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Abstract

In this paper, we consider the extended Chaplygin gas equation of state

as a model of dark energy which recovers quadratic barotropic fluids equation

of state. We obtain an analytical expression of the energy density, Hubble

parameter in terms of the scale factor in the framework of Kaluza Klein type

FRW cosmological model.

Keywords: Extended Chaplygin gas, Dark energy.

1. Introduction

It is observed that major portion of the universe is filled with dark matter

and dark energy. Therefore dark energy is one of the important discipline in

theoretical physics and cosmology [1]. The most important question is describ-

ing the nature of dark energy. For searching the best possible solutions of this

problems number of models are proposed during last few decades for example

new exotic forms of matter i.e. quintessence [2], [3]. Another candidate is Ein-

steins cosmological constant which has two crucial problems so called fine tuning

and cosmic coincidence [4]. There are also other interesting models to describe

the dark energy such as k-essence model [5], tachyonic model [6], holographic

models [7], inhomogeneous spacetime [8], [9] and higher dimensional space time.

While the above mentioned alternatives to explain the observed acceleration of
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the current phase have both positive and negative aspects, the one that caught

the attention of large number of workers is the introduction of a Chaplygin type

of gas [10]-[12] as new matter field to stimulate a sort of dark energy.

Kaluza [13] and Klein [14] independently were the first who initiated the

study of unify gravity with electromagnetic interaction an extra dimension.

Kaluza-Klein theory is essentially an extension of Einstein general theory of

relativity in five dimensions which is of much interest in partical physics and

cosmology. Modern discoveries shows that higher dimensional gravity theo-

ries may provide deep insight to understand the interaction of particle and it

plays remarkable role to explain main problem of astrophysics particularly dark

energy. In view of this many authors investigated Kaluza-Klein cosmological

models with different dark energy and dark matter. The original Kaluza-Klein

theory becomes base for other extra dimensional theories in different perspec-

tives like brane models [15], string theory [16] and super gravity [17]. Wanjari

and Khadekar [18], considered the cosmological application in the framework of

Kaluza-Klein theory, by taking the Newtonian and cosmological constant G and

Λ to be a function of t. Therefore, it would be very interesting to develop the

Chaplygin gas model in the Kaluza-Klein universe. Many researchers studied

Chaplygin gas model in the frame work of Kaluza-Klein theory, for example,

Khadekar and Ramtekkar [19] presented Kaluza Klein type FRW cosmological

model of dark energy filled with extended Chaplygin gas and studied the be-

haviour of cosmological parameters for particular and arbitrary values of n,m

and α. Salti [20] describe unified dark matter-energy scenario in the context

of Kaluza-Klein cosmology by investigating cosmological features of the vari-

able Chaplygin gas and shows that, the variable Chaplygin gas evolves from the

dust-like phase to the phantom or the quintessence phases.

Motivated by the above discussion and investigations in Kaluza-Klein cos-

mology we have extended the work obtained earlier by Kahya and Pourhassan

[21] and obtained physical parameter in the framework of Kaluza Klein theory of

gravitation. This paper is organized as follows: In section 2, we introduced our

model and write Modified Chaplygin gas. In section 3, we consider Friedmann-

Robertson-Walker (FRW) universe and obtain field equations. Also we obtained

expression for energy density in terms of scale factor in section 4. Concluding

remarks is given in section 5.



Higher Dimensional Cosmological Model of the Universe Dominated. . . 93

2. Modified Chaplygin Gas

The Chaplygin gas equation of state is given by [22]

pCG = − B

ρCG
, (1)

where B is positive constant, pCG is pressure and ρCG is energy density.

The equation of state for generalized Chaplygin gas (GCG) is given by

pGCG =
B

ρaGCG

(2)

where α and B are free parameters. It is clear that α = 1 reproduces the

pure Chaplygin gas model. This model is called the generalized Chaplygin gas

model. At high energy generalized Chaplygin gas behaves almost like a pressure

less dust whereas at low energy regime it behaves like a dark energy, its pressure

being negative and almost constant. Thus generalized Chaplygin gas smoothly

interpolates between a non relativistic matter dominated phase in the early uni-

verse to a dark energy dominated phase in the late universe. This interesting

property of generalized Chaplygin gas has motivated cosmologists to consider

it as a candidate for dark matter and dark enery models. It is also possible to

study viscosity in generalized Chaplygin gas [23]-[25].

