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Metallic structure on Lagrangian manifold
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In this paper, the author convention with the Lagrange vertical structure on the vertical

space TV (E) endowed with a non null (1,1) tensor field FV satisfying metallic structure
F 2 − αF − βI = 0. The horizontal subspace TH(E) is applied on the same structure.

Next, some theorems are proved and obtained conditions under which the distribution
L and M are ∇-parallel, ∇̄ anti half parallel when ∇ = ∇̄. Lastly, certain theorems on

geodesics on the Lagrange manifold are deduced.
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1. Introduction

Let M and E be two differentiable manifolds of dimension n and 2n respectively

and (E, π,M) be vector bundles with π(E) = M . The local coordinate systems

(x1, x2, ....., xn) about x in M and (y1, y2, ....., yn) about y in E. The induced co-

ordinates in π−1(U) are (xi, yα), 1 ≤ i ≤ n, 1 ≤ α ≤ n 8 where U is a coordinate

neighborhood in M . The canonical basis for tangent space Tu(E) at u ∈ π−1(U) is{
∂

∂xi ,
∂

∂yα

}
or simply {∂i, ∂α} where ∂i =

∂
∂xi etc. If (xh, xα1

) be coordinates of a

point in the interesting region π−1(U) ∩ π−1(U), we can write 15

xi1 = xi1(xi) (1)

yα
1

=
∂xα1

∂xα
yα (2)

and another canonical basis in the intersecting region are given by

∂i1 =
∂xi

∂xi1
∂i (3)

∂α1 =
∂yα

∂yα1 ∂α (4)

9
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The tangent space of E is denoted by T (E) and spanned by {∂i, ∂α} and its sub-

spaces by TV (E) and TH(E) spanned by {∂α} and {∂i} respectively 11. Obviously

dimTV (E) = dimTH(E) = n

Let us suppose that the Riemannian material structure on T (E) is given by

G = gij(x
i, yα)dxi ⊗ dxj + gab(x

i, yα)δyα ⊗ δyb (5)

where gij(x
i, yα) = gij(x

i), gab = 1
2∂a∂b(x

i, yα) and L(xi, yα) the Lagrange func-

tion. We call such a manifold as Lagrangian manifold 4.

If X ∈ T (E), we can write

X = X̄i∂i +Xα∂α (6)

The automorphism P : χ(T (E)) → χ(T (E)) defined by

PX = X̄i∂i +Xα∂α (7)

is a natural almost product structure on T (E) i.e. P 2 = I, I unit tensor field. If v

and h are the projection morphisms of T (E) onto TV (E) and TH(E) respectively,

then

P0h = v0P (8)

2. Metallic Structure

Let TV (E) be the vertical space and there exists a non-null tensor field Fv of type

(1,1) satisfying

F 2
v − αFv − βI = 0 (9)

where α, β are positive integers, we say that TV (E) admits metallic structure 16. In

this case rank (Fv) = r which is constant every where. Let us call Fv as Lagrange

vertical structure on TV (E)

Theorem 1. If Lagrange vertical structure Fv is defined on the vertical space

TV (E), it is possible to define similar structure on the horizontal subspace TH(E)

with the help of the almost product structure of T (E).

Proof: Let us put

Fh = PFvP (10)

then Fh is a tensor field of type (1,1) on TH(E). Also

F 2
h = (PFvP )(PFvP ) = PF 2

vP

as P is an almost product structure on T (E).

Similarly F 3
h = PF 3

vP and so on. Thus, we have by virtue of (9)
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F 2
h − αFh − βI = P (F 2

v − αFv − βI)P = 0 (11)

Thus, Fh gives metallic structure on TH(E).

Theorem 2. If Lagrange vertical structure Fv of rank r be defined on TV (E), the

similar type of structure can be defined on the enveloping space T (E) with the help

of projection morphism of T (E).

Proof: Since Lagrange structure Fv is defined on TV (E), the Lagrange horizontal

structure Fh is induced on TH(E) by theorem (2.1). If v and h are projection

morphisms of TV (E) and TH(E) on T (E), let us put

F = Fvh+ Fvv (12)

As hv = vh = 0 and h2 = h, v2 = v, we have

F 2 = F 2
hh+ F 2

v v

Thus

F 2 − αF − βI = (F 2
h − αFh − βI)h

+ (F 2
v − αFv − βI)v

= 0 (13)

Making use of equations (9) and (11).

Hence

F 2 − αF − βI = 0

Since rank(Fv) = rank(Fh) = r, hence rank(F ) = 2r.

let us define tensor fields l and m of type (1,1) on T (E) with metallic structure

of rank 2r as follows

l =
(F 2 − αF

β

m = I − (F 2 − αF

β
(14)

Then it is easy to show that

l +m = I

l2 = l,m2 = m, lm = ml = 0, (15)

Fl = lF = F, Fm = mF = 0. (16)

This implies that the Hence the operators l and m when applied to the tangent

space are complementary projection operators 3,?,?.
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3. Parallelism of distributions

Let E be 2n-dimensional Lagrangian manifold with metallic structure on T (E) then

there exist complementary distributions L and M corresponding to complementary

projection operators l and m. Let ∇̄ and ∇̃ be defined as follows

∇̄XY = l∇X(lY ) +m∇X(mY ) (17)

and

∇̃XY = l∇lX(lY ) +m∇mX(mY ) + l[mX, lY ] +m[lX,mY ] (18)

It can be shown easily that ∇̄ and ∇̃ are linear connections on E.

