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Abstract

In this work we have considered the Kantowski-Sachs (KS) universe in the

framework of varying speed of light theory. We have presented the general

solution of the gravitational field equations with variable speed of light c(t),

gravitational coupling parameter G(t) and decaying vacuum energy Λ(t) for the

KS model. In the limiting case for the equation of state (EOS) parameter γ = 2

(stiff fluid with p = ρc2) and γ = 1 (dust with p = 0), exact solutions of the field

equations are obtained. The numerical solutions are also presented for both the

cases. Moreover, it is shown that in the limiting case of large time, the mean

anisotropy parameter tends to zero for γ = 2 and γ = 1. Thus the time variation

of the fundamental constants provides an effective mechanism for making the

KS universe isotropic.
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1. Introduction

[1] proposed the large number hypothesis (LNH), motivated by the occur-

rence of large numbers in the universe. However, in this connection an exclusive

review on the LNH can be obtained in the work of [2] for further reading. In-

spired by this theory several scientists [3]−[21] have been intensively investigated

problems on the variable gravitational constant and cosmological constant with

variable cosmological term Λ in the cosmological as well as astrophysical realm.

https://doi.org/10.56424/jts.v13i01.10600
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On the other hand, work has been done on the cosmological models with vari-

able cosmological term within a framework of dissipative thermodynamics as

well as in the case of perfect fluid [22]-[24]. As G couples geometry to matter, it

is reasonable to consider G = G(t) in an evolving universe when one considers

Λ = Λ(t). Many extensions of general relativity with G = G(t) has been made

ever since Dirac first considered the possibility of variable G, though none of

these theories has gained wide acceptance [25]-[32].

The varying speed of light (VSL) cosmology was proposed by [33] as an

alternative to cosmological inflation to provide different basis for resolving the

problems of the standard models. He conjectured that a spontaneous breaking

of the local Lorentz invariance and dimorphism invariance associated with a

first order phase-transition can lead to the variation of the speed of light in the

early universe. This idea was later on considerably revived by [34]-[36]. Barrow

showed that the conception of VSL can lead to the solution of flatness, horizon

and monopole problems if the speed of light falls at an appropriate rate. [37]

widely studied the dynamics of VSL in theoretical as well as empirical context.

It has, in particular, been speculated that VSL offers new paths of solving the

problems of the standard Big Bang cosmology which are distinct from their

resolutions in context of the inflationary paradigm [38] or the pre-Big Bang

scenario of low energy string theory [39]. Moreover, in contrast to the case

of inflationary Universe, VSL may provide an explanation for the relativistic

smallness of the various physical constants today.

In connection to VSL theory [35] introduced a Machian scenario in which

c = c0a
n, where a is the scale factor. This has significant advantages to the

phase-transition scenario in which the speed of light changes suddenly from c−

to c. On the other hand, [34] have investigated possible consequences of a time

variation in the velocity of light in vacuum. The Einstein field equations for FRW

space time in the VSL theory have been solved by [35]-[36] for anisotropic model,

who also obtained the rate of variation of the speed of light required to solve

flatness and cosmological constant problems. Some other work to be mentioned

in this field is as follows: (i) By assuming energy conservation of observed matter,

[40] have solved the flatness cosmological constant problem with varying speed of

light c, gravitational coupling strength G and cosmological parameter Λ, (ii) [41]

have found exact constant solutions for cosmological density parameter using

generalization of general relativity that incorporates a cosmic time variation of

velocity of light in vacuum and Newtonian gravitation constant, and (iii) [23]
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and [42]-[43], studied perfect fluid Bianchi type I model with variable G, c and

Λ.

Besides all the above mentioned major work on VSL theory, it is observed

that some authors [44]-[45] have proposed a new generalization of general rela-

tivity which also allows arbitrary changes in the speed of light c and the gravi-

tational constant G. However, this has been done in such a way that variation

in the speed of light introduces corrections to the curvature tensor in the Ein-

stein equations in the cosmological frame. [44] considered the evolution and

dynamics of Bianchi type I and V Universe and obtained exact solutions of the

gravitational field equations in a small time scale limit.

The purpose of the present paper is to extend the results previously ob-

tained in the framework of the homogeneous and isotropic FRW cosmological

models to the case of anisotropic KS universe. In essence we carried out here an

investigation to highlight specific features of KS Universe which basically repre-

sent dust solutions to the Einstein field equation and are a widely used family

of inhomogeneous cosmological models. Basically, we have generalized the work

of [44] by considering that the constants are functions of the volume scale factor

and obtained the solutions of the field equations under the framework of VSL

theory in the small time limit. The paper is organized as follows: The field

equations for KS model are written down in Sec. 2. In Sec. 3 we have obtained

exact solutions of the field equations for VSL model corresponding to specific

time variation law of constants. In Sec. 4, we conclude our results.

