J. T. S. Vol. 5 (2011), pp.41-47 https://doi.org/10.56424/jts.v5i01.10443 Subspaces of the Generalized Lagrange Space with the Metric

$$g_{ij}(x,y) = \gamma_{ij}(x) + \left(1 - rac{1}{\eta^2(x)}
ight) y_i y_j$$

H. S. Shukla and S. K. Mishra

Department of Mathematics & Statistics DDU Gorakhpur University,Gorakhpur, India E-mail : profhsshuklagkp@rediffmail.com, kumarsandip62@yahoo.com (Received : 10 October, 2009)

1. Introduction

R. Miron and M. Anastesiei [4] have developed theory of subspaces of generalized Lagrange spaces to a large extent in their monograph "Vector bundles and Lagrange spaces, application in relativity". In 1989 T. Kawaguchi and R. Miron [3] gave a class of generalized Lagrange space $M^n = (M, g_{ij}(x, y))$ where

$$g_{ij}(x,y) = \gamma_{ij}(x) + \frac{1}{c^2} y_i y_j,$$

 $\gamma_{ij}(x)$ being a Riemannian metric on the *n*-dimensional differentiable manifold M and $y_i = \gamma_{ij}(x) y^j$. J. L. Synge [7], M. C. Chaki and B. Barua [2] used the metric

$$g_{ij}(x,v(x)) = \gamma_{ij}(x) + \left(1 - \frac{1}{\eta^2(x,v(x))}\right) v_i v_j,$$

which occurs in the study of relativistic optics [6]. In this case (x) is a generic point, v(x) is the velocity vector of the point and $\eta(x, v(x))$ is the refractive index of the optical medium. If, in particular $\eta(x, v(x)) = 1$, the medium is transparent. Also, if the refractive index is independent of velocity, i.e. if $\eta = \eta(x)$ then the optical medium is called non dispersive.

In this paper we use the metric $g_{ij}(x,y) = \gamma_{ij}(x) + \left(1 - \frac{1}{\eta^2(x)}\right) y_i y_j$ and we denote the generalized Lagrange space with this metric as GL^n . The purpose of the present paper is to discuss the properties of subspace of GL^n . H. S. Shukla and S. K. Mishra

2. Generalized Lagrange space GL^n

Let M be a n-dimensional differentiable manifold, (TM, π, M) its tangent bundle and (x^i, y^i) $(i, j, ... = 1, 2, 3, ..., n = \dim M)$ the canonical coordinates of the points $u \in TM$, $\pi(u) = x$ in a coordinate neighbourhood $\pi^{-1}(U)$, where Uis a coordinate neighbourhood of M at x i. e. $x \in U \subset M$. One can consider a Riemannian metric $\gamma_{ij}(x)$ on M and the Riemannian space $V^n = (M, \gamma_{ij}(x))$.

The Liouville vector field $y = y^i \frac{\partial}{\partial y^i}$ is globally defined on the total space TM. Thus the covector field

 $(2.1) \qquad y^i = \gamma_{ij}(x) \, y^j$

is globally defined on TM, and also the square of the norm of y and the functions a_{σ} is defined respectively by

(2.2)
$$||y||^2 = \gamma_{ij}(x)y^i y^j,$$

(2.3)
$$a_{\sigma}(x,y) = 1 + \sigma \left[1 - \frac{1}{\eta^2(x)}\right] ||y||^2, \sigma \in N \text{ (the set of natural numbers).}$$

On TM we can consider the d-tensor field

(2.4)
$$g_{ij}(x,y) = \gamma_{ij}(x) + \left(1 - \frac{1}{\eta^2(x)}\right) y_i y_j.$$

The reciprocal of tensor field $g^{ij}(x,y)$ is given by

(2.5)
$$g^{ij}(x,y) = \gamma^{ij}(x) - \frac{1}{a_1(x,y)} \left(1 - \frac{1}{\eta^2(x)}\right) y^i y^j.$$

The d-tensor field C_{jhk} is defined by

$$C_{jhk} = g_{hr} C_{jk}^r = \frac{1}{2} \left(\frac{\partial g_{jh}}{\partial y^k} + \frac{\partial g_{kh}}{\partial y^j} - \frac{\partial g_{jk}}{\partial y^h} \right).$$

Using (2.4) we get

$$C_{jhk} = \left(1 - \frac{1}{\eta^2(x)}\right) \gamma_{jk} y_h.$$

Then from (2.5) we get

42

Subspaces of the Generalized Lagrange Space with the Metric....

