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Abstract

We study generic Riemannian submersions from nearly Käehler manifolds

onto Riemannian manifolds. We investigate conditions for the integrability of

various distributions arising for generic Riemannian submersions and also obtain

conditions for leaves to be totally geodesic foliations. We obtain conditions for

a generic Riemannian submersion to be a totally geodesic map and also study

generic Riemannian submersions with totally umbilical fibers. Finally, we derive

conditions for generic Riemannian submersions to be harmonic map.
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1. Introduction

Riemannian submersions between Riemannian manifolds equipped with an

additional structure of almost complex type were introduced by Watson in

[18]. Watson defined an almost Hermitian submersion between almost Her-

mitian manifolds and showed that, in most of the cases, the base manifold and

each fiber have the same kind of structure as the total space. Later, Sahin [14]

introduced the notion of anti-invariant Riemannian submersions from almost

https://doi.org/10.56424/jts.v13i01.10604
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Hermitian manifolds onto Riemannian manifolds, where the vertical distribu-

tion is anti-invariant under the action of almost complex structure of the total

manifold. As a generalization of anti-invariant submersions and almost Hermit-

ian submersions, Sahin [15] introduced the notion of semi-invariant Riemannian

submersions from almost Hermitian manifolds onto Riemannian manifolds.

As a generalization of semi-invariant submersions, Ali and Fatima [3] in-

troduced the notion of generic Riemannian submersions from almost Hermitian

manifolds onto Riemannian manifolds. Then, Fatima and Ali [6] studied sub-

mersion of generic submanifolds of Käehler manifolds onto almost Hermitian

manifolds. Later, Akyol [1] studied generic submersions from almost Riemann-

ian product manifolds. Recently, Sayar et al. [17] introduced a new kind of

Riemannian submersions, where the fibers are generic submanifolds, in the sense

of Ronsse [13] and called such submersions as generic submersions.

A more general and geometrically interesting class of almost Hermitian

manifolds is of nearly Käehler manifolds, which is one of the sixteen classes of

almost Hermitian manifolds and given by Gray and Hervella in their celebrated

paper [8]. The geometrical meaning of nearly Käehler condition is that the

geodesics on the manifolds are holomorphically planar curves. Nearly Käehler

manifolds were extensively studied by Gray in [7] and a well known example of

a non-Käehlerian nearly Käehler manifold is 6−dimensional sphere.

Ali and Fatima [2] studied anti-invariant Riemannian submersions from

nearly Käehler manifolds onto Riemannian manifolds. Recently, Rupali et al.

[9] studied semi-invariant Riemannian submersions from nearly Käehler mani-

folds onto Riemannian manifolds. In this paper, we study generic Riemannian

submersions from nearly Käehler manifolds onto Riemannian manifolds. We

investigate conditions for the integrability of various distributions arising for

generic Riemannian submersions and also obtained conditions for leaves to be

totally geodesic foliations. We also obtain conditions for generic Riemannian

submersion to be a totally geodesic map and to be a harmonic map.

2. Preliminaries

Let (M, gM , J) be an almost Hermitian manifold with a Riemannian metric

gM and an almost complex structure J such that

J2 = −I, gM (X,Y ) = gM (JX, JY ),

for any X,Y ∈ Γ(TM). Let ∇ be the Levi–Civita connection on M with respect

to gM . If the almost complex structure J is parallel with respect to ∇, that is,
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(∇XJ)Y = 0, then M is called a Käehler manifold and if the tensor field ∇J is

skew-symmetric, that is

(∇XJ)Y + (∇Y J)X = 0, (2.1)

then M is called a nearly Käehler manifold.

Let (M, gM ) and (B, gB) be Riemannian manifolds of dimensions m and

n, respectively, where m > n. Then, a map F : (M, gM ) → (B, gB) is called a

Riemannian submersion [10] if it satisfies the following axioms:

A1. F has maximal rank.

A2. The differential map F∗ of F preserves the scalar product of vectors

normal to the fibers.

Here, the fibers F−1(y), y ∈ B are (m − n)−dimensional submanifolds of M .

A vector field on M is called vertical (respectively, horizontal) if it is always

tangent (respectively, orthogonal) to the fibers. The vertical distribution of M

is denoted by Vp = (kerF∗p), p ∈ M , which is always integrable and the or-

thogonal distribution to Vp is denoted by Hp = (kerF∗p)
⊥, called the horizontal

distribution, hence TM = V ⊕ H. A vector field X on M is called a basic

vector field if X is horizontal and F−related to a vector field X∗ on B, that is,

F∗Xp = X∗F (p), for any p ∈ M .

Next, we recall the following important lemma from O’Neill [10] for later

uses.

Lemma 2.1. Let F : (M, gM ) → (B, gB) be a Riemannian submersion between

Riemannian manifolds and let ∇ and ∇ be the Levi–Civita connections of M

and B, respectively. If X,Y are basic vector fields on M and are F−related to

X∗, Y∗ respectively, then

(i) gM (X,Y ) = gB(X∗, Y∗) ◦ F .

