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Abstract

The present work deals with the study of 3-dimensional Locally ϕ− con-

circularly symmetric Lorentzian β−Kenmotsu manifold which generalizes the

notion of locally concirculary-symmetric Lorentzian β−Kenmotsu manifold and

obtain some interesting results. Also it is proved that a concircularly ϕ−recurrent

Lorentzian β−Kenmotsu manifolds is an Einstein manifold and Proved that if a

concircularly ϕ−recurrent Lorentzian β−Kenmotsu manifolds (m2n+1, g), n > 1,

has non zero constant sectional curvature, then it reduces to a concircularly lo-

cally ϕ−symmetric manifold.
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1. Introduction

A transformation of an n-dimensional Reimannian manifold M , which

transforms every geodesic circle of M in to a geodesic circle, is called a con-

circulary transformation. A concircularly transformation is always a conformal

transformation. Here a geodesic circle means a curve in M whose first curva-

ture is constant and second curvature is identically zero. Thus the geometry of

concircular transformations, that is the concircular geometry, is a generalization

of inverse geometry in the sense that the change of metric is more general than

that introduced by a circle preserving differomorphism. An interesting invariant

of a concircular transformation is the concircular curvature tensor.
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In this paper, we study a concircularly ϕ−recurrent Lorentzian β− Ken-

motsu manifold which generalizes the notion of locally concirculary ϕ−symmetric

Lorentzian β−Kenmotsu manifold and obtain some interesting results. Again

it is proved that a concircularly ϕ−recurrent Lorentzian β−Kenmotsu mani-

folds is an Einstein manifold and proved that if a concircularly ϕ−recurrent

Lorentzian β− Kenmotsu manifolds (m2n+1, g), n > 1 has non-zero constant

sectional curvature, then it reduces to a locally concircularly ϕ−symmetric

manifold. Further we study 3-dimentional locally ϕ−concircularly symmetric

Lorentzian β−Kenmotsu manifold.

2. Preliminaries

An (2n + 1) dimensional differentiable manifold M2n+1(ϕ, ξ, η, g) is called

a Lorentzian β−Kenmotsu manifold with the structure (ϕ, ξ, η, g) where β is a

smooth function on M if it admits a tensor field ϕ of type (1,1), a covariant

vector field ξ, one 1 from η and a Lorentzian metric g which satisfy:

ϕ2x = −x+ η(x)ξ (2.1)

(a) η(ξ) = −1, (b) g(x, ξ) = η(x), (c) η(ϕx) = 0 (2.2)

g(ϕx, ϕy) = g(x, y) + η(x)η(y) (2.3)

(Dx, ϕ)(y) = g(x, y)ξ − η(y)x (2.4)

Dxξ = β(x− η(x)ξ) (2.5)

(Dxη)(Y ) = β[(g(x, y))− η(x)η(y)] (2.6)

where D denotes the operator of covariant differentiation with respect to g. Also

in Lorentzian β−Kenmotsu manifold, the following holds:

η(R(X,Y )Z) = g(R(X,Y )Z, ξ) = β2[g(X,Z)η(Y )− g(Y, Z)η(X)] (2.7)

R(X,Y )ξ = β2[η(X)Y − η(Y )X] (2.8)

S(ϕX, ϕY ) = S(X,Y )2nβ2η(X)η(Y ) (2.9)

S(x, ξ) = 2nβ2η(X) (2.10)

For all vector fields X, Y , Z where S is the Ricci tensor of type (0,2) and

R is the Riemannian Curvature tensor of the manifold.

Definition 2.1. A Lorentzian β−Kenmotsu manifold in said to be a locally

ϕ−symmetric manifold if.

ϕ2((DwR)(X,Y )Z) = 0. (2.11)
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For all vector field X, Y , Z, W Orthogonal to ξ.

Definition 2.2. A Lorentzian β−Kenmotsu manifolds is said to be a locally

concircularly ϕ−symmetric manifold if.

ϕ2((DwC)(X,Y )Z) = 0. (2.12)

For all vector field X, Y , Z, W Orthogonal to ξ.

Definition 2.3. A Lorentzian β−Kenmotsu manifold is said to be concircularly

ϕ−recurrent Lorentzian β−Kenmostu manifold if there exists a non -zero 1 from

A such that.

