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Abstract

A two-layered two-phase magnetohydrodynamic model for blood flow through
a narrow circular vessel under the influence of uniform transverse magnetic field
has been developed. It is assumed that the core region is the suspension of all
the erythrocytes in plasma fluid and a peripheral layer of cell-free plasma. Ana-
lytical expressions for velocity profiles of plasma and cells in both regions along
with flow rate, effective viscosity and resistance to flow have been obtained.
Results have been evaluated numerically for various values of the rheological
parameters available from published works and discussed graphically. It may be
noticed that the effective viscosity decreases/increases with increasing pheriph-
eral layer thickness/Hartman number. This is good agreement to the published
works related to dialysis.

Key Words : Two-phase model, Hartman number, Hematocrit, Blood flow,
Magnetic field.

1. Introduction

The study of blood flow through the vessels of the circulatory system has
been the subject of scientific research. When blood flows through tubes, the
two-phase nature of blood as a suspension becomes important as the diameter
of the red blood cell (RBC) becomes comparable to the tube diameter. It is
well known that blood is a multiphase suspension of red blood cells (RBC),
white blood cells (WBC), and platelets, suspended in plasma. The red blood
cells, one of the main constituents of blood constitute about 40-45% of the total
blood volume play an important role for blood flowing through small vessels
of diameter 2400-8µm (Srivastava and Srivastava [1]). The experimental and
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theoretical studies of blood flow phenomena are very useful for the diagnosis of
cardiovascular diseases and development of pathological patterns in human or
animal physiology and for other clinical purposes.

Several researchers Bayliss [2], McDonald [3], Copley and Stainsby [4],
Whitmore [5] have proposed a single phase homogeneous Newtonian model of
blood. This classical approach does not account for the presence of red cells
in blood. Some experimental studies (Cokelet [6], Haynes [7]) on blood flow
indicate that blood can no longer be treated as a single phase homogeneous
viscous fluid when the diameter of blood vessel is smaller than 1000m. Thus,
in dealing with the problem of microcirculation, the red blood cells cannot be
ignored. It seems to be important and necessary to consider the whole blood as
a particle-fluid system flowing through small vessels. Many investigations have
been conducted in the literature using particulate suspension theory to describe
the flow of blood in small vessels (Maithili Sharan and Aleksander S. Popel[8],
Nair et al. [9], Seshadri and Jaffrin [10] Gupta et al. [11] and Srivastava [12]).
Srivastava and Srivastava [1] proposed a two-phase theoretical model to address
pulsatile blood flow in the entrance region of an artery.

It has been shown by Woodcock [13] that red cells which contain hemoglobin
(an iron compound) have negative electric charge. Hence, blood can be consid-
ered as an electrically conducting fluid (Rosensweig [14]). From MHD studies,
it is well known that magnetic field could be used to control the movement of
charged particle (Boyd and Sanderson [15]). Many workers have studied the
effect of magnetic field on blood flow through narrow vessels (Chaturani and
Bhartiya [16] and Tiwari [17]) Chaturani and Bhartiya [16] studied two-layered
magnetohydrodynamic flow through parallel plates with applications to blood
flow and noticed that magnetic field help in reducing the cell injury and the
dialysis time.

With the above discussions in mind we propose to study the flow of blood
in small vessels involving a two-fluid two-phase model with transverse effect of
magnetic field. The mathematical model considered as a two-layered model of
blood, consisting of a core region of suspension of all the erythrocytes (RBC), as-
sumed to be a particle fluid suspension (i.e. a suspension of red cells in plasma)
and a peripheral layer of plasma. The present study involves the effect of hemat-
ocrit, Hartman number and peripheral layer thickness on the flow characteristics
of blood through small vessels.
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2. Mathematical Formulation and Analysis

Consider axially symmetric, laminar steady flow of blood in an uniform
rigid circular tube of radius R (Fig.1). Blood is represented by a two-fluid model
consisting of a core region (central layer) of suspension of all the erythrocytes
assumed to be a particle-fluid mixture (i.e. suspension of red cells in plasma)
of radius (R − δ) and a peripheral cell-depleted layer near the wall of plasma
of thickness δ. It is assumed that blood and plasma both are Newtonian fluid.
Since red cells are magnetic in nature, blood can be regarded as two phase
magnetic fluid in the core region. The homogeneous transverse magnetic field
is considered.

The governing equations of motion under the above assumptions under no
body forces in the presence of transverse magnetic field (Nayteh [18]) are

− dp

dz
+ µp

(
d2Vpp

dr2
+

1
r

dVpp

dr

)
= 0 (1)

in cell free peripheral layer (R− δ ≤ r ≤ R)
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[
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1
r
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)]
+ φS(Vrc − Vpc) = 0 (2)

in core-region (0 ≤ r ≤ R− δ), for fluid phase (plasma) and
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+ φS(Vpc − Vrc)− φσeB2

0Vpc = 0 (3)

in particulate phase (red cells).
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where r and z are radial and axial co-ordinates; Vpp, Vpc are the velocities of
plasma in the peripheral layer and core region respectively; Vrc the velocity of
red cells in the core; µp the fluid (plasma) viscosity; µs the suspension (blood)
viscosity; φ the volume occupied by the red cells per unit volume of the blood
called Hematocrit; p the pressure; Bo = (µe/Ho) the electro-magnetic induction;
µe the magnetic permeability; Ho the intensity of the magnetic field; σe the
conductivity of the fluid and S the drag coefficient of the interaction between
the two phase (fluid and particle).