(ii) H[X,Y ] is the basic vector field and F−related to [X∗, Y∗].

(iii) (∇XY )H is the basic vector field and F−related to ∇X∗Y∗.

(iv) For any vertical vector field V , [X,V ] is always vertical.

It is known that the geometry of Riemannian submersions is characterized by

O’Neill’s tensors T and A. For any arbitrary vector fields U and V on M , these

tensors are defined as

TUV = H∇VUVV + V∇VUHV, AUV = V∇HUHV +H∇HUVV, (2.2)
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where ∇ is the Levi–Civita connection on M with respect to gM . It is easy to

see that the tensor fields T and A are vertical and horizontal, respectively and

satisfy

TUV = TV U, ∀ U, V ∈ Γ(kerF∗), (2.3)

AXY = −AY X =
1

2
V[X,Y ], ∀ X,Y ∈ Γ(kerF∗)

⊥. (2.4)

It should be noted that the tensor T serves as the second fundamental form

of the fibers and hence a Riemannian submersion F has totally geodesic fibers

if and only if T vanishes identically. Moreover, relation in (2.4), shows that

A is necessarily the integrability tensor of the horizontal distribution (kerF∗)
⊥

on M . Using the definition of these tensors, we have the following important

lemma from [10] immediately.

Lemma 2.2. Let X,Y be horizontal vector fields and U, V be vertical vector

fields. Then

(i) ∇UV = TUV + ∇̂UV ,

(ii) ∇UX = H∇UX + TUX,

(iii) ∇XU = AXU + V∇XU ,

(iv) ∇XY = H∇XY +AXY ,

where ∇̂UV = V(∇UV ). If X is basic then H(∇UX) = AXU .

Let F : (M, gM ) → (B, gB) be a smooth map between the Riemannian mani-

folds. Then, the differential F∗ of F can be viewed as a section of the bundle

Hom(TM,F−1(TB)) of M , where F−1(TB) is the pullback bundle with fibres

(F−1(TB))p = TF (p)B, p ∈ M . Hom(TM,F−1(TB)) has connection ∇F in-

duced from the Levi–Civita connection ∇ of M and a pull back connection.

Then, the second fundamental form (∇F∗) of F is given by

(∇F∗)(X,Y ) = ∇F
XF∗(Y )− F∗(∇XY ), (2.5)

for any X,Y ∈ Γ(TM). It should be noted that the second fundamental form

is always symmetric. Further, the smooth map F is said to be harmonic if

trace(∇F∗) = 0. The tension field τ(F ) of F is the section of Γ(F−1(TB)) and

given by

τ(F ) = divF∗ =
m∑
i=1

(∇F∗)(ei, ei), (2.6)

where {e1, . . . , em} is the orthonormal frame on M then F is harmonic if and

only if τ(F ) = 0, for more details, see [4].
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3. Generic Riemannian Submersions

Let N be a real submanifold of an almost Hermitian manifold (M, gM , J)

and let Dp = TpM ∩ JTpM , p ∈ N , be the maximal complex subspace of

the tangent space TpM which is contained in TpN . If the dimension of Dp is

constant along N and it defines a differentiable distribution on N , then N is

called a generic submanifold of M , for details, see [5]. Here, the distribution Dp

on N is called the holomorphic distribution. A generic submanifold is said to be

a purely real submanifold if Dp = {0}. Denote the orthogonal complementary

distribution to D in TN by D⊥, known as the purely real distribution and

satisfies Dp⊥D⊥
p , D⊥

p ∩ JD⊥
p = {0}. Therefore, for any vector field X tangent

to N , we put JX = tX + fX, where tX and fX are the tangential and normal

components of JX, respectively. Further, for a generic submanifold, we have

following important observations:

tD = D, fD = {0}, tD⊥
p ⊂ D⊥

p , fD⊥
p ⊂ T⊥N. (3.1)

Definition 3.1. [3]. Let F : (M, gM , J) → (B, gB) be a Riemannian submersion

from an almost Hermitian manifold onto a Riemannian manifold. Then the

Riemannian submersion F is called a generic Riemannian submersion if there is

a distribution D ⊂ Γ(kerF∗) such that

(kerF∗) = D ⊕D⊥, JD = D, (3.2)

where D⊥ is the orthogonal complementary of D in (kerF∗), and is called a

purely real distribution on the fibers of the submersion F .

It is well known that the vertical distribution (kerF∗) is always integrable.

Hence, above definition implies that the integral manifolds (fibers) π−1(q), q ∈ B

of (kerF∗) are generic submanifolds of M .