2. The Einstein Field Equations

We consider the KS Universe in the framework of Einstein’s general relativ-

ity. As an additional condition we impose on the physical constants, are some

restrictions as advocated by the LNH and VSL theory. The line element for KS

Universe is given by

ds2 = −c2(t)dt2 + a21(t)dr
2 + a22(dθ

2 + sin2θdϕ2), (1)

where a1, a2 are the scale factors.

The Einstein field equations take the usual form

Rij −
1

2
gijR = −8πG(t)

c4(t)
Tij + Λ(t)gij . (2)
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The energy momentum tensor can be written as

Tij = (p+ ρ c2)uiuj + pgij , (3)

where ui (i = 0, 1, 2, 3) be the four velocity, p and ρ are respectively the fluid

pressure and energy density.

For the KS metric (1), the Einstein field Eq. (2) can be written as

ȧ2
2

a22
+

2ȧ1ȧ2
a1a2

+
c2

a22
= 8πGρ+ Λc2, (4)

2ä2
a2

+
ȧ2

2

a22
− 2ȧ2ċ

a2c
+

c2

a22
= −8πGp

c2
+ Λc2, (5)

ä1
a1

+
ä2
a2

+
ȧ1ȧ2
a1a2

− ȧ2ċ

a2c
− ȧ1ċ

a1c
= −8πGp

c2
+ Λc2. (6)

We assume that the thermodynamic pressure p of the cosmological fluid

obeys a linear equation of state

p = (γ − 1)ρc2(t), (7)

where equation of state parameter γ = constant and 1 ≤ γ ≤ 2.

The conservation equation gives

ρ̇+

(
ȧ1
a1

+
˙2a2
a2

)
γρ = − c2Λ̇

8πG
− Ġ

G
ρ+

2ċ

c
ρ. (8)

We assume that
(
T j
i;j

)
= 0, which leads to the following two equations:

ρ̇+

(
ȧ1
a1

+
˙2a2
a2

)
γρ = 0, (9)

− c2Λ̇

8πG
− Ġ

G
ρ+

2ċ

c
ρ = 0. (10)

For later convenience we introduce the following variables:

V = a1a
2
2, (11)

Hi =
ȧi
ai
, (12)
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H =
1

3
(H1 + 2H2). (13)

We further define

∆Hi = Hi −H, (14)

where i = 1, 2, 3 and H2 = H3 = ȧ2
a2
, the factors V , Hi and H being the

volume scale factor, directional Hubble parameters and mean Hubble parameter

respectively.

We obtain

H =
V̇

3V
. (15)

In addition to this we introduce the physical quantities related to cosmology

as follows:

θ = 3H, (16)

A =
1

3

3∑
i=1

(
∆Hi

H

)2

=
1

3

3∑
i=1

(Hi −H)2

H2
, (17)

σ2 =
1

2
σikσ

ik =
1

2

(
3∑

i=1

H2
i − 3H2

)
=

3AH2

2
, (18)

q = −H−2(Ḣ +H2) =
d

dt

(
1

H

)
− 1, (19)

where θ, A, σ2 and q are the scalar expansion, mean anisotropy parameter, shear

scalar and deceleration parameter respectively.

Note that A = 0 for isotropic expansion. Moreover, the signature of the

deceleration parameter indicates how the Universe expands. In fact the posi-

tive sign corresponds to ‘standard’ deceleration model whereas a negative sign

indicates an accelerating Universe.

3. An Exact Solution for the KS Universe

In this section we find the exact solutions of the field equations.

From Eq. (5) and (6), we get

ȧ2
2

a22
+

ä2
a2

+
c2

a22
− ȧ2ċ

a2c
+

ȧ1ċ

a1c
=

ȧ1ȧ2
a1a2

+
ä1
a1

. (20)
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Adding Eq. (4) and (5) and using Eq. (20) in it, we obtain

1

V

d

dt
(V H1)−

ċ

c
H1 = 4π G

(
ρ− p

c2

)
+ Λc2. (21)

Also adding Eq. (4) and (6) and using Eq. (20), we get

1

V

d

dt
(V H2)−

ċ

c
H2 = 4π G

(
ρ− p

c2

)
+ Λc2 − c2a1

V
. (22)

From Eqs. (21) and (22) with the help of Eq. (12) one can get

3Ḣ +H2
1 + 2H2

2 − 3
ċ

c
H = −4π G

(
ρ+ 3

p

c2

)
+ Λc2. (23)

Again adding Eq. (21) and (22), we get

1

V

d

dt
(V [H1 + 2H2])−

ċ

c
(H1 + 2H2)