(2.6)
$$C_{jk}^{i} = \frac{1}{a_1} \left(1 - \frac{1}{\eta^2(x)} \right) \gamma_{jk} y^{i}$$

The non-linear connection of the space GL^n is given by [3]

(2.7)
$$N_j^i(x,y) = \{j^i_k\} y^k$$

where $\{j^i_k\}$ is the Christoffel symbol of the Riemannian space V^n constructed from $\gamma_{ij}(x)$. The canonical metrical connection L^i_{jk} of the space GL^n is defined by

$$L_{jk}^{i} = \frac{1}{2}g^{ih}\left(\frac{\delta g_{jh}}{\delta x^{k}} + \frac{\delta g_{kh}}{\delta x^{j}} - \frac{\delta g_{jk}}{\delta x^{h}}\right)$$

where $\frac{\delta}{\delta x^i} = \frac{\partial}{\partial x^i} - N_i^j \frac{\partial}{\partial y^j}$. Using equations (2.4) and (2.7) we get $L_{jk}^i = \{()_j {}^i{}_k\}$.

3. Subspace of generalized Lagrange space

Let \overline{M} be a differentiable manifold of dimension $m, 1 \leq m < n$ immersed in the *n*-dimensional manifold M by the immersion $i : \overline{M} \to M$. Locally the immersion *i* can be given in the form

(3.1)
$$x^{i} = x^{i} (u^{1}, u^{2}, u^{3}, \dots, u^{m}), \quad \operatorname{rank} \left\| \frac{\partial x^{i}}{\partial u^{\alpha}} \right\| = m$$

Throughout this paper the indices i, j, k, ... take the values 1, 2, 3, ..., n and the indices $\alpha, \beta, \gamma, ...$ take the values 1, 2, 3, ..., m.

In this case when i is embedding, we shall identify \overline{M} with $i(\overline{M})$ and we shall say that \overline{M} is a submanifold of the manifold M. The equations (3.1) will be called the parametric equations of the submanifold \overline{M} of M.

The derivatives

(3.2)
$$B^i_{\alpha}(u) = \frac{\partial x^i}{\partial u^{\alpha}}, \ (\alpha = 1, 2, 3, ..., m),$$

determine m local vector field on \overline{M} . The immersion $i: \overline{M} \to M$ induces an immersion $i^*: T\overline{M} \to M$. The point $(u, v) \in T\overline{M}$ is applied by i^* in the point (x(u), y(u)). We have

$$(3.3) y^i = B^i_\alpha(u) v^\alpha,$$

and we put

H. S. Shukla and S. K. Mishra

(3.4)
$$B^{i}_{\alpha\beta}(u) = \frac{\partial^2 x^i}{\partial u^{\alpha} \partial u^{\beta}}, \qquad B^{i}_{0\beta}(u) = v^{\alpha} B^{i}_{\alpha\beta}.$$

The generalized Lagrange metric $g_{ij}(x, y)$ of GL^n induces a metric on $T\overline{M}$: a symmetric and positively defined d-tensor field $g_{\alpha\beta}$ is given by

(3.5)
$$g_{\alpha\beta} = g_{ij}(x(u), y(u)) B^i_{\alpha}(u) B^j_{\beta}(u)$$

The pair $G\overline{L}^m = (\overline{M}, g_{\alpha\beta}(u, v))$ is called the generalized Lagrange subspace of the generalized Lagrange space GL^n . We have a set of n-m unit normal vectors B_{λ} to the subspace $G\bar{L}^m$ defined by

(3.6)(a)
$$g_{ij}B^i_{\lambda}B^j_{\mu} = \delta_{\lambda\mu}$$
, (b) $g_{ij}B^i_{\alpha}B^j_{\lambda} = 0$, $\lambda, \mu = 1, 2, 3, ..., (n-m)$.