From the definition of generic Riemannian submersions, it is obvious that

for any U∈ Γ(kerF∗), we can write

JU = ϕU + ωU, (3.3)

where ϕU ∈ Γ(kerF∗) and ωU ∈ Γ(kerF∗)
⊥. From (3.1), it is clear that ωD =

{0} and ωD⊥ ∈ Γ(kerF∗)
⊥. Denote the complementary distribution to ωD⊥ in

(kerF∗)
⊥ by µ then we get (kerF∗)

⊥ = ωD⊥ ⊕ µ, and that µ is invariant under

J . Thus, for X ∈ Γ(kerF∗)
⊥, we can write

JX = BX + CX, (3.4)
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where BX ∈ Γ(D⊥) and CX ∈ Γ(µ).

Example 1. Let (R8, J, g1) be an almost Hermitian manifold endowed with an

almost complex structure (J, g1) and given by g1 = dx21+dx22+dx23+dx24+dx25+

dx26 + dx27 + dx28, J(x1, x2, x3, x4, x5, x6, x7, x8) = (−x2, x1,−x4, x3,−x6,

x5,−x8, x7). Let (R4, g2) be a Riemannian manifold endowed with metric g2 =

dy21 + dy22 + dy23 + dy24 and F : (R8, J, g1) → (R4, g2) be a map defined by

F (x1, x2, x3, x4, x5, x6, x7, x8) = (x1+x3√
2

, x2+x4√
2

, sinαx5+cosαx7, sinαx6−cosαx8).

Then, by straightforward calculations

(kerF∗) = span
{
X1 = ∂x1 − ∂x3, X2 = ∂x2 − ∂x4,

X3 = cosα∂x5 − sinα∂x7, X4 = cosα∂x6 + sinα∂x8

}
.

Clearly, JX1 = X2 therefore D = span{X1, X2} and D⊥ is a slant distribution

with slant angle 2α therefore it is a purely real distribution. Moreover

(kerF∗)
⊥ = span

{
Z1 = ∂x1 + ∂x3, Z2 = ∂x2 + ∂x4,

Z3 = sinα∂x5 + cosα∂x7, Z4 = sinα∂x6 − cosα∂x8

}
.

Since JZ1 = −Z2 therefore µ = span{Z1, Z2} and invariant with respect to

J . Furthermore, we derive F∗Z1 =
√
2∂y1, F∗Z2 =

√
2∂y2, F∗Z3 = ∂y3 and

F∗Z4 = ∂y4 such that

g1(Z1, Z1) = 2 = g2(F∗Z1, F∗Z1), g1(Z2, Z2) = 2 = g2(F∗Z2, F∗Z2),

g1(Z3, Z3) = 1 = g2(F∗Z3, F∗Z3), g1(Z4, Z4) = 1 = g2(F∗Z4, F∗Z4).

Hence, F is a proper generic Riemannian submersion from an almost Hermitian

manifold onto a Riemannian manifold.

Example 2. Let F : (R8, J, g1) → (R4, g2) be a map defined by

F (x1, x2, x3, x4, x5, x6, x7, x8) =
(x2 − x3√

2
, x4, x5, x6

)
,

where (R8, J, g1) and (R4, g2) defined as in above example. Then, by straightfor-

ward calculations

(kerF∗) = span
{
X1 = ∂x1, X2 = ∂x2 + ∂x3, X3 = ∂x7, X4 = ∂x8

}
.

Clearly, D = span{X3, X4} and D⊥ is a slant distribution with slant angle π
4

therefore it is a purely real distribution. Moreover

(kerF∗)
⊥ = span

{
Z1 = ∂x2 − ∂x3, Z2 = ∂x4, Z3 = ∂x5, Z4 = ∂x6

}
.
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where µ = span{Z3, Z4}. Furthermore, we derive F∗Z1 =
√
2∂y1, F∗Z2 = ∂y2,

F∗Z3 = ∂y3 and F∗Z4 = ∂y4 such that

g1(Z1, Z1) = 2 = g2(F∗Z1, F∗Z1), g1(Z2, Z2) = 1 = g2(F∗Z2, F∗Z2),

g1(Z3, Z3) = 1 = g2(F∗Z3, F∗Z3), g1(Z4, Z4) = 1 = g2(F∗Z4, F∗Z4).

Hence, F is a proper generic Riemannian submersion from an almost Hermitian

manifold onto a Riemannian manifold.

Example 3. Every semi-invariant submersion [15] is a generic Riemannian

submersion with a totally real distribution D⊥.

Example 4. Every slant submersion [16] is a generic Riemannian submersion

with D = {0} and slant distribution D⊥.

Example 5. Every semi-slant submersion [11] is a generic Riemannian sub-

mersion with slant distribution D⊥.

Next, from (3.1)–(3.4), we get the following lemma immediately for later use.

Lemma 3.2. Let F : (M, gM , J) → (B, gB) be a generic Riemannian submer-

sion from an almost Hermitian manifold onto a Riemannian manifold. Then

(i) ϕD = D, ϕD⊥ ⊂ D⊥, B(kerF∗)
⊥ = D⊥.

(ii) ϕ2 + Bω = −id, C2 + ωB = −id, ωϕ+ Cω = 0, BC + ϕB = 0.