= 12π G
(
ρ− p

c2

)
+ 3Λc2 − 2c2a1

V
. (24)

Now using Eq. (13) and (15) in Eq. (24), with (7) we get

V̈ − V̇
ċ

c
= 3ΛV c2 + 12π G(2− γ)ρV − 2a21c

2. (25)

Now we assume that the ‘constants’ G, c and Λ are decreasing functions of

time and to describe their variations we use the following simple phenomeno-

logical law given by [44]

G = G0 +
G1

V α
, Λ = Λ0 +

Λ1

V β
, c = c0 +

c1
V η

. (26)

where G0 > 0, G1 ≥ 0,Λ0 > 0,Λ1 ≥ 0, c0 > 0, c1 > 0, α > 0, β > 0 and η > 0 are

all constants.

For t → 0, V is extremely small, then

G ≈ G1

V α
, Λ ≈ Λ1

V β
, c ≈ c1

V η
. (27)

From the conservation Eq. (9), ρ can be expressed as

ρ = ρ0V
−γ , (28)

where ρ0 is constant of integration.
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After using Eq. (27) and (28) in Eq. (10), we get the consistency conditions

relating the constants α, β, γ, η,G1,Λ1 and c1 as

α− β + γ − 2η = 0, (29)

α− 2η =
−c21Λ1β

8πG1ρ0
. (30)

Hence Eq. (29) and (30), yield

β =

(
1 +

c21Λ1

8πG1ρ0

)−1

. (31)

Now by using Eq. (27) and (28) in Eq. (25), we get

V V̈ + ηV̇ 2 =
3c21Λ1

V 2η+β−2
+

12πG1ρ0(2− γ)

V α+γ−2
− 2a1c

2
1

V 2η − 1
(32)

From Eq. (32), after first integration we get

V̇ 2 = V −2ηF (V ), (33)

where

F (V ) =

(
6c21Λ1

2− β
V 2−β +

24πG1ρ0(2− γ)

2η − α− γ + 2
V (2η−α−γ+2) + C

)
. (34)

where C = −4c21
∫
a1dV + c2 and c2 > 0 is a constant of integration.

From Eqs. (21) and (22) after integration, we get

log[V (H1 −H2)] = logc+ logK, (35)

where K = exp
[∫

c2a1
V (H1−H2)

dt
]
.

We note that [46] considered K =
∫
a1dt in the conventional Einstein’s

theory. In our case the value of K is similar to this value for α = β = η = 0

and c1 = 1.

After simplification Eq. (35) provides

H1 = H +
2

3

Kc

V
, (36)

and

H2 = H − Kc

3V
. (37)
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If we substitute Eqs. (36) and (37) in Eq. (23), then with the help of Eqs.

(29) and (30) we get

c21Λ1β[γ(η + β)− 2η + 2]

(β − 1)(β − 2)V (2η+β−2)
− 2

V 2η

(
a1c

2
1V +

c2
3

)
+

8c21
3V 2η

∫
a1dV +

2

3
K2 = 0. (38)

For α = β = η = c2 = 0 and c1 = 1, the above equation reduces to the

equation of the form

−2a1V +
8

3

∫
a1dV +

2

3

(∫
a1dt

)2

= 0,

as obtained earlier by [46] in the general theory of relativity.

By taking V ≥ 0, as a parameter, we can obtain the general solution for

KS model with physical quantities as follows:

t− t0 =

∫
V η

F (V )1/2
dV, (39)

θ = 3H =
F (V )1/2

V η+1
, (40)

a1 = V 1/3a01 exp

[
2

3
Kc1

∫
dV

V F (V )1/2

]
, (41)

a2 = V 1/3a02 exp

[
−1

3
Kc1

∫
dV

V F (V )1/2

]
, (42)

A =
2K2c21
F (V )

, (43)

σ2 =
K2

1c
2
1

3V 2(η+1)
. (44)

q = 3η + 2 + 3V
2F (V ) ×[

−6Λ1c
2
1V

1−β + 24πG1ρ0(γ − 2)V (2η−α−γ+1) + 4c21a1
]
, (45)

where t0, a01 and a02 are constants of integration.
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3.1. Case I : γ = 2. In this case for extremely small V , Eq. (34) can be written

as

F (V ) =
6c21Λ1

2− β
V 2−β +B1, (46)

where B1 is constant.

Using Eq. (46) in Eq. (33) we get

V̇ 2 = V −2η
(
α0V

2−β +B1

)
, (47)

where α0 =
(
6c21Λ1

2−β

)
, β ̸= 2.