The inverse of the matrix of $||B^i_{\alpha}(u) - B^i_{\lambda}(u,v)||$ will be denoted by $||B^{\alpha}_i(u,v)||$ $B_i^{\lambda}(u,v)$. Thus we have

(3.7)
$$B_i^{\alpha} B_{\beta}^i = \delta_{\beta}^{\alpha}, \quad B_i^{\lambda} B_{\alpha}^i = 0, \quad B_i^{\alpha} B_{\lambda}^i = 0$$

$$B_i^{\lambda} B_{\mu}^i = \delta_{\mu}^{\lambda} \text{ and } B_{\alpha}^i B_j^{\alpha} + B_{\lambda}^i B_j^{\lambda} = \delta_j^i.$$

From (3.5) and (3.6) we deduce

(3.8)
$$g_{\alpha\beta}B_i^{\alpha} = g_{ij}B_{\beta}^j, \qquad \delta_{\lambda\mu}B_i^{\mu} = g_{ij}B_{\lambda}^j.$$

The non-linear connection $\underline{N}(\underline{N}^{\alpha}_{\beta}(u,v))$ on $T\overline{M}$ induced by the non-linear connection $N(N_j^i(x, y))$ is given by [4]

(3.9)
$$\underline{N}^{\alpha}_{\beta}(u,v) = B^{\alpha}_{i}(u,v) \{ B^{i}_{0\beta}(u,v) + N^{i}_{j}(x(u),y(u,v)) B^{j}_{\beta}(u) \}$$

Let $N(N_j^i)$ and $\underline{N}(\underline{N}_{\beta}^{\alpha})$ be non-linear connections on TM and $T\overline{M}$ respectively, then the connection $\underline{D}\Gamma(\underline{N}) = (L^{\alpha}_{\beta\gamma}(u,v), C^{\alpha}_{\beta\gamma}(u,v))$ induced by the metrical d-connection $D\Gamma(N) = (L^i_{jk}(x,y), C^i_{jk}(x,y))$ is given by [4]

$$\begin{array}{ll} (3.10)(\mathrm{a}) & \quad L^{\alpha}_{\beta\gamma} = B^{\alpha}_{i}(B^{i}_{\beta\gamma} + B^{j}_{\beta}L^{i}_{j\gamma}), \\ (\mathrm{b}) & \quad C^{\alpha}_{\beta\gamma} = B^{\alpha}_{i}B^{j}_{\beta}C^{i}_{j\gamma}, \end{array}$$

where

(3.11)(a)
$$L^{i}_{j\alpha} = B^{k}_{\alpha}L^{i}_{jk} + H^{\lambda}_{\alpha}B^{k}_{\lambda}C^{i}_{jk},$$

(b)
$$C^{i}_{j\alpha} = B^{k}_{\alpha}C^{i}_{jk},$$

(c)
$$H^{\lambda} = B^{\lambda}(B^{i} + N^{i}B^{j})$$

(b)
$$C_{j\alpha}^i = B_{\alpha}^k C_{jk}^i$$

(c)
$$H^{\lambda}_{\alpha} = B^{\lambda}_i (B^i_{0\alpha} + N^i_j B^j_{\alpha}).$$

44

Hence $H^{\lambda}_{\alpha}(u, v)$ are components of a mixed *d*-tensor field which has been called first fundamental *h*-tensor in the case of Finsler space [4].

The induced canonical metrical d-connection $\underline{D}\Gamma(\underline{N})$ of $G\overline{L}^m$ has the following properties:

$$(3.12)(a) \qquad g_{\alpha\beta|\gamma} = 0, \quad g_{\alpha\beta}|_{\gamma} = 0$$

$$(b) \qquad v^{\alpha}{}_{|\beta} = 0, \quad ||v||^{2}{}_{|\beta} = 0, \quad ||v||^{2}{}_{|\beta} = 2v_{\beta},$$

$$(c) \qquad \gamma_{\alpha\beta|\gamma} = 0, \quad \gamma_{\alpha\beta}|_{\gamma} = -\frac{1}{a_{1}}\left(1 - \frac{1}{\eta^{2}(x)}\right)\left(\gamma_{\alpha\beta}v_{\gamma} + \gamma_{\beta\gamma}v_{\alpha}\right),$$