For any arbitrary tangent vector fields U and V on M , we set

(∇UJ)V = PUV +QUV, (3.5)

where PUV (respectively, QUV ) denotes the horizontal (respectively, vertical)

part of (∇UJ)V . Clearly, if M is a Käehler manifold then P = Q = 0. and if

M is a nearly Käehler manifold then P and Q satisfy

PUV = −PV U, QUV = −QV U. (3.6)

Hence, from the Lemma 2.2 and (3.3), (3.4), we derive covariant derivative of

ϕ, ω, B and C as below:

Theorem 3.3. Let F : (M, gM , J) → (B, gB) be a generic Riemannian submer-

sion from a nearly Käehler manifold onto a Riemannian manifold. Then

(∇Uϕ)V = BTUV − TUωV +QUV, (3.7)

(∇Uω)V = CTUV − TUϕV + PUV, (3.8)

(∇UB)X = ϕTUX − TUCX +QUX,
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(∇UC)X = ωTUX − TUBX + PUX,

where

(∇Uϕ)V = ∇̂UϕV − ϕ∇̂UV, (∇Uω)V = H∇UωV − ω∇̂UV, (3.9)

(∇UB)X = V∇UBX − BH∇UX, (∇UC)X = H∇UCX − CH∇UX,

for any U, V ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥.

Lemma 3.4. Let F : (M, gM , J) → (B, gB) be a generic Riemannian submer-

sion from a nearly Käehler manifold onto a Riemannian manifold. Then{
BTUV + ϕV∇UV = V∇UϕV + TUωV +QV U,

CTUV + ωV∇UV = TUϕV +H∇UωV + PV U,
(3.10)

{
BH∇XY + ϕAXY = V∇XBY +AXCY +QY X,

CH∇XY + ωAXY = AXBY +H∇XCY + PY X,
(3.11)

{
BAXV + ϕV∇XV = V∇XϕV +AXωV +QV X,

CAXV + ωV∇XV = AXϕV +H∇XωV + PV X,
(3.12)

for any X,Y ∈ Γ(kerF∗)
⊥ and U, V ∈ Γ(kerF∗).

Proof. Let U, V ∈ Γ(kerF∗) then from (2.1), we have J∇UV = ∇UJV +

(∇V J)U . Using the Lemma 2.2 with (3.3)–(3.5), we get

BTUV + CTUV + ϕV∇UV + ωV∇UV = TUϕV + V∇UϕV

+H(∇UωV ) + TUωV + PV U +QV U.

On comparing the vertical and horizontal parts of the last expression, we obtain

(3.10). Analogously, for X,Y ∈ Γ(kerF∗)
⊥ and U ∈ Γ(kerF∗), we derive (3.11)

and (3.12).

Corollary 3.5. Take U ∈ Γ(kerF∗), V ∈ Γ(D) and ξ ∈ Γ(µ) in (3.10)2 then it

follows that

gM (CTUV, ξ) = gM (TUϕV, ξ) + gM (PV U, ξ),

this, further implies that

gM ((TUJ)V, ξ) = gM (PUV, ξ).

Similarly, for X ∈ Γ(kerF∗)
⊥, Y ∈ Γ(µ) and U ∈ Γ(D), from (3.11)1, we derive

gM ((AXJ)Y,U) = gM (QXY, U).

For X ∈ Γ(kerF∗)
⊥, Y,Z ∈ Γ(ωD⊥), from (3.11)2, we obtain

gM ((AXJ)Y,Z) = gM (PXY, Z).
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For X ∈ Γ(kerF∗)
⊥, Y ∈ Γ(µ) and V ∈ Γ(D), from (3.12)2, we get

gM ((AXJ)V, Y ) = gM (PXV, Y ).

Theorem 3.6. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then the

distribution D defines a totally geodesic foliation in M if and only if

V∇UϕV −QUV ∈ Γ(D), TUϕV −PUV ∈ Γ(µ),

for any U, V ∈ Γ(D).

Proof. Let U, V ∈ Γ(D) then using the Lemma 2.2 with (2.1) and (3.5), we

derive

∇UV = −J(TUϕV + V∇UϕV + PV U +QV U).

Take scalar product of last expression with W ∈ Γ(D⊥), we get

gM (∇UV,W ) = gM (V∇UϕV −QUV, ϕW ) + gM (TUϕV −PUV, ωW ), (3.13)

hence the proof is complete.

On interchanging the role of U , V and subtracting the resulting expression

form (3.13) and using (3.6), we obtain the following observation immediately.

Corollary 3.7. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then the

distribution D is integrable if and only if

V∇UϕV − V∇V ϕU − 2QUV ∈ Γ(D), TUϕV − TV ϕU − 2PUV ∈ Γ(µ),

for any U, V ∈ Γ(D).

Theorem 3.8. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then the

distribution D⊥ defines a totally geodesic foliation in M if and only if

V∇UϕV + TUωV −QUV ∈ Γ(D⊥),

for any U, V ∈ Γ(D⊥).

