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Abstract

The present work deals with the study of 3-dimensional Locally ¢— con-
circularly symmetric Lorentzian §—Kenmotsu manifold which generalizes the
notion of locally concirculary-symmetric Lorentzian §—Kenmotsu manifold and
obtain some interesting results. Also it is proved that a concircularly ¢—recurrent
Lorentzian f—Kenmotsu manifolds is an Einstein manifold and Proved that if a
concircularly ¢—recurrent Lorentzian 3—Kenmotsu manifolds (m?"*1, g),n > 1,
has non zero constant sectional curvature, then it reduces to a concircularly lo-
cally ¢p—symmetric manifold.
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1. Introduction

A transformation of an n-dimensional Reimannian manifold M, which
transforms every geodesic circle of M in to a geodesic circle, is called a con-
circulary transformation. A concircularly transformation is always a conformal
transformation. Here a geodesic circle means a curve in M whose first curva-
ture is constant and second curvature is identically zero. Thus the geometry of
concircular transformations, that is the concircular geometry, is a generalization
of inverse geometry in the sense that the change of metric is more general than
that introduced by a circle preserving differomorphism. An interesting invariant
of a concircular transformation is the concircular curvature tensor.
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In this paper, we study a concircularly ¢—recurrent Lorentzian S— Ken-
motsu manifold which generalizes the notion of locally concirculary ¢—symmetric
Lorentzian S—Kenmotsu manifold and obtain some interesting results. Again
it is proved that a concircularly ¢—recurrent Lorentzian S—Kenmotsu mani-
folds is an Einstein manifold and proved that if a concircularly ¢—recurrent
Lorentzian S— Kenmotsu manifolds (m?27+!
sectional curvature, then it reduces to a locally concircularly ¢—symmetric

,g),m > 1 has non-zero constant

manifold. Further we study 3-dimentional locally ¢—concircularly symmetric
Lorentzian S—Kenmotsu manifold.

2. Preliminaries

An (2n + 1) dimensional differentiable manifold M?" (¢, ¢, n, g) is called
a Lorentzian f—Kenmotsu manifold with the structure (¢,&,n, g) where g is a
smooth function on M if it admits a tensor field ¢ of type (1,1), a covariant
vector field £, one 1 from 1 and a Lorentzian metric g which satisfy:

¢*x = —x +1(x)€
(a) n@)=-1, (b) g =n(), (c) nlgx)=0
9(dz, dy) = g(z,y) +n(z)n(y)
(D, 9)(y) = g(z,9)§ —n(y)x
D& = Bz — n()§)
(Dam)(Y) = Bl(9(z, y)) — n(z)n(y)] (

where D denotes the operator of covariant differentiation with respect to g. Also
in Lorentzian S—Kenmotsu manifold, the following holds:

~~ o~ ~~ —~
S Ot s W N~
— — ~— ~— ~— ~—

N(R(X,Y)Z) = g(R(X,Y)Z,€) = B[g(X, Z)n(Y) — g(Y, Z)n(X)]  (2.7)
R(X,Y)¢ = B°[n(X)Y —n(Y)X] (2.8)

S(6X,9Y) = S(X,Y)2nn(X)n(Y) (2.9)

S(x,€) = 2n8%n(X) (2.10)

For all vector fields X, Y, Z where S is the Ricci tensor of type (0,2) and
R is the Riemannian Curvature tensor of the manifold.

Definition 2.1. A Lorentzian f—Kenmotsu manifold in said to be a locally
¢—symmetric manifold if.

#*((DwR)(X,Y)Z) = 0. (2.11)
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For all vector field X, Y, Z, W Orthogonal to &.

Definition 2.2. A Lorentzian S—Kenmotsu manifolds is said to be a locally
concircularly ¢—symmetric manifold if.

#*((D,C)(X,Y)Z) = 0. (2.12)

For all vector field X, Y, Z, W Orthogonal to &.

Definition 2.3. A Lorentzian —Kenmotsu manifold is said to be concircularly
¢—recurrent Lorentzian S—Kenmostu manifold if there exists a non -zero 1 from
A such that.

$(DLC)(X,Y)Z) = A(W)C(X,Y)Z, (2.13)
for arbitrary vector fields X, Y, Z, W where C' is a concircular curvature tensor
given by

r
XYV =RX,Y)Z—-——gY,2)Xg(X,2)Y 2.14
CXY)Z = RXYV)Z ~ goaioslo(V O)Xg(X,2)Y], (214)

where R is the curvature tensor and r is the Scalar curvature. If the 1-form
A vanishes, then the manifold reduces to a locally Concircularly ¢— symmetric
manifold.

