Journal of The Tensor Society (J.T.S.) Vol. 14 (2020), page 09 - 18. https://doi.org/10.56424/jts.v14i01.10610

Metallic structure on Lagrangian manifold

Geeta Verma

 $\label{eq:continuous} Department of Mathematics \\ Shri Ramswaroop memorial group of professional colleges, \\ Lucknow, India. \\ Email: geeta_verma153@rediffmail.com$

Received March 20, 2021 Accepted June 12, 2021 Published August 16, 2021

In this paper, the author convention with the Lagrange vertical structure on the vertical space $T_V(E)$ endowed with a non null (1,1) tensor field F_V satisfying metallic structure $F^2 - \alpha F - \beta I = 0$. The horizontal subspace $T_H(E)$ is applied on the same structure. Next, some theorems are proved and obtained conditions under which the distribution L and M are ∇ -parallel, $\bar{\nabla}$ anti half parallel when $\nabla = \bar{\nabla}$. Lastly, certain theorems on geodesics on the Lagrange manifold are deduced.

Keywords: Metallic structure; Lagrangian manifold; vertical space.

1. Introduction

Let M and E be two differentiable manifolds of dimension n and 2n respectively and (E, π, M) be vector bundles with $\pi(E) = M$. The local coordinate systems $(x^1, x^2,, x^n)$ about x in M and $(y^1, y^2,, y^n)$ about y in E. The induced coordinates in $\pi^{-1}(U)$ are $(x^i, y^\alpha), 1 \le i \le n, 1 \le \alpha \le n$ where U is a coordinate neighborhood in M. The canonical basis for tangent space $T_u(E)$ at $u \in \pi^{-1}(U)$ is $\left\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^\alpha}\right\}$ or simply $\{\partial_i, \partial_\alpha\}$ where $\partial_i = \frac{\partial}{\partial x^i}$ etc. If (x^h, x^{α^1}) be coordinates of a point in the interesting region $\pi^{-1}(U) \cap \pi^{-1}(U)$, we can write 15

$$x^{i^1} = x^{i^1}(x^i) (1)$$

$$y^{\alpha^1} = \frac{\partial x^{\alpha^1}}{\partial x^{\alpha}} y^{\alpha} \tag{2}$$

and another canonical basis in the intersecting region are given by

$$\partial_{i^1} = \frac{\partial x^i}{\partial x^{i^1}} \partial_i \tag{3}$$

$$\partial_{\alpha^1} = \frac{\partial y^{\alpha}}{\partial y^{\alpha^1}} \partial_{\alpha} \tag{4}$$

The tangent space of E is denoted by T(E) and spanned by $\{\partial_i, \partial_\alpha\}$ and its subspaces by $T_V(E)$ and $T_H(E)$ spanned by $\{\partial_\alpha\}$ and $\{\partial_i\}$ respectively ¹¹. Obviously

$$dim T_V(E) = dim T_H(E) = n$$

Let us suppose that the Riemannian material structure on T(E) is given by

$$G = g_{ij}(x^i, y^\alpha) dx^i \otimes dx^j + g_{ab}(x^i, y^\alpha) \delta y^\alpha \otimes \delta y^b$$
 (5)

where $g_{ij}(x^i, y^{\alpha}) = g_{ij}(x^i)$, $g_{ab} = \frac{1}{2}\partial_a\partial_b(x^i, y^{\alpha})$ and $L(x^i, y^{\alpha})$ the Lagrange function. We call such a manifold as Lagrangian manifold ⁴.

If $X \in T(E)$, we can write

$$X = \bar{X}^i \partial_i + X^\alpha \partial_\alpha \tag{6}$$

The automorphism $P: \chi(T(E)) \to \chi(T(E))$ defined by

$$PX = \bar{X}^i \partial_i + X^\alpha \partial_\alpha \tag{7}$$

is a natural almost product structure on T(E) i.e. $P^2 = I, I$ unit tensor field. If v and h are the projection morphisms of T(E) onto $T_V(E)$ and $T_H(E)$ respectively, then

$$P_0 h = v_0 P \tag{8}$$

2. Metallic Structure

Let $T_V(E)$ be the vertical space and there exists a non-null tensor field F_v of type (1,1) satisfying

$$F_v^2 - \alpha F_v - \beta I = 0 \tag{9}$$

where α, β are positive integers, we say that $T_V(E)$ admits metallic structure ¹⁶. In this case rank $(F_v) = r$ which is constant every where. Let us call F_v as Lagrange vertical structure on $T_V(E)$

Theorem 1. If Lagrange vertical structure F_v is defined on the vertical space $T_V(E)$, it is possible to define similar structure on the horizontal subspace $T_H(E)$ with the help of the almost product structure of T(E).