Proof. Let U, V ∈ Γ(D⊥) then using the Lemma 2.2 with (2.1) and (3.5), we

derive

∇UV = −J(TUϕV + V∇UϕV +H∇UωV + TUωV + PV U +QV U).

Take scalar product of last expression with W ∈ Γ(D), we get

gM (∇UV,W ) = gM (V∇UϕV + TUωV −QUV, ϕW ),
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hence the proof is complete.

Corollary 3.9. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then the

distribution D⊥ is integrable if and only if

V∇UϕV − V∇V ϕU + TUωV − TV ωU − 2QUV ∈ Γ(D⊥),

for any U, V ∈ Γ(D⊥).

Now, we recall an important theorem for product structures from [12].

Theorem 3.10. Let g be a Riemannian metric tensor on the manifold M =

M ×N and assume that the canonical foliations DM and DN intersect perpen-

dicularly everywhere. Then g is the metric tensor of:

(i) a double-twisted product M ×(f,g) N if and only if DM and DN are

totally umbilical foliations,

(ii) a twisted product M×fN if and only if DM is a totally geodesic foliation

and DN is a totally umbilical foliation,

(iii) a warped product M×fN if and only if DM is a totally geodesic foliation

and DN is a spherical foliation, i.e., it is umbilical and its mean curvature

vector field is parallel, and

(iv) a usual product of Riemannian manifolds if and only if DM and DN are

totally geodesic foliations.

Thus, from the Theorems 3.6 and 3.8, we have the following assertion immedi-

ately.

Theorem 3.11. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then

fibers of F are locally product Riemannian manifolds of the form MD ×MD⊥ ,

where MD and MD⊥ are integral manifolds of the vertical distribution (kerF∗)

if and only if

V∇UϕV −QUV ∈ Γ(D), TUϕV − PUV ∈ Γ(µ), (3.14)

and

V∇WϕZ + TWωZ −QWZ ∈ Γ(D⊥), (3.15)

for any U, V ∈ Γ(D), W,Z ∈ Γ(D⊥).
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Theorem 3.12. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then the

horizontal distribution (kerF∗)
⊥ defines a totally geodesic foliation in M if and

only if

AXBY +H∇XCY −PXY ∈ Γ(µ), V∇XBY +AXCY −QXY = 0, (3.16)

for any X,Y ∈ Γ(kerF∗)
⊥.

Proof. For any for any X,Y ∈ Γ(kerF∗)
⊥, we have

∇XY = −J(AXBY + V∇XBY +H∇XCY +AXCY + PY X +QY X).

On taking scalar product of last expression with U ∈ Γ(kerF∗), the proof is

complete.

It is known that for a Riemannian submersion, the vertical distribution

(kerF∗) is always integrable and the horizontal distribution (kerF∗) is not always

integrable. Therefore, from the above Theorem 3.12, we obtain necessary and

sufficient conditions for the horizontal distribution to be integrable.

Corollary 3.13. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then,

the horizontal distribution (kerF∗)
⊥ is integrable if and only if

AXBY −AY BX +H∇XCY −H∇Y CX − 2PXY ∈ Γ(µ),

V∇XBY − V∇Y BX +AXCY −AY CX − 2QXY = 0,

for any X,Y ∈ Γ(kerF∗)
⊥.

Theorem 3.14. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then,

the vertical distribution (kerF∗) defines a totally geodesic foliation in M if and

only if

TUϕV +H∇UωV −PUV ∈ Γ(ωD⊥), (3.17)

V∇UϕV + TUωV −QUV ∈ Γ(D), (3.18)

for any U, V ∈ Γ(kerF∗).
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Proof. Let U, V ∈ Γ(kerF∗), then using the Lemma 2.2 with (2.1) and (3.5),

we obtain

∇UV = −J(TUϕV + V∇UϕV +H∇UωV + TUωV + PV U +QV U)

= −{B(TUϕV +H∇UωV + PV U) + ϕ(V∇UϕV + TUωV +QV U)}
−{C(TUϕV +H∇UωV + PV U) + ω(V∇UϕV + TUωV +QV U)}.

Hence, the vertical distribution (kerF∗) defines a totally geodesic foliation in M

if and only if

C(TUϕV +H∇UωV + PV U) = 0, ω(V∇UϕV + TUωV +QV U) = 0,

thus, the proof is complete. Thus, from the Theorems 3.6, 3.8, 3.12 and 3.14,

we have following observations:

Corollary 3.15. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then,

the total space M of generic Riemannian submersion F is a locally product

Riemannian manifold of the form MD × MD⊥ × M(kerF∗)⊥ if and only if the

expressions in (3.14)–(3.16) hold, where MD, MD⊥ and M(kerF∗)⊥ are integral

manifolds of (kerF∗) and (kerF∗)
⊥, respectively.