3. Concircularly ¢—recurrent Lorentzian S—Kenmotsu manifolds

Let us consider a concircularly ¢—recurrent Lorentzian f—Kenmostu man-
ifolds. Then by virtue of (2.1) and (2.13) we get

(DwC)(X,Y)Z 4+ n((DuC)(X,Y)Z)§ = AW)C(X,Y)Z, (3.1)
from which it follows that

9(DuC) (X, Y)Z,U) + 1n((DuC) (X, Y)Z)n(U) = AW)g(C(X,Y)Z,U) (32)

Let {e;},i =1,2,...,2n+ 1 be an orthonormal basis of the tangent space
at any point of the manifold, Then putting X = U = ¢; in (3.2) and taking
summation over i, 1 <1¢ < 2n 4 1, we get.

dr(W)

ot MQ(Y; Z) —=n(Y)n(Z)

9(¥,2) = 2n +1 (3.3)

TAW)IS(Y. 2) — 5ma(¥. 2)]

(DwS)(Y7 Z) =
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Replacing Z by ¢ in (3.3) and using (2.5) and (2.10), we get

dr(W)n(y) __dr(W) r

(DwS)(Y,§) = 1 m%(y) + A(W)[—2npB — 1

Jn(Y).
(3.4)
Now, we have

(DwS)(Y, ) = DuS(Y,§) = S(DuY, &) = S(Y, Duwé).
Using (2.5) and (2.10) in the above relation, it follows that
(DwS)(Y, ) = —2n3%9(Y, W)BS(Y, W). (3.5)
In view of (3.4) and (3.5), we get

dr(W) dr(W)
ont1 T gy ) (3.6)

—AW)[=2n — ().

Replacing Y by ¢Y and W by ¢W in (3.6) and using (2.3) and (2.9), we get
S(Y,W) = —28%g(Y,W).

S(Y,W) = —2n8%g(Y,W) —

Hence we can state the following theorem

Theorem 3.1. A Concircularly ¢—recurrent Lorentzian S—Kenmotsu mani-
folds M?"*1 g) is an Einstein manifold. Now from (2.14) it follows that

dr(W)

DuCX.Y)E = (DuR)(X.V)E - 55 =5y

(V)X —n(X)Y].  (3.7)

In view of (2.5) and (2.6) it can be easily seen that in a Lorentzian f—
Kenmotsu manifold the following relation holds:

(DLR(X,Y)E = Blg(W,Y)X — g(W, X)Y + RCLY)W). (3.8)
Using (3.8) in (3.7), we get
(DLC(X,V)E = Blg(W,Y)X — g(W, X)Y + R(X,Y)W]
Using (2.7) in (3.9) we have
(DuC(X,Y)E = B2(8 ~ 1)g(W,Y)X — *(8 — 1)g(W,X)Y

- 3.10
W)X oy,
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Now, we suppose that Lorentzian S—Kenmotsu M?"*1 g),n > 1, is concircu-
larly ¢—recurrent. Then from (3.1) and (3.10) it follows that

(ch)(X7Y>Z - _/32(5 - l)g(W,Y)g(X, Z) + /32(5 - l)g(W7X)g(Y7 Z)
dr(W)

—W[U(Y)Q(X, Z) —n(X)g(Y, Z)] + AW)C(X,Y)Z.

Next we suppose that in a concircularly ¢—recurrent Lorentzian S— Ken-
motsu manifold, the sectional cur venture of a plane 7CT'p(M) defined by

Kp(m) = g(R(X, Y)Y, X), (3.11)

is a non zero constant K, where (X,Y) is any orthonormal basis of 7. Then we
have
9((D-R)(X, Y)Y, X) = 0. (3.12)

Again from (2.14) we get

(DLYXYWY = (DR(XY)Y - -Gy 1)X — (X)), (313)
In view of (3.12) it follow from (3.13) that
g((D.C)(X, Y)Y, X) = 0. (3.14)

By Virtue of (3.14) and (3.1) we have
9(D:C)(X, Y)Y, n(X) = A(Z)g(C(X, Y)Y, X). (3.15)

Since in a concircularly ¢—recurrent Lorentzian S—Kenmotsu manifold, the
relation (3.12) holds good, using (3.10) in (3.15) we get

n(X)[B*(B—1)g(Z.Y)g(X.Y) + B*(8 —1)g(Z.X)g(Y.Y)

) )G Y) ~ (0}

AN - — g Y nx) — gy
on(2n + 1) : :

= ARIKS? = 5o s o (VY )g (X, X) = (X, )g(X )}

Putting Y = Z = ¢ in (3.16) and using (2.2) and simplifying we get

n(p) = 0. (3.17)
Hence from the relation A(W) = —n(w)n(p), we get
A(W) = 0. (3.18)
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Using (3.18) in (3.1), we get
(¢*(DwC)(X,Y)Z) = 0.