The expression for drag coefficient of interaction S is selected (Charm and
Kurland [19] as

S =
9
2

µp

a2

[
4 + 3(8φ− 3φ2)1/2 + 3φ

]

(2− 3φ)2
(4)

where a is the radius of a particle.

The boundary conditions are

Vpp = 0 at r = R (5)

Vpc is finite at r = 0 (6)

Vpp = Vpc at r = R− δ (7)

The expressions for velocities Vpp, Vpc and Vrc obtained as the solutions of
equations (1), (2) and (3) under the boundary conditions (5), (6) and (7) are
given as
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(10)

where µ = µs/µp, K2 = φ, M = BoR
√

σe
µs

is Hartman number, and J0 is the

Bessel function of zero order.



Two-Layered Two-Phase Magnetohydro-Dynamic Fluid Model of Blood Flow... 31

Volume flow rate Q is given by

Q = 2π

∫ R

R−δ
rVppdr + 2π(1− φ)

∫ R−δ

∂
rVpcdr + 2πφ

∫ R−δ

∂
rVrcdr (11)

Using equations (8), (9) and (10) into equation (11), the expression for flow rate
is obtained as
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πR4

8µs

(− dp

dz

) [{
1− 2

(
1− δ

R

)2 +
(
1− δ

R

)4
}

µ +
{

1−K2(1−K2)
M2µs

R2S

}

[
8

K2M2

(
1− δ

R

)2 − 4i

KM

(
1− δ

R

){(
1− (

1− δ

R

)2)
µ− 4

K2M2

}
×

J0(iKM(1− δ
R))

J0(iKM(1− δ
r ))

]]
(12)

Effective viscosity eff can be derived by using the formula
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πR4
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)
. (13)

Using (12) in (13), we obtain
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The resistance is obtained by using the formula

λR =
(−dp/dz

Q

)
(15)

Now use of (12) in (15), gives the expression for resistance to flow as

1
λR

=
πR4

8µs

[{
1− 2

(
1− δ

R

)2 +
(
1− δ

R

)4
}

µ +
{

1−K2(1−K2)
M2µs

R2S

}
×

[
8

K2M2

(
1− δ

R

)2 − 4i

KM

(
1− δ

R

){(
1− (

1− δ

R

)2)
µ− 4

K2M2

}
×

J0(iKM(1− δ
R))

J0(iKM(1− δ
r ))

]]
. (16)



32 S.R. Verma

For non-magnetic case (M = 0) or when volume fraction φ is zero, the ex-
pressions for total flow rate, effective viscosity and resistance to flow are reduces
to :
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3. Results and Discussion

In order to discuss the results of the theoretical model proposed in the study,
the analytical expressions for velocity profiles, flow rate, effective viscosity and
resistance to flow have been obtained. It may be noticed that non-magnetic
two-layered flow results can be obtained as a special case of the present model
by putting M = 0.

To get a physical insight of the problem, the flow rate, effective viscosity
and resistance to flow obtained analytically in the equations (12), (14) and (16)
respectively have been plotted in Figures (2) to (10). The results are displayed
graphically for 20% and 40% hematocrit for 40 µm and 70 µm diameter tubes.
For numerical calculation we take µs = 2.18 cp for 20% and 3.10 cp for 40%
hematocrit and peripheral layer thickness δ = 4.67 µm for 20% and 3.12 µm for
40% hematocrit (Haynes [7]; Bugliarello and Sevilla [20]; Sud and Sekhon [21]).
The viscosity of plasma µp = 1.2 cp and diameter of RBC d = 6.78µm also have
been considered in the numerical calculations.

The volumetric flow rate Q with pressure gradient (−dp/dz) for 20% hema-
tocrit, 40 µm diameter; 40% hematocrit, 40 µm diameter; 20% hematocrit, 70
µm diameter; 40% hematocrit, 70 µm diameter have been plotted in Figs. 2,
3, 4, 5 respectively. From figures and numerical results it is concluded that the
flow rate increases with pressure gradient and decreases with Hartman number.
For large values of M > 7, 5, 8, 5 for above four cases the flow rate is almost
zero. It is also noticed that the flow rate decreases as hematocrit increases and
reverse effect as diameter of the tube increases.

Figures 6 and 7 show the variation of effective viscosity with Hartman
number for 20% and 40% hematocrit for 40 µm and 70 µm tubes diameter. It
is observed that the effective viscosity increases with Hartman number upto M



Two-Layered Two-Phase Magnetohydro-Dynamic Fluid Model of Blood Flow... 33

= 7, 5, 8, 5 for the four cases. Figure 8 shows the variation of effective viscosity
with peripheral layer thickness for different values of Hartman number. It is
observed that for one-layered MHD flow, the effective viscosity is maximum.
As the layer thickness increases, effective viscosity decreases. Thus the effective
viscosity of blood can be controlled by varying the strength of magnetic field
(Hartman number) and peripheral layer thickness. This is the good agreement
to the results obtained by Chaturani and Bhartiya [16] for a dialyser.

The effect of Hartman number (M) on resistance to flow (λR) has been
plotted in figures 9 and 10. From figures it is concluded that the resistance to
flow increases with Hartman number for different cases upto M = 7, 5, 8, 5.
Numerical values of λR decreases as diameter increases but reverse effect are
obtained as hematocrit increases.
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