Corollary 3.16. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then,

the total space M of generic Riemannian submersion F is a locally product

Riemannian manifold of the form M(kerF∗)×M(kerF∗)⊥ if and only if the expres-

sions in (3.16)–(3.18) hold, where M(kerF∗) and M(kerF∗)⊥ are integral manifolds

of (kerF∗) and (kerF∗)
⊥, respectively.

Let F : (M, gM ) → (B, gB) be a smooth map between Riemannian man-

ifolds. If F maps every geodesic in the total manifold into a geodesic in the

base manifold, in proportion to the arc length then the mapping F is called a

totally geodesic map. In other words, F is called a totally geodesic map if and

only if the second fundamental form of the map F vanishes identically, that is,

(∇F∗) = 0.

Theorem 3.17. Let F be a generic Riemannian submersion from a nearly

Käehler manifold (M, g, J) to a Riemannian manifold (B, gB). Then, the map

F is a totally geodesic map if and only if

(TUϕV +H∇UωV −PUV ), (TUBX +H∇UCX − PUX) belong to Γ(ωD⊥),
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and

(V∇UϕV + TUωV −QUV ), (V∇UBX + TUCX −QUX) belong to Γ(D),

for any U, V ∈ Γ(kerF∗) and X,Y ∈ Γ(kerF∗)
⊥.

Proof. From the Lemma 2.1 and (2.5), it is obvious that the second fundamental

form (∇F∗) of the Riemannian submersion F satisfies (∇F∗)(X,Y ) = 0, for

any X,Y ∈ Γ(kerF∗)
⊥. Therefore, the generic Riemannian submersion F is a

totally geodesic map if and only if (∇F∗)(U, V ) = 0 and (∇F∗)(U,X) = 0, for

any U, V ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥. From the Lemma 2.1, (2.1) and

(2.5), we can write

(∇F∗)(U, V ) = −F∗(∇UV ) = F∗(J
2∇UV )

= F∗
{
BTUϕV + CTUϕV + ϕV∇UϕV + ωV∇UϕV

+BH∇UωV + CH∇UωV + ϕTUωV + ωTUωV
+BPV U + CPV U + ϕQV U + ωQV U

}
= F∗

{
CTUϕV + ωV∇UϕV + CH∇UωV + ωTUωV

−CPUV − ωQUV
}
. (3.19)

Hence, (∇F∗)(U, V ) = 0 if and only if C{TUϕV + H∇UωV − PUV } = 0 and

ω{V∇UϕV + TUωV − QUV } = 0, that is, if and only if (TUϕV + H∇UωV −
PUV ) ∈ Γ(ωD⊥) and (V∇UϕV + TUωV −QUV ) ∈ Γ(D).

It is known that the second fundamental form of the map is symmetric

then analogous to above derivation, for U ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥, we

obtain

(∇F∗)(U,X) = F∗
{
CTUBX + ωV∇UBX + CH∇UCX

+ωTUCX − CPUX − ωQUX
}
.

Hence, (∇F∗)(U,X) = 0, if and only if, (TUBX +H∇UCX − PUX) ∈ Γ(ωD⊥)

and (V∇UBX + TUCX −QUX) ∈ Γ(D). Thus, the proof is complete.

Corollary 3.18. Using (2.5) and the symmetry of the second fundamental form

of F , it follows that

gB((∇F∗)(U, V ), F∗X) = −gB(F∗∇UV, F∗X) = −gB(F∗H∇UV, F∗X)

= −gM (TUV,X), (3.20)
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and

gB((∇F∗)(U,X), F∗Y ) = −gB(F∗∇XU,F∗Y ) = −gB(F∗H∇XU,F∗Y )

= −gM (AXU, Y ) = gM (AXY, U). (3.21)

This implies that F is a totally geodesic map if and only if TUV = 0 and

AXY = 0, for any U, V ∈ Γ(kerF∗) and X,Y ∈ Γ(kerF∗)
⊥.

Theorem 3.19. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then

ϕ is parallel with respect to ∇ if and only if QUV = TUωV − BTUV , for any

U, V ∈ Γ(kerF∗).

Proof. For U, V,W ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥, it is easy to see that

gM (TUX,V ) = −gM (X, TUV ) then from (3.7), it follows that

gM ((∇Uϕ)W,V ) = gM (JTUW,V ) + gM (ωW, TUV ) + gM (QUW,V ).

Since gM (QUW,V ) = −gM (W,QUV ) then last expression becomes

gM ((∇Uϕ)W,V ) = gM (W, TUωV )− gM (W,BTUV )− gM (W,QUV ),

this completes the proof.

Theorem 3.20. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then

ω is parallel with respect to ∇ if and only if PUX = TUCX − ϕTUX, for any

U ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥.

Proof. Let U, V ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥ then from (3.8), we have

gM ((∇Uω)V,X) = −gM (TUV, CX) + gM (ϕV, TUX) + gM (PUV,X).

This further implies

gM ((∇Uω)V,X) = gM (V, TUCX)− gM (V, ϕTUX)− gM (V,PUX),

this completes the proof.

Analogously, we can derive the following assertions.