After integrating Eq. (47) with the condition α0V
2−β >> B1 and t0 = 0,

it gives

V ≈ t
2

2η+β =⇒ H ≈ 1

t
. (48)

Hence the scale factors a1 and a2 can be obtained as

ai ≈ t
2

3(2η+β) , (49)

for i = 1, 2.

Using Eqs. (43) and (48) we get

A ≈ t
2(β−2)
(2η+β) , β < 2. (50)

σ2 ≈

(
1

t
4(η+1)
2η+β

)
. (51)

q = 3

(
η +

β

2

)
− 1. (52)

Thus q tends to a constant value. The analogous solutions for extremely

small value of V are discussed by [44] for Bianchi type I model.

3.2. Case II : γ = 1. Using Eq. (34) with Λ1 = 0 for extremely small value of

V , we get

F (V ) = b0V
2η−α+1 +B3, (53)

where b0 =
(

24πG1ρ0
(2η−α+1)

)
and B3= constant.

Hence using Eq. (53) in Eq. (33), we get

V̇ 2 = V −2η
(
b0V

(2η−α+1) +B3

)
. (54)
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After integrating Eq. (54) with the condition b0V
2η−α+1 >> B3 and t0 = 0,

it gives

V ≈ t
2

3−α =⇒ H ≈ 1

t
. (55)

The other variables can be calculated straightforwardly as follows:

ai ≈ t
2

3(3−α) , α ̸= 3, (56)

for i = 1, 2.

A ≈ t
−2(2η+1−α)

(3−α) , α ̸= 3. (57)

σ2 ≈ t
−4(η+1)
(3−α) , α ̸= 3. (58)

q =
3

2
(α− 1) + 2. (59)

The deceleration parameter is always positive when α > −1/3 and negative

when α < −1/3.

4. Conclusion

In this paper we have generalized the work of [44] for KS model in the

framework of VSL theory. We have obtained the solutions for KS model in

a small time limit in which variables G, c and Λ are functions of the volume

scale factor. For extremely small value of V and γ = 2, with the condition

α0V
2−β >> B1, F (V ) ∝ V 2−β with t0 = 0, it is observed that V ∝ t

2
2η+β and

hence, the expansion of the early Universe is of the form of power law of the

expansion. The mean anisotropy will increase for β > 2, and KS space-time

will not end in isotropic state in large time limit. However, for β < 2, the mean

anisotropy tends to 0 in the large time limits, thus the KS type VSL cosmology

is providing an effective mechanism for making the universe isotropic. The

evolution of the anisotropic flat Universe is generally non-inflationary, with the

deceleration parameter q > 0, and tending, for large times, to a constant value

given in the Eq. (52). The deceleration parameter is given by q = 3(η+β/2)−1,

which is always positive when β > (2/3−2η) and negative when β < (2/3−2η).

Similarly, for the case γ = 1 with Λ1 = 0 we have shown that V ∝ t
2

3−α as

t → 0. Hence again the expansion of the early Universe is of the form of power

law expansion. For α > 3, the mean anisotropy will increase for large times

limit and KS space time will not end in an isotropic state, whereas for α < 3,

the mean anisotropy tends to 0, thus the KS type VSL cosmology becomes
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Figure 1. Variation of the mean anisotropy parameter A with

respect to time, for KS model with perfect cosmological fluid for

γ = 2 (green line) and γ = 1 (red line), in the small time limit.

The constants are chosen as: β = 1, c1 = 1, C = 1,Λ1 = 1

Figure 2. Variation of the deceleration parameter q with re-

spect to the time, for stiff fluid γ = 2 (Red line), γ = 1 (blue

line) and in the small V limit. The constants are chosen as:

β = 1, η = 1/2, c1 = 1, C = 1,Λ1 = 1, 8πG1ρ0 = 1, 4c21a1 = 1.

isotropic. Moreover, the deceleration parameter is given by q = 3
2(α − 1) + 2,

which is always positive for α > 1.

The time variation of mean anisotropic parameter A and deceleration pa-

rameter q for KS space-time are plotted with respect to the time as shown in

the Figs. 1 and 2.

It have stated by [47] that the existence of cosmological constant Λ or

variable G is not in conflict with observational determination of the age of the

Universe or with some astrophysical data. The dynamics and evolution of the

Universe is essentially determined by the values of the constants α, β, and η
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describing the time variations of G, c and Λ and which are arbitrary in this

model.

However, we would like to conclude here with a comment that [48] inves-

tigated the possible variation of c in the context of the present accelerating

Universe as discovered through SN Ia observations and showed that variability

of c is not permitted under the variable Λ models. This obviously impose an ob-

servational constraint on the theoretical speculation of VSL theory, however at

the same time allows variation of Λ in terms of dark energy via the background

platform of LNH, as put forward by [1].
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