Although the Chaplygin gas models were introduced to explain late time accel-

eration without dark energy, the primordial acceleration which is believed to be

driven by a scalar field, Inflaton, can also be described by the same modified

Chaplygin gas model. Therefore we would like to describe both the primordial

and recent inflationary phase with a scalar field, that we can still call infla-

ton, for which the equation of state is the one that the modified Chaplygin gas

(MCG)obeys. modified Chaplygin gas obeys equation of state of the form [26],

pMCG = AρMCG − B

ραMCG

, (3)

where A, α, and B are parameters of the model. A = 0 recovers generalized

Chaplygin gas equation of state by setting A = 0 together with α = 1 recov-

ers the original Chaplygin gas equation of state. The modified Chaplygin gas

equation of state has two parts, the first term gives an ordinary fluid obeying a

linear barotropic equation of state, while there are some models with quadratic

equation of state [27]

p = ρ0 + ω1ρ+ ω2ρ
2 (4)

where ρ0, ω1 and ω2 are constants. We set ρ0 = ω2 = 0 which recover linear

barotropic equation of state.
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However, it is possible to consider barotropic fluid with quadratic equation of

state or even with higher order equation of state [28], [29]. Therefore, it is

interesting to extend modified Chaplygin gas equation of state which recovers

at least barotropic fluid with quadratic equation of state. This is called extended

Chaplygin gas (ECG), which was first proposed by Pourhassan and Kahya [30].

The equation of state for extended Chaplygin gas is defined as,

pECG = ΣAnρ
n
ECG − B

ρaECG

, (5)

It is obvious that the n = 1 reduced to modified Chaplygin gas. In this paper,

we would focus on the second-order term which recovers quadratic barotropic

equation of state,

pECG = A1ρECG +A2ρ
2
ECG − B

ρaECG

, (6)

where a,A1, A2 and B are free parameters of the model.

3. Field equations and their solutions

The Kaluza-Klein type Friedmann-Robertson-Walker (FRW) model is given

by

ds2 = dt2 − a2[dr2 − r2(dθ2 + sin2θdϕ2) + dΨ2], (7)

where a(t) is the scale factor.

The Einstein field equations given by,

Rµν −
1

2
gµνR = 8πGTµν , (8)

where the energy momentum tensor Tµν is given by

Tµν = (p+ ρ)uµuν − pgµν . (9)

The Einstein field equations for the model (7) with the help of Eq. (9) becomes

H2 =

(
ȧ

a

)2

=
ρECG

6
, (10)

Ḣ =
1

6
(2pECG + ρECG), (11)

where H is the Hubble expansion parameter and a is the scale factor.

The energy conservation equation is as follows,

ρ̇ECG + 4
ȧ

a
(pECG + ρECG) = 0, (12)

here we put 8πG = 1.
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4. Extended Chaplygin Gas Cosmology

Now to simplify the calculations and to reduce the number of free param-

eters of the model and also to obtain an analytical expression of the energy

density, Hubble expansion parameter in terms of the scale factor, we assume

the following conditions,

α = 1,

A1 = A2 − 1, (13)

B = 2A2

So, the Eq. (6) is pure Chaplygin gas plus barotropic fluid equation of state.

While it is a very special case of the extended Chaplygin gas. Having an explicit

expression of the energy density in terms of the cosmological parameter is our

motivation to choose the above condition. Therefore, only free parameter of the

model is A2, and we can solve the conservation Eq.(12) using (6) and (13) we

obtain the following ralation,

lna =
ln(ρ2ECG + 2ρECG + 2)

40A2
− ln(ρECG − 1)

20A2

−3arctan(ρECG + 1)

20A2
+ C (14)

where C is an integration constant. To obtain an analytical solution we use

tan−1(ρECG +1) ≈ π
2 approximation which is exact for ρECG ≤ 1. So, Eq. (14)

can be rewrite as follows:

ρECG = 1 +
2 +

√
5a40A2e3π − 1

a40A2e3π − 1
. (15)

tan−1(ρECG + 1) ≈ π
2 approximation is valid when ρECG ≤ 1 corresponds to

the early universe. However,our solution will be valid at all times and our

approximate solution is very close to the late time behavior with ρECG ≤ 1.