Hence we can state the following theorem:

Theorem 3.2. If a concircularly ¢—recurrent Lorentzian f—Kenmotsu man-
ifolds (M?"*1 g),(n > 1), has a non-zero constant sectional curvature then it
reduces to a locally concircularly ¢—symmetric manifold.

4. 3-dimensional Locally ¢—Concircularly symmetric Lorentzian 83—
Kenmotsu manifold

In a 3-dimensional Lorentzian S—Kenmotsu manifold, concircular curva-
ture tensor in given by

cx.v)z =" )x - g 21U v 2nxe
~g(X. 2V )E + (¥ InZ)X —n(X)n(Z)Y] (1)
~5lo(V. 2)X — g(X. 2)Y).
Taking Covariant differentiation of (4.1), we get
(0.0 x.1)2 = "W oy 2)x9(x. 2)v) - T (v, 2yn(x0e
90X, 2+ 1Y n(2)X — n(Xm(2)y] - T
90V, Z)(Dun)(X)E + o, (X )(Du)g(X, Z)Dun)(V)E] (1)
~g(X, 20V (Dt + (Dun)(VI1(Z)X + (D) (Z)n(Y)X
~(Dun)(X)(2)X ~ (D) (Zn(X)Y
Sy, 2)x — g(x. 2)7).

Taking X, Y, Z horizontal vector field and using (2.5) and (2.6), we get

(DwC)(X7Y)Z = dr(;V) (T—;G)

9(Y,2)Xg(X,2)Y] — Blg(Y, Z)
9(X, W) = g(X, 2)g(Y,W)] + g(¥, Z)n(W)n(z) (43
+9(X, Z)n(W)n(Y)J¢.

From (4.3) it follows that

d’z(ch)(X?Y)Z) = [g(Y, Z)¢2X—g(X, Z)¢2Y]'
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Now taking X, Y, Z horizontal vector field and using (2.1), (2.5) and (2.6), we
get
dr(W)

QZ)Q(DwC)(X?Y)Z) = 3

[9(Y, 2)X — g(X, Z)Y].

Hence we state the following.

Theorem 4.1. A 3-dimensional Lorentzian §—Kenmotsu manifold is locally
¢—concircularly symmetric if and only if scalar curvature r is content.

In 1977 [3] has proved that

Corollary 4.1. A 3-dimensional Lorentzian f§—Kenmotsu manifold is locally
¢—Symetric if and only if scalar curvature r is constant.

Using corollary (4.1) we state the following:

Theorem 4.2. A 3-dimensional Lorentzian f—Kenmotsu manifold is locally
¢—concircularly symmetric if and only if it is Locally ¢—Symmetric.

REFERENCES

[1] De, U. C. and Pathak, G.: On 3-dimensional Kenmotsu manifolds, Indian J. Pure appl.
Math. 35(2) (2004), 159-165.

[2] Jun, J. B, De, U. C. and Pathak, G.: On Kenmotsu manifolds, J. Korean Math. Soc., 42
(2005), 435-455.

[3] Takahashi, T.: Sasakian ¢—symmetric spaces, Tohuku Math. J., 29 (1977), 91-113.

[4] De, U. C., Yaldiz A. and Yaliniz A.F.: On ¢—Recurrant Kenmotsu Manifolds, Turk J.
Math., 33 (2009), 17-25.

[5] Yano, K.: Concircular geometry, I, Proc. Imp. Acad, Tokyo, 16 (1940), 195-200.

[6] Ozgur, C.: On weaky symmetric Kenmotsu manifolds, Diff. Geom. Dyn. Syt. 8 (2006),
277-290.

[7] Ozgur, C. and De, U. C.: On the quasi-conformal curvature tensor of a Kenmotsu mani-
fold, Mathematica Pannonica, 17(2) (2006) , 221-228.