ϕ2((DwC)(X,Y )Z) = A(W )C(X,Y )Z, (2.13)

for arbitrary vector fields X, Y , Z, W where C is a concircular curvature tensor

given by

C(X,Y )Z = R(X,Y )Z − r

2n(2n+ 1)
[g(Y,Z)Xg(X,Z)Y ], (2.14)

where R is the curvature tensor and r is the Scalar curvature. If the 1-form

A vanishes, then the manifold reduces to a locally Concircularly ϕ− symmetric

manifold.

3. Concircularly ϕ−recurrent Lorentzian β−Kenmotsu manifolds

Let us consider a concircularly ϕ−recurrent Lorentzian β−Kenmostu man-

ifolds. Then by virtue of (2.1) and (2.13) we get

(DwC)(X,Y )Z + η((DwC)(X,Y )Z)ξ = A(W )C(X,Y )Z, (3.1)

from which it follows that

g((DwC)(X,Y )Z,U) + η((DwC)(X,Y )Z)η(U) = A(W )g(C(X,Y )Z,U) (3.2)

Let {ei}, i = 1, 2, . . . , 2n+ 1 be an orthonormal basis of the tangent space

at any point of the manifold, Then putting X = U = ei in (3.2) and taking

summation over i, 1 ≤ i ≤ 2n+ 1, we get.

(DwS)(Y,Z) = −dr(W )

2n+ 1
g(Y, Z)− dr(W )

2n+ 1
g(Y,Z)− η(Y )η(Z)

+A(W )[S(Y, Z)− r

2n+ 1
g(Y, Z)].

(3.3)
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Replacing Z by ξ in (3.3) and using (2.5) and (2.10), we get

(DwS)(Y, ξ) =
dr(W )

2n+ 1
η(y)− dr(W )

2n(2n+ 1)
2η(y) +A(W )[−2nβ − r

2n+ 1
]η(Y ).

(3.4)

Now, we have

(DwS)(Y, ξ) = DwS(Y, ξ)− S(DwY, ξ)− S(Y,Dwξ).

Using (2.5) and (2.10) in the above relation, it follows that

(DwS)(Y, ξ) = −2nβ2g(Y,W )βS(Y,W ). (3.5)

In view of (3.4) and (3.5), we get

S(Y,W ) = −2nβ2g(Y,W )− dr(W )

2n+ 1
+ η(Y ) +

dr(W )

2n(2n+ 1)
2η(Y )

−A(W )[−2nβ2 − r

2n+ 1
]η(Y ).

(3.6)

Replacing Y by ϕY and W by ϕW in (3.6) and using (2.3) and (2.9), we get

S(Y,W ) = −2β2g(Y,W ).

Hence we can state the following theorem

Theorem 3.1. A Concircularly ϕ−recurrent Lorentzian β−Kenmotsu mani-

folds M2n+1, g) is an Einstein manifold. Now from (2.14) it follows that

(DwC(X,Y )ξ = (DwR)(X,Y )ξ − dr(W )

2n(2n+ 1)
[η(Y )X − η(X)Y ]. (3.7)

In view of (2.5) and (2.6) it can be easily seen that in a Lorentzian β−
Kenmotsu manifold the following relation holds:

(DwR(X,Y )ξ = β3[g(W,Y )X − g(W,X)Y +R(X,Y )W ]. (3.8)

Using (3.8) in (3.7), we get

(DwC(X,Y )ξ = β3[g(W,Y )X − g(W,X)Y +R(X,Y )W ]

− dr(W )

2n(2n+ 1)
[η(Y )X − η(X)Y ].

(3.9)

Using (2.7) in (3.9) we have

(DwC(X,Y )ξ = β2(β − 1)g(W,Y )X − β2(β − 1)g(W,X)Y

− dr(W )

2n(2n+ 1)
[η(Y )X − η(X)Y ].

(3.10)
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Now, we suppose that Lorentzian β−Kenmotsu M2n+1, g), n > 1, is concircu-

larly ϕ−recurrent. Then from (3.1) and (3.10) it follows that

(DwC)(X,Y )Z = −β2(β − 1)g(W,Y )g(X,Z) + β2(β − 1)g(W,X)g(Y,Z)

− dr(W )

2n(2n+ 1)
[η(Y )g(X,Z)− η(X)g(Y, Z)] +A(W )C(X,Y )Z.