Theorem 3.21. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then

B is parallel with respect to ∇ if and only if QUV = TUϕV − CTUV , for any

U, V ∈ Γ(kerF∗).
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Theorem 3.22. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then

C is parallel with respect to ∇ if and only if PUX = TUBX − ωTUX, for any

U ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥.

Theorem 3.23. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. If ω is

parallel with respect to ∇ then

TϕUϕU = −TUBωU − TUU − 2PUϕU, (3.22)

for any U ∈ Γ(kerF∗).

Proof. Let ω be parallel with respect to ∇ then from (3.8), we have

CTUV + PUV = TUϕV,

for any U, V ∈ Γ(kerF∗). Interchange the role of U , V and then subtract the

resulting equation from the last equation and further on using (2.3), we obtain

2PUV = TUϕV − TV ϕU.

Furthermore, on substituting V as ϕU and then using the Lemma 3.2 (ii), the

assertion follows.

Now, we recall that a Riemannian submersion F : (M, gM ) → (B, gB)

between Riemannian manifolds is called a Riemannian submersion with totally

umbilical fibers if

TUV = H⋆gM (U, V ), (3.23)

for U, V ∈ Γ(kerF∗), where H⋆ is the mean curvature vector of the fibers.

Theorem 3.24. Let F be a generic Riemannian submersion with totally umbil-

ical fibers from a nearly Käehler manifold (M, g, J) onto a Riemannian manifold

(B, gB). Then H⋆ ∈ Γ(ωD⊥).

Proof. Let U, V ∈ Γ(D) then using the Lemma 2.2 with (2.1), (3.3) and (3.4),

it follows that

TUϕV + V∇UϕV = BTUV + CTUV + ϕV∇UV + ωV∇UV − PV U −QV U.

Take scalar product of last expression with X ∈ Γ(µ) and using (3.23), we get

gM (U, ϕV )gM (H⋆, X) = −gM (U, V )gM (H⋆, CX) + gM (PUV,X). (3.24)
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Interchange the role of U , V and then on adding the resulting expression with

(3.24), it follows that gM (U, V )gM (H⋆, CX) = 0, further, the non-degeneracy of

Γ(D) and Γ(µ) implies that H⋆ ∈ Γ(ωD⊥).

Theorem 3.25. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold with totally

umbilical fibers such that PUϕU = 0, for any U ∈ Γ(kerF∗). If ω is parallel

with respect to ∇ then F is with totally geodesic fibers.

Proof. For any U ∈ Γ(D), from (2.1), it follows that

(∇ϕUJ)U + (∇UJ)ϕU = 0.

Further, from the Lemma 2.2 with (3.3)–(3.5) and the hypothesis PUϕU = 0,

we obtain

TϕUϕU + V∇ϕUϕU − BTϕUU − CTϕUU − ϕV∇ϕUU − ωV∇ϕUU +QUϕU = 0.

Since ω is parallel with respect to ∇ then for any U ∈ Γ(D), from (3.9), we have

ωV∇ϕUU = 0 and using (3.22) in the last expression, we get

−TUU + V∇ϕUϕU − BTϕUU − CTϕUU − ϕV∇ϕUU +QUϕU = 0.

On taking scalar product of the last expression with X ∈ Γ(ω(D⊥)), we get

gM (TUU,X) = 0. Fibers of the submersion F are totally umbilical therefore,

we have gM (U,U)gM (H⋆, X) = 0, then non-degeneracy of (kerF∗) and ω(D⊥)

gives H⋆ = 0, this completes the proof.

Theorem 3.26. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then M

is a locally twisted product manifold of the form M(kerF∗)⊥ ×f M(kerF∗) if and

only if

AXBY +H∇XCY − PXY ∈ Γ(µ), V∇XBY +AXCY −QXY = 0,

TUJX = −gM (X, TUU)∥U∥−2JU − J∇UX,

for any U, V ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥.

Proof. Let U, V ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥ then from (2.1), we have

gM (∇UV,X) = −gM (JV,∇UJX − (∇UJ)X).

Further, from the Lemma 2.2, we get

gM (∇UV,X) = −gM (JV, TUBX+V∇UBX+H∇UCX+TUCX−PUX−QUX),
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this implies that (kerF∗) is totally umbilical if and only if

TUBX + V∇UBX +H∇UCX + TUCX −PUX −QUX = −X(λ)JU,

where λ is some function on M . Then by straightforward calculations, we obtain

X(λ) = gM (X, TUU)∥U∥−2 and hence

TUJX = −gM (X, TUU)∥U∥−2JU − J∇UX.

Thus, the proof follows form the Theorem 3.10 and Theorem 3.12.