Proof: Let us put

$$F_h = PF_v P \tag{10}$$

then F_h is a tensor field of type (1,1) on $T_H(E)$. Also

$$F_h^2 = (PF_vP)(PF_vP) = PF_v^2P$$

as P is an almost product structure on T(E).

Similarly $F_h^3 = PF_v^3 P$ and so on. Thus, we have by virtue of (9)

$$F_h^2 - \alpha F_h - \beta I = P(F_v^2 - \alpha F_v - \beta I)P = 0 \tag{11}$$

Thus, F_h gives metallic structure on $T_H(E)$.

Theorem 2. If Lagrange vertical structure F_v of rank r be defined on $T_V(E)$, the similar type of structure can be defined on the enveloping space T(E) with the help of projection morphism of T(E).

Proof: Since Lagrange structure F_v is defined on $T_V(E)$, the Lagrange horizontal structure F_h is induced on $T_H(E)$ by theorem (2.1). If v and h are projection morphisms of $T_V(E)$ and $T_H(E)$ on T(E), let us put

$$F = F_v h + F_v v \tag{12}$$

As hv = vh = 0 and $h^2 = h, v^2 = v$, we have

$$F^2 = F_h^2 h + F_v^2 v$$

Thus

$$F^{2} - \alpha F - \beta I = (F_{h}^{2} - \alpha F_{h} - \beta I)h$$

$$+ (F_{v}^{2} - \alpha F_{v} - \beta I)v$$

$$= 0$$

$$(13)$$

Making use of equations (9) and (11).

Hence

$$F^2 - \alpha F - \beta I = 0$$

Since $rank(F_v) = rank(F_h) = r$, hence rank(F) = 2r.

let us define tensor fields l and m of type (1,1) on T(E) with metallic structure of rank 2r as follows

$$l = \frac{(F^2 - \alpha F)}{\beta}$$

$$m = I - \frac{(F^2 - \alpha F)}{\beta}$$
(14)

Then it is easy to show that

$$l + m = I$$

 $l^2 = l, m^2 = m, lm = ml = 0,$ (15)

$$Fl = lF = F, Fm = mF = 0. (16)$$

This implies that the Hence the operators l and m when applied to the tangent space are complementary projection operators $^{3,?,?}$.

3. Parallelism of distributions

Let E be 2n-dimensional Lagrangian manifold with metallic structure on T(E) then there exist complementary distributions L and M corresponding to complementary projection operators l and m. Let $\bar{\nabla}$ and $\tilde{\nabla}$ be defined as follows

$$\bar{\nabla}_X Y = l \nabla_X (lY) + m \nabla_X (mY) \tag{17}$$

and

$$\tilde{\nabla}_X Y = l \nabla_{lX}(lY) + m \nabla_{mX}(mY) + l[mX, lY] + m[lX, mY]$$
(18)

It can be shown easily that $\bar{\nabla}$ and $\tilde{\nabla}$ are linear connections on E.

Definition 3.1 The distribution L is called ∇ -parallel if for all $X \in L, Y \in T(E)$ the vector field $\nabla_Y X \in L$.

Definition 3.2 The distribution L will be said ∇ -half parallel if for all $X \in L, Y \in T(E), (\Delta F)(X, Y) \in L$ where

$$(\Delta F)(X,Y) = F\nabla_X Y - F\nabla_Y X - \nabla_{FX} Y + \nabla_Y (FX) \tag{19}$$

Definition 3.3 The distribution L is called ∇ -anti half parallel if for all $X \in L, Y \in T(E), (\Delta F)(X, Y) \in M^{-5}$.

Now we prove the following theorems.