$$(d) \qquad D^{\alpha}_{\beta} = N^{\alpha}_{\beta} - L^{\alpha}_{\beta\gamma}v^{\gamma} = 0, \quad v^{\alpha}|_{\beta} = \delta^{\alpha}_{\beta} - \frac{1}{a_{1}}\left(1 - \frac{1}{\eta^{2}(x)}\right)v^{\alpha}v_{\beta},$$

$$(e) \qquad C^{\alpha}_{\beta\gamma|\delta} = 0, \quad C^{\alpha}_{\beta\gamma}|_{\delta} = \frac{1}{a_{1}}\left(1 - \frac{1}{\eta^{2}(x)}\right)\left\{\delta^{\alpha}_{\delta}\gamma_{\beta\gamma} - \frac{v^{\alpha}}{a_{1}}\left(1 - \frac{1}{\eta^{2}(x)}\right)\left(\gamma_{\beta\delta}v_{\gamma} + \gamma_{\gamma\delta}v_{\beta} - \gamma_{\beta\gamma}v_{\delta}\right)\right\}$$

The h- and v-covariant derivatives of B^i_{α} are given by

$$B^{i}_{\alpha|\beta} = H^{\lambda}_{\alpha\beta}B^{i}_{\lambda}, \qquad B^{i}_{\alpha}\Big|_{\beta} = K^{\lambda}_{\alpha\beta}B^{i}_{\lambda},$$

where

(3.13)(a)
$$\begin{aligned} H^{\lambda}_{\alpha\beta} &= B^{\lambda}_{i} \left(B^{i}_{\alpha\beta} + B^{j}_{\alpha} L^{i}_{j\beta} \right), \\ \text{(b)} &\quad K^{\lambda}_{\alpha\beta} &= B^{\lambda}_{i} B^{j}_{\alpha} C^{i}_{j\beta} \right). \end{aligned}$$

The quantities $H^{\lambda}_{\alpha\beta}$ and $K^{\lambda}_{\alpha\beta}$ are components of mixed tensor fields. These tensor fields have been called the second fundamental h-and v-tensor fields respectively in the case of Finsler space [4].

4. Subspace of GLn with metric $g_{ij}(x,y) = \gamma_{ij}(x) + \left(1 - \frac{1}{\eta^2(x)}\right) y_i y_j$

Consider a Riemannian subspace V^m of Riemannian space $V^n = (M, \gamma_{ij}(x))$ and subspace $G\overline{L}^m$ of the generalized Lagrange space $GL^n = (M, g_{ij}(x, y))$ given by (2.4). Let n^i_{λ} be the set of (n-m) unit normal vectors to the subspace V^m of V^n defined by

(4.1)
$$\gamma_{ij} n^i_{\lambda} n^j_{\mu} = \delta_{\lambda\mu}, \quad \gamma_{ij} B^i_{\alpha} n^j_{\lambda} = 0, \quad \lambda, \mu = 1, 2, 3, ..., (n-m) \text{ and let}$$

 $(B^{\alpha}_i n^{\lambda}_i)$ be the inverse matrix of $(B^i_{\alpha} n^i_{\lambda})$.

The functions B^i_{α} may be regarded as components of *m* linearly independent tangent vectors of both the subspaces V^m and $G\overline{L}^m$. In view of equation (3.3) and (4.1), we have

$$(4.2) y_i n_{\lambda}^i = 0.$$

Thus the equations (2.4) and (4.1) give

(4.3)
$$g_{ij} n^i_{\lambda} n^j_{\mu} = \delta_{\lambda\mu}, \qquad g_{ij} B^i_{\alpha} n^j_{\lambda} = 0.$$

Hence we have the following:

Theorem (4.1). The linear frame $(B_1^i, B_2^i, ..., B_m^i, n_1^i, n_2^i, ..., n_{n-m}^i)$ of V^n is same the linear frame of GL^n such that either (4.1) is satisfied along V^m or (3.6) is satisfied along $G\overline{L}^m$. In particular $B_{\lambda}^i = n_{\lambda}^i$ for $\lambda = 1, 2, 3, ..., (n-m)$.