It is well known that if a nearly Käehler manifold M is of constant holo-

morphic sectional curvature c(m) at every point m ∈ M then the Riemannian

curvature tensor of M is of the form [19]

R(X,Y, Z,W ) =
c(m)

4

{
gM (X,W )gM (Y, Z)− gM (X,Z)gM (Y,W )

+gM (X,JW )gM (Y, JZ)− gM (X, JZ)gM (Y, JW )

−2gM (X, JY )gM (Z, JW )
}

+
1

4

{
gM ((∇XJ)W, (∇Y J)Z)− gM ((∇XJ)Z, (∇Y J)W )

−2gM ((∇XJ)Y, (∇ZJ)W )
}
, (3.25)

for any vector fields X,Y, Z,W on M .

Now, we recall following result from [7] for later use.

Theorem 3.27. Let M be a nearly Käehler manifold. Then M has (pointwise)

constant type if and only if there exists a smooth function α on M such that

∥(∇XJ)Y ∥2 = α
{
∥X∥2∥Y ∥2 − gM (X,Y )2 − gM (X, JY )2

}
, (3.26)

for any vector fields X,Y on M . Furthermore, M has global constant type if

and only if (3.26) holds with a constant function α. In this case α is called the

constant type of M .

Theorem 3.28. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold such that

M is with constant holomorphic sectional curvature c and with constant type α.

If the distribution D is integrable and the submersion F is with totally umbilical

fibers then c = α.

Proof. For a nearly Käehler manifold M , it is known that (∇UJ)(JV ) = −J

((∇UJ)V ), for any vector fields U and V on M . Using this fact for U ∈ Γ(D)
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and V ∈ Γ(D⊥) with (3.25), we derive

gM (R(U, ϕU)V, ωV ) = − c

2
gM (U,U)gM (V, V ) +

1

2
∥(∇UJ)V ∥2. (3.27)

From [10], it is known that

gM (R(U, V )W,X) = gM ((∇V T )UW,X)− gM ((∇UT )V W,X), (3.28)

for any U, V,W ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥. Hence, from (3.28), we have

gM (R(U, ϕU)V, ωV ) = gM (∇ϕUTUV − T∇ϕUUV − TU∇ϕUV, ωV )

−gM (∇UTϕUV − T∇UϕUV − TϕU∇UV, ωV ).(3.29)

Since submersion F is with totally umbilical fibers therefore TUV = 0, TϕUV = 0

and using the fact the T is symmetric, (3.29) becomes

gM (R(U, ϕU)V, ωV ) = gM (T[U,ϕU ]V, ωV )− gM (∇UV, TϕUωV )

+gM (∇ϕUV, TUωV ).

Again using the hypothesis that the submersion F is with totally umbilical

fibers therefore TϕUωV = 0 and TUωV = 0, therefore last expression becomes

gM (R(U, ϕU)V, ωV ) = gM ([U, ϕU ], V )gM (H⋆, ωV ), as the distribution D is in-

tegrable, then we obtain

gM (R(U, ϕU)V, ωV ) = 0. (3.30)

Hence from (3.27) and (3.30), we have cgM (U,U)gM (V, V ) = ∥(∇UJ)V ∥2, thus
on using (3.26), proof is complete.

Theorem 3.29. Let F : (M, gM , J) → (B, gB) be a generic Riemannian sub-

mersion from a nearly Käehler manifold onto a Riemannian manifold. Then F

is a harmonic map if and only if

∇eie
⋆
i = ∇e⋆i

ei, (TEjϕEj +H∇EjωEj) ∈ Γ(ωD⊥),

and

(V∇EjϕEj + TEjωEj) ∈ Γ(D),

for {e1, . . . , er, e⋆1, . . . , e⋆r} and {E1, . . . , Ek} orthogonal bases of D and D⊥, re-

spectively.

Proof. It is known that the distribution D is ϕ−invariant therefore take

{e1, . . . , er, e⋆1, . . . , e⋆r} as an orthogonal basis of D, where e⋆i = Jei = ϕei, for

i ∈ {1, . . . , r} and let {E1, . . . , Ek} be an orthogonal basis of D⊥. Moreover,

the second fundamental form ∇F∗ of the Riemannian submersion F satisfies
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(∇F∗)(X,Y ) = 0, for any X,Y ∈ Γ(kerF∗)
⊥. Hence, the tension field τ(F ) of

F is given by

τ(F ) =
r∑

i=1

{
(∇F∗)(ei, ei) + (∇F∗)(e

⋆
i , e

⋆
i )
}
+

k∑
j=1

(∇F∗)(Ej , Ej),

using (3.19), we further derive

τ(F ) =

r∑
i=1

{
F∗(CTeie⋆i + ωV∇eie

⋆
i )− F∗(CTe⋆i ei + ωV∇e⋆i

ei)
}

+

k∑
j=1

F∗(CTEjϕEj + ωV∇EjϕEj + CH∇EjωEj + ωTEjωEj)

=
r∑

i=1

F∗(ωV(∇eie
⋆
i −∇e⋆i

ei)) +
k∑

j=1

F∗(C(TEjϕEj +H∇EjωEj))

+
k∑

j=1

F∗(ω(V∇EjϕEj + TEjωEj)). (3.31)

Thus, the proof is complete.
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