Next we suppose that in a concircularly ϕ−recurrent Lorentzian β− Ken-

motsu manifold, the sectional cur venture of a plane πCTp(M) defined by

Kp(π) = g(R(X,Y )Y,X), (3.11)

is a non zero constant K, where (X,Y ) is any orthonormal basis of π. Then we

have

g((DzR)(X,Y )Y,X) = 0. (3.12)

Again from (2.14) we get

(DzC)(X,Y )Y = (DzR)(X,Y )Y − dr(Z)

2n(2n+ 1)
[g(Y, Y )X − g(X,Y )Y ]. (3.13)

In view of (3.12) it follow from (3.13) that

g((DzC)(X,Y )Y,X) = 0. (3.14)

By Virtue of (3.14) and (3.1) we have

g(DzC)(X,Y )Y, ξ)η(X) = A(Z)g(C(X,Y )Y,X). (3.15)

Since in a concircularly ϕ−recurrent Lorentzian β−Kenmotsu manifold, the

relation (3.12) holds good, using (3.10) in (3.15) we get

η(X)[β2(β − 1)g(Z.Y )g(X.Y ) + β2(β − 1)g(Z.X)g(Y.Y )

− dr(Z)

2n(2n+ 1)
[{η(Y )G(X,Y )− η(X)g(Y, Y )}

−A(Z){β2 − r

2n(2n+ 1)
}{g(Y, Y )η(X)− g(X,Y )η(Y )}]

= A(z)[Kβ2 − r

2n(2n+ 1)
{g.(Y, Y )g(X,X)− g(X,Y )g(X.Y )}].

(3.16)

Putting Y = Z = ξ in (3.16) and using (2.2) and simplifying we get

n(ρ) = 0. (3.17)

Hence from the relation A(W ) = −η(w)η(ρ), we get

A(W ) = 0. (3.18)
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Using (3.18) in (3.1), we get

(ϕ2(DwC)(X,Y )Z) = 0.

Hence we can state the following theorem:

Theorem 3.2. If a concircularly ϕ−recurrent Lorentzian β−Kenmotsu man-

ifolds (M2n+1, g), (n > 1), has a non-zero constant sectional curvature then it

reduces to a locally concircularly ϕ−symmetric manifold.

4. 3-dimensional Locally ϕ−Concircularly symmetric Lorentzian β−
Kenmotsu manifold

In a 3-dimensional Lorentzian β−Kenmotsu manifold, concircular curva-

ture tensor in given by

C(X,Y )Z =
(r + 4)

2
[g(Y, Z)X − g(X,Z)Y ]

(r + 6)

2
[g(Y,Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ]

−r

6
[g(Y, Z)X − g(X,Z)Y ].

(4.1)

Taking Covariant differentiation of (4.1), we get

(DwC)(X,Y )Z =
dr(W )

2
[g(Y,Z)Xg(X,Z)Y ]− dr(W )

2
[g(Y,Z)η(X)ξ

g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ]− (r + 6)

2
×

[g(Y, Z)(Dwη)(X)ξ + g(Y,Z)η(X)(Dwξ)g(X,Z)(Dwη)(Y )ξ]

−g(X,Z)η(Y )(Dwξ) + (Dwη)(Y )η(Z)X + (Dwη)(Z)η(Y )X

−(Dwη)(X)η(Z)X − (Dwη)(Z)η(X)Y

−dr(W )

6
[g(Y, Z)X − g(X,Z)Y ].

(4.2)

Taking X, Y , Z horizontal vector field and using (2.5) and (2.6), we get

(DwC)(X,Y )Z =
dr(W )

2
[g(Y, Z)Xg(X,Z)Y ]− (r + 6)

2
β[g(Y,Z)

g(X,W )− g(X,Z)g(Y,W )] + g(Y, Z)η(W )η(x)

+g(X,Z)η(W )η(Y )]ξ.

(4.3)

From (4.3) it follows that

ϕ2(DwC)(X,Y )Z) =
dr(W )

3
[g(Y, Z)ϕ2X − g(X,Z)ϕ2Y ].
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Now taking X, Y , Z horizontal vector field and using (2.1), (2.5) and (2.6), we

get

ϕ2(DwC)(X,Y )Z) =
dr(W )

3
[g(Y, Z)X − g(X,Z)Y ].

Hence we state the following.

Theorem 4.1. A 3-dimensional Lorentzian β−Kenmotsu manifold is locally

ϕ−concircularly symmetric if and only if scalar curvature r is content.

In 1977 [3] has proved that

Corollary 4.1. A 3-dimensional Lorentzian β−Kenmotsu manifold is locally

ϕ−Symetric if and only if scalar curvature r is constant.

Using corollary (4.1) we state the following:

Theorem 4.2. A 3-dimensional Lorentzian β−Kenmotsu manifold is locally

ϕ−concircularly symmetric if and only if it is Locally ϕ−Symmetric.
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