Theorem 3. On the metallic structure manifold, the distribution L and M are $\bar{\nabla}$ as well as $\tilde{\nabla}$ parallel.

Proof: Since lm = ml = 0, hence from (17) and (18), we have

$$m\bar{\nabla}_X Y = m\nabla_X (mY)$$

If $Y \in L, mY = 0$ so $m\bar{\nabla}_X Y = 0$ Therefore $\bar{\nabla}_X Y \in L$. Hence for $Y \in L, X \in T(E)$ $\Rightarrow \bar{\nabla}_X Y \in L$. So L is $\bar{\nabla}$ -parallel.

Similarly for $X \in T(E), Y \in L$

$$\tilde{\nabla}_X Y = m \nabla_{mX}(mY) + m[lX, mY] = 0$$
 as $mY = 0$.

So $\tilde{\nabla}_X Y \in L$. Hence L is $\tilde{\nabla}$ -parallel.

In a similar manner, $\bar{\nabla}$ and $\tilde{\nabla}$ parallelism of M can also be proved.

Theorem 4. On the metallic structure manifold, the distribution L and M are ∇ -parallel if and only if $\bar{\nabla}$ and $\tilde{\nabla}$ are equal.

Proof: If L and M are ∇ -parallel then $\forall X, Y \in T(E)$,

$$m\nabla_X(lY) = 0, l\nabla_X(mY) = 0.$$

Therefore, since l + m = I,

$$\nabla_X(lY) = l\nabla_X(lY)$$

and

$$\nabla_X(mY) = m\nabla_X(mY)$$

So,

$$\nabla_X Y = l \nabla_X (lY) + m \nabla_X (mY) = \bar{\nabla}_X Y$$

Hence $\nabla = \bar{\nabla}$

The converse of the theorem proved easily.

Theorem 5. On the metallic structure manifold, E, the distribution M is $\bar{\nabla}$ -anti half parallel if for all $X \in M, Y \in T(E)$

$$m\bar{\nabla}_Y(FX) = m\nabla_{FX}mY.$$

Proof: Since Fm = mF = 0, using the equation (19) for connection $\overline{\nabla}$, we have

$$m(\Delta F)(X,Y) = m\bar{\nabla}_Y FX - m\bar{\nabla}_{FX}Y \tag{20}$$

In view of the equation (17), we have

$$\bar{\nabla}_{FX}Y = l\nabla_{FX}(lY) + m\nabla_{FX}(mY)$$

 $m\bar{\nabla}_{FX}Y=m\nabla_{FX}(mY)$ as $lm=0,m^2=m$

$$m(\Delta F)(X,Y) = m\bar{\nabla}_Y FX - m\bar{\nabla}_{FX} Y$$

As $(\Delta F)(X,Y) \in L$ so $m(\Delta F)(X,Y) = 0$. Thus

$$m\bar{\nabla}_Y(FX) = m\nabla_{FX}(mY),$$

which proves the theorem.

4. Geodesics on the Lagrangian manifold

Let γ be a curve in E with tangent T. Then γ is called geodesic with respect to connection ∇ if $\nabla_T T = 0^8$.

Theorem 6. A curve γ will be geodesic with respect to connection $\bar{\nabla}$ if the vector fields $\nabla_T T - \nabla_T (mT) \in M$ and $\nabla_T (mT) \in L$.

Proof: Since γ will be geodesic with respect to connection $\bar{\nabla}$, hence $\nabla_T T = 0$. On making use of the equation (17), the above equation assumes the following form

$$l\nabla_T(lT) + m\nabla_T(mT) = 0.$$

Since l + m = I we can write the above equation as

$$l\nabla_T(I-m)T + m\nabla_T(mT) = 0$$

or

$$l\nabla_T T - l\nabla_T (mT) + m\nabla_T (mT) = 0$$

Therefore $l(\nabla_T T - \nabla_T (mT))$ and $m\nabla_T (mT) = 0$.

Hence $\nabla_T T - \nabla_T (mT) \in M$ and $\nabla_T (mT) \in L$, which proves the theorem.

Theorem 7. The (1,1) tensor field l and m are always covariantly constants with respect to connection $\bar{\nabla}$.