This is due to the fact that tan−1(ρECG +1) ≈ π
4 , for ρECG ≤ 1 therefore small

compared to the logarithm term. Behavior of energy density versus scale factor

is shown in fig. 1 for different values of A2. From fig. 1 it is observed that

energy density increases with increasing value of A2.

Hence, the Hubble parameter can be written as follows

H =

√
1

6
+

2 +
√
5a30A2e3π − 1

6a40A2e3π − 6
(16)
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Figure 1. Energy density versus scale factor for A2 = 0.2 (black

line), A2 = 0.3 (blue line), A2 = 0.5 (red line).
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Figure 2. Scale factor versus time for A2 = 0.2 (red line), A2

= 0.4 (black line), A2 = 0.6 (blue line).

By solving the above equation we get the scale factor in term of time and obtain

the following relation.

t− f(a) + g(a) + C = 0 (17)



Higher Dimensional Cosmological Model of the Universe Dominated. . . 97

where C is an arbitrary integration constant and f(a) and g(a) defined as follows,

f(a) ≡
√
3ln(2

√
−1 + 5a30A2e3π + 1)

15A2
(18)

g(a) ≡ 2
√
3arctan(

√
−1 + 5a30A2e3π)

15A2
. (19)

We remove the second function g(a) as the contribution of it is small as compared

to the logarithm term f(a) and fix the constant C to capture the effect of g(a).

By putting g(a) + C = t0, we obtain the time-dependence scale factor,

a =
e
− 3π

40A2

20
[X(t)2 − 2X(t) + 5]

1
40A2 (20)

where

X(t) ≡ e5
√
2A2(t+t0). (21)

To study the nature of scale factor we have represented it graphically in

Fig. (2). From the figure it is clear that value of scale factor increases with

increasing A2.

The spatial volume of the model is given by [31]

V = a4 =

[
e
− 3π

40A2

20
[X(t)2 − 2X(t) + 5]

1
40A2

]4
(22)

Behavior of volume is represented graphically in Fig. (3).

4.1. Deceleration Parameter

The deceleration parameter is important parameter in cosmology which

describes cosmic dynamics for the late time acceleration. The deceleration pa-

rameter is given by

q = −
(
ȧ

a

)−2 ä

a
= −1− Ḣ

H2
. (23)

The value of q may be negative, positive or zero. q = 1 represents decelerating

universe, q = −1 represents accelerating universe and q = 0 shows expansion of

universe with constant rate.

By using Eqs. (10) and (11) in Eq. (23) we get,

q = −1−

[
2(A2 − 1) + 2A2

(
1 +

2 +
√
5a40A2e3π − 1

a40A2e3π − 1

)]
+
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Figure 3. Volume versus time for A2 = 0.2 (red line), A2 = 0.4

(black line), A2 = 0.6 (blue line).
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Figure 4. Deceleration parameter versus scale factor for A2 =

0.2 (red line), A2 = 0.4 (black line), A2 = 0.6 (blue line).

4A2

[
1 +

2 +
√
5a40A2e3π − 1

a40A2e3π − 1

]−1

. (24)

Behavior of deceleration parameter is represented graphically in Fig. (4). From

the graph it is clear that as the value of A2 increases, the value of deceleration
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parameter increase at reaches to q = −1. Therefore we can say that model

under consideration represents accelerating universe.

5. Discussion and the concluding remarks

In this paper, we have presented FRW cosmological model dominated by

the extended Chaplygin gas at the second order for which it recovers barotropic

fluids with quadratic equation of state. Here, we obtained energy density and

Hubble expansion parameter in terms of scale factor. Also we obtained the

analytical expression for the scale factor in the framework of Kaluza-Klein type

FRW cosmological model. From the expression of scale factor given in Eq. (21)

it is clear that the scale factor is an increasing function of time and the nature

of scale factor have represented graphically in Fig. (2). Numerical analysis for

energy density in terms of scale factor is represented in Fig. 1, from this figure,

we observe that energy density is also a increasing function of time. Behavior of

volume of the universe and deceleration parameter are represented graphically

in Fig. (3) and Fig. (4) respectively. From Fig. 3, it is clear that volume

of the universe is a increasing function of time. Also from Fig. 4, we observe

that as the value of A2 increases, the value of deceleration parameter increase

at reaches to q = −1. Therefore we can say that model under consideration

represents accelerating universe.
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