Definition 3.1 The distribution L is called∇-parallel if for allX ∈ L, Y ∈ T (E)

the vector field ∇Y X ∈ L.

Definition 3.2 The distribution L will be said ∇-half parallel if for all X ∈
L, Y ∈ T (E), (∆F )(X,Y ) ∈ L where

(∆F )(X,Y ) = F∇XY − F∇Y X −∇FXY +∇Y (FX) (19)

Definition 3.3 The distribution L is called ∇-anti half parallel if for all X ∈ L, Y ∈
T (E), (∆F )(X,Y ) ∈ M 5.

Now we prove the following theorems.

Theorem 3. On the metallic structure manifold, the distribution L and M are ∇̄
as well as ∇̃ parallel.

Proof: Since lm = ml = 0, hence from (17) and (18), we have

m∇̄XY = m∇X(mY )

If Y ∈ L,mY = 0 so m∇̄XY = 0 Therefore ∇̄XY ∈ L. Hence for Y ∈ L,X ∈ T (E)

⇒ ∇̄XY ∈ L. So L is ∇̄-parallel.

Similarly for X ∈ T (E), Y ∈ L

∇̃XY = m∇mX(mY ) +m[lX,mY ] = 0 as mY = 0.

So ∇̃XY ∈ L. Hence L is ∇̃-parallel.

In a similar manner, ∇̄ and ∇̃ parallelism of M can also be proved.

Theorem 4. On the metallic structure manifold, the distribution L and M are

∇-parallel if and only if ∇̄ and ∇̃ are equal.

Proof: If L and M are ∇-parallel then ∀X,Y ∈ T (E),

m∇X(lY ) = 0, l∇X(mY ) = 0.

Therefore, since l +m = I,

∇X(lY ) = l∇X(lY )

and

∇X(mY ) = m∇X(mY )
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So,

∇XY = l∇X(lY ) +m∇X(mY ) = ∇̄XY

Hence ∇ = ∇̄
The converse of the theorem proved easily.

Theorem 5. On the metallic structure manifold, E, the distribution M is ∇̄-anti

half parallel if for all X ∈ M,Y ∈ T (E)

m∇̄Y (FX) = m∇FXmY.

Proof: Since Fm = mF = 0, using the equation (19) for connection∇̄, we have

m(∆F )(X,Y ) = m∇̄Y FX −m∇̄FXY (20)

In view of the equation (17), we have

∇̄FXY = l∇FX(lY ) +m∇FX(mY )

m∇̄FXY = m∇FX(mY ) as lm = 0,m2 = m

m(∆F )(X,Y ) = m∇̄Y FX −m∇̄FXY

As (∆F )(X,Y ) ∈ L so m(∆F )(X,Y ) = 0. Thus

m∇̄Y (FX) = m∇FX(mY ),

which proves the theorem.

4. Geodesics on the Lagrangian manifold

Let γ be a curve in E with tangent T . Then γ is called geodesic with respect to

connection∇ if ∇TT = 0 8.

Theorem 6. A curve γ will be geodesic with respect to connection ∇̄ if the vector

fields ∇TT −∇T (mT ) ∈ M and ∇T (mT ) ∈ L.

Proof: Since γ will be geodesic with respect to connection ∇̄, hence ∇TT = 0. On

making use of the equation (17), the above equation assumes the following form

l∇T (lT ) +m∇T (mT ) = 0.

Since l +m = I we can write the above equation as

l∇T (I −m)T +m∇T (mT ) = 0

or

l∇TT − l∇T (mT ) +m∇T (mT ) = 0

Therefore l(∇TT −∇T (mT )) and m∇T (mT ) = 0.
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Hence ∇TT −∇T (mT ) ∈ M and ∇T (mT ) ∈ L, which proves the theorem.

Theorem 7. The (1,1) tensor field l and m are always covariantly constants with

respect to connection ∇̄.

Proof: ∀X,Y ∈ T (E), we have

(∇̄X l)(Y ) = ∇̄X(lY )− l∇̄XY. (21)

Making use of equation (17), we get

(∇̄X l)(Y ) = l∇X(l2Y ) +m∇X(mlY )− l {l∇X lY +m∇XmY )}

Since l2 = l,m2 = m, lm = ml = 0, we get

(∇̄X l)(Y ) = l∇X(lY )− l∇X lY = 0.

So, l is covariantly constant. The fact that m is covariantly constant can be proved

analogously.
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