Proof: $\forall X, Y \in T(E)$, we have

$$(\bar{\nabla}_X l)(Y) = \bar{\nabla}_X (lY) - l\bar{\nabla}_X Y. \tag{21}$$

Making use of equation (17), we get

$$(\bar{\nabla}_X l)(Y) = l\nabla_X (l^2 Y) + m\nabla_X (mlY) - l\left\{l\nabla_X lY + m\nabla_X mY\right\}$$

Since $l^2 = l, m^2 = m, lm = ml = 0$, we get

$$(\bar{\nabla}_X l)(Y) = l\nabla_X (lY) - l\nabla_X lY = 0.$$

So, l is covariantly constant. The fact that m is covariantly constant can be proved analogously.

References

- Ayhan, I., Geodesics on the tangent sphere bundle of 3-sphere, International Electronic Journal of Geometry, 6 (2), 100-109 (2013).
- Ayhan, I., L-dual lifted tensor fields between the tangent and cotangent bundles of a Lagrange manifold, International Journal of Physical and Mathematical Sciences, 4(1), 86–93 (2013).
- 3. Khan, M. N. I., Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold, Chaos, Solitons & Fractals, 146(3), online 2 April 2021. https://doi.org/10.1016/j.chaos.2021.110872.
- 4. Nikic, J., Distribution's parallelism and geodesics in the $F(3,\epsilon)$ -structure Lagrangian manifold. Novi Sad J. Math. 27(2), 117-125 (1997).
- 5. Nikic, J., Comic, I, The Recurrent and Metric Connection and f-structures in Gauge Spaces of Second Order, FACTA UNIVERSITATIS Series: Mechanics, Automatic Control and Robotics, 5(1), 91-98 (2006).
- Goldberg, S. I. and Yano, K., Polynomial structures on manifolds, Kodai Math Sem Rep., 22, 199-218 (1970).
- 7. Yano, K., On a structure defined by a tensor field f of type (1,1) satisfying $F^3 + f = 0$. Tensor N. S. 14, 99-109 (1963).
- Yano, K. and Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 1973.
- 9. Das, Lovejoy, Nivas, R and Khan, M. N. I. and , On submanifolds of codimension 2 immersed in a Hsu–quarternion manifold, Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series, 25(1), 129-135 (2009).
- 10. Khan, M. N. I. and Das, Lovejoy, Parallelism of distributions and geodesics on $F(\pm a^2, \pm b^2)$ -structure Lagrangian manifold, Facta Universitatis, Series: Mathematics and Informatics, 36(1), 165-163 (2021).
- Das, Lovejoy, Fiberings on almost r-contact manifolds. Publications Mathematicae, Debrecen, Hongrie. 43(1-2), 1-7 (1993).

- 12. Das, Lovejoy, On CR-structure and F-structure satisfying $F^K + (-)^{K+1}F = 0$,. Rocky Mountain Journal of Mathematics. 36(3), 885-892 (2006).
- 13. Khan, M. N. I., Tangent bundle endowed with quarter-symmetric non-metric connection on an almost Hermitian manifold, Facta Universitatis, Series: Mathematics and Informatics, 35(1), 167-178 (2020).
- 14. Miron, R., Hrimiuc, H., Shimada, H., and Sabau, V. S., The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic, New York, NY, USA, 2001.
- 15. Nagy, P. T., Geodesics on the tangent sphere bundle of a Riemann manifold, Geometriae, Dedicata 7, 233-243 (1978).
- 16. Khan, M. N. I., Complete and horizontal lifts of Metallic structures, International Journal of Mathematics and Computer Science, 15(4), 983–992 (2020).
- 17. Khan, M. N. I., On generalized Ricci-Recurrent Lorentzian Para-Sasakian manifold, Proceeding of National Academy of Sciences, 75(II), 147-148 (2005).
- 18. Helgason, S., Differential geometry, Lie groups and symmetric spaces, Academic Press, New York (1978).
- 19. Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics. Springer, Berlin (2010).
- 20. Polyakor, N. D., Differential Geometry of f-structure manifolds, Journal of Soviet Mathematics, 29, 1571-1592 (1985).
- 21. Sasaki, S., Geodesic on the tangent sphere bundles over space forms. J. Reine Angew. Math. 288, 106-120 (1976).