From equations (2.4), (3.3) and (3.5) it follows that

(4.4)
$$g_{\alpha\beta}(u,v) = \gamma_{\alpha\beta}(u) + \left(1 - \frac{1}{\eta^2(x)}\right) v_{\alpha}v_{\beta},$$

where

(4.5)
$$\gamma_{\alpha\beta} = \gamma_{ij}(x) B^i_{\alpha} B^j_{\beta}, \quad v_{\alpha} = \gamma_{\alpha\beta} v^{\beta} = y_i B^i_{\alpha}$$

The reciprocal d-tensor field $g^{\alpha\beta}(u,v)$ of $g_{\alpha\beta}(u,v)$ is given by

(4.6)
$$g^{\alpha\beta}(u,v) = \gamma^{\alpha\beta}(u) - \frac{1}{a_1} \left(1 - \frac{1}{\eta^2(x)}\right) v^{\alpha}v^{\beta}.$$

From (3.3) and (4.5), we have

$$||y||^2 = \gamma_{ij}(x)y^i y^j = \gamma_{\alpha\beta}(u) v^{\alpha} v^{\beta} = ||v||^2.$$

Thus we have

$$a_{\sigma}(x,y) = 1 + \sigma \left[1 - \frac{1}{\eta^2(x)}\right] ||y||^2 = 1 + \sigma \left[1 - \frac{1}{\eta^2(x)}\right] ||v||^2.$$

Therefore the induced d-tensor field $C^{\alpha}_{\beta\gamma}$ is obtained from (2.6), (3.10)(b) and (3.11)(c), which is given by

(4.7)
$$C^{\alpha}_{\beta\gamma} = \frac{1}{a_1} \left(1 - \frac{1}{\eta^2(x)} \right) \gamma_{\beta\gamma} v^{\alpha}.$$

46

The intrinsic d-tensor field $\underline{C}^{\alpha}_{\beta\gamma}$ of $G\overline{L}^m$ is defined from induced $g_{\alpha\beta}$ by

$$\underline{C}^{\alpha}_{\beta\gamma} = g^{\alpha\delta}\underline{C}_{\beta\delta\gamma} = \frac{1}{2}g^{\alpha\delta} \left(\frac{\partial g_{\beta\delta}}{\partial v^{\gamma}} + \frac{\partial g_{\delta\gamma}}{\partial v^{\beta}} - \frac{\partial g_{\beta\gamma}}{\partial v^{\delta}}\right).$$

Thus from (4.4), we have

(4.8)
$$\underline{C}^{\alpha}_{\beta\gamma} = \frac{1}{a_1} \left(1 - \frac{1}{\eta^2(x)} \right) \gamma_{\beta\gamma} v^{\alpha}.$$

Hence from (4.7) and (4.8) we have the following :

Theorem (4.2). The induced d-tensor field $C^{\alpha}_{\beta\gamma}$ of $G\overline{L}^m$ is identical with the intrinsic d-tensor field $\underline{C}^{\alpha}_{\beta\gamma}$ of $G\overline{L}^m$.

References

- Beil, R. G. : Electrodynamics from a metric, Int. Jour. Theor. Phys., 26 (1987), 189-197.
- Chaki, M. C. and Barua, B. : Conformal symmetries of Synge metric in generalized Lagrange space, Bull. Cal. Math. Soc., 94, (4) (2002), 325-328.
- 3. Kawaguchi, T. and Miron, R. : On the generalized Lagrange spaces with the metric $g_{ij}(x, y) = \gamma_{ij}(x) + (1/c^2)y_iy_j$ Tensor, N.S., 48 (1989), 52-63.
- 4. Matsumoto, M. : The induced and intrinsic connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107-144.
- 5. Miron, R. and Anastasiei, M. : Vector bundles and Lagrange spaces with application to relativity, Edtura Academiei R. S. Romania 1987.
- Miron, R. and Kawaguchi, T. : Relativistic geometric optics, Int. Jour. Theor. Phys., 30,(1991), 1521-1543.
- 7. Synge, J. L. : Relativity : The general theory, North Holland Publishing Comp. Amsterdam, 1964.