed

investigation of different types of symmetries (collineations) for such radiation

fields. These fields are termed as pure radiation fields.

From [15], we have

Lemma 5. For type N pure radiation fields, conformal motion, special confor-

mal motion and homothetic motion all degenerate to motion.

Thus from Lemmas 1 and 5, we have

Theorem 9. Type N pure radiation fields admit motion along the vector field

ξi associated to Ricci soliton (M, g, ξi) if and only if M is an Einstein space.

From equation (6) we also have

Theorem 10. A Killing vector field ξi associated to Ricci soliton (M, g, ξi) is

a Ricci collination vector field for type N pure radiation field if and only if M

is an Einstein space.

From the definition of affine collineation and equation (24), we have

Theorem 11. Pure radiation type N fields admit affine collineation along

a Killing vector ξi associated to Ricci soliton (M, g, ξi) if and only M is an

Einstein space.

Moreover, from the definition of Lie derivative (cf., [4]), we have

LξR
i
jkl = ξhRi

jkl;h −Rh
jklξ

i
;h +Ri

hklξ
i
;j +Ri

jhlξ
h
;k +Ri

jkhξ
i
;l (32)

Now using the definition of Christoffel symbol, Killing vector field ξi and equa-

tion (13), we have

Theorem 12. A Killing vector field associated to Ricci soliton (M, g, ξi) is a

curvature collineation vector field for type N pure radiation fields if M is an

Einstein space.

Remark. Similar type of other results can easily be obtained for pure radiation

type N fields (cf., [15]).

5. Schwarzchild soliton

Recently, Ali and Ahsan (cf., [24], [25]) have made a detailed geometric

study of soliton corresponding to Schwarzchild exterior solution. The Schwarzchild
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soliton is given by

ds∗2 = −
(
1− 2m

r

)√
2
dt2 + dr2 + (r2 − 2mr)(dθ2 + sin2 θdϕ2) (33)

Using the six dimensional formalism, they have obtained the eigen values ωi

(i = 1, 2, .., 6) of the characteristic equation | RAB − ωgAB |= 0. It is seen that

the curvatures of the two and three dimensional surface of the Schwarzchild

soliton are related to the eigen values which are expressed in terms of the physical

parameters m and r. Moreover, for Schwarzchild soliton it is observed that not

only the Gaussian curvature differ with that of Schwarzchild metric but also the

dependence of curvature on eigen values is not similar. Thus, the deformation

in metric of a spacetime is cause for change in geometry or gravitational field.

6. Reissner-Nordström soliton

When the electromagnetic field is taken into consideration in Schwarzchild

exterior solution we get Reissner-Nordström solution and the metric is

ds2 = −
(r2 + e2 − 2mr

r2

)
dt2+

( r2

r2 + e2 − 2mr

)
dr2+r2dθ2+r2 sin2 θdϕ2 (34)

It has been shown by Ali and Ahsan [19] that the Reissner-Nordström soliton

is given by

ds∗2 = −
(r2 + e2 − 2mr

r2

)√
2
dt2 + dr2 + (r2 − 2mr − e2)(dθ2 + sin2 θdϕ2) (35)

We have

Case (i). When e = 0 (i.e., in the absence of charge), equation (34) reduces to

Schwarzchild soliton given by equation (33).

Case (ii). When m = 0 and e = 0, equation (34) leads to

ds∗2 = −dt2 + dr2 + r2(dθ2 + sin2 dϕ2)

which is the soliton for the flat spacetime.

Remark. From the above discussions it may be noted that solitons are respon-

sible for the deformation in the metric and hence in the geometry as well as

gravitational field.
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