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1. Introduction

R. Miron and M. Anastesiei [4] have developed theory of subspaces of gen-
eralized Lagrange spaces to a large extent in their monograph “Vector bundles
and Lagrange spaces, application in relativity”. In 1989 T. Kawaguchi and R.
Miron [3] gave a class of generalized Lagrange space Mn = (M, gij(x, y)) where

gij(x, y) = γij(x) +
1
c2

yiyj ,

γij(x) being a Riemannian metric on the n−dimensional differentiable manifold
M and yi = γij(x) yj . J. L. Synge [7], M. C. Chaki and B. Barua [2] used the
metric

gij(x, v(x)) = γij(x) +
(

1− 1
η2(x, v(x))

)
vivj ,

which occurs in the study of relativistic optics [6]. In this case (x) is a generic
point, v(x) is the velocity vector of the point and η(x, v(x)) is the refractive
index of the optical medium. If, in particular η(x, v(x)) = 1, the medium is
transparent. Also, if the refractive index is independent of velocity, i.e. if
η = η(x) then the optical medium is called non dispersive.

In this paper we use the metric gij(x, y) = γij(x) +

(
1− 1

η2(x)

)
yiyj and

we denote the generalized Lagrange space with this metric as GLn. The purpose
of the present paper is to discuss the properties of subspace of GLn.
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2. Generalized Lagrange space GLn

Let M be a n−dimensional differentiable manifold, (TM, π, M) its tangent
bundle and (xi, yi) (i, j, ... = 1, 2, 3, ..., n = dimM) the canonical coordinates of
the points u ∈ TM , π(u) = x in a coordinate neighbourhood π−1(U), where U

is a coordinate neighbourhood of M at x i. e. x ∈ U ⊂ M . One can consider a
Riemannian metric γij(x) on M and the Riemannian space V n = (M, γij(x)).

The Liouville vector field y = yi
∂

∂yi
is globally defined on the total space

TM . Thus the covector field

(2.1) yi = γij(x) yj

is globally defined on TM , and also the square of the norm of y and the functions
aσ is defined respectively by

(2.2) ||y||2 = γij (x)yi yj ,

(2.3) aσ(x, y) = 1+σ

[
1− 1

η2(x)

]
||y||2, σ ∈ N ( the set of natural numbers).

On TM we can consider the d−tensor field

(2.4) gij(x, y) = γij(x) +

(
1− 1

η2(x)

)
yiyj .

The reciprocal of tensor field gij(x, y) is given by

(2.5) gij(x, y) = γij(x)− 1
a1(x, y)

(
1− 1

η2(x)

)
yiyj .

The d−tensor field Cjhk is defined by

Cjhk = ghr Cr
jk =

1
2

(
∂gjh

∂yk
+

∂gkh

∂yj
− ∂gjk

∂yh

)
.

Using (2.4) we get

Cjhk =
(

1− 1
η2(x)

)
γjkyh.

Then from (2.5) we get
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(2.6) Ci
jk =

1
a1

(
1− 1

η2(x)

)
γjky

i.

The non-linear connection of the space GLn is given by [3]

(2.7) N i
j(x, y) = {j

i
k} yk,

where {j
i
k} is the Christoffel symbol of the Riemannian space V n constructed

from γij(x). The canonical metrical connection Li
jk of the space GLn is defined

by

Li
jk =

1
2
gih

(
δgjh

δxk
+

δgkh

δxj
− δgjk

δxh

)

where δ
δxi = ∂

∂xi −N j
i

∂
∂yj . Using equations (2.4) and (2.7) we get Li

jk = {()j
i
k}.

3. Subspace of generalized Lagrange space

Let M be a differentiable manifold of dimension m, 1 ≤ m < n immersed
in the n−dimensional manifold M by the immersion i : M → M . Locally the
immersion i can be given in the form

(3.1) xi = xi (u1, u2, u3, . . . , um), rank

∥∥∥∥∥
∂xi

∂uα

∥∥∥∥∥ = m.

Throughout this paper the indices i, j, k, ... take the values 1, 2, 3, ..., n and the
indices α, β, γ, ... take the values 1, 2, 3, ...,m.

In this case when i is embedding, we shall identify M with i(M) and we
shall say that M is a submanifold of the manifold M . The equations (3.1) will
be called the parametric equations of the submanifold M of M .

The derivatives

(3.2) Bi
α(u) =

∂xi

∂uα
, (α = 1, 2, 3, ..., m),

determine m local vector field on M . The immersion i : M → M induces an
immersion i∗ : TM → M . The point (u, v) ∈ TM is applied by i∗ in the point
(x(u), y(u)). We have

(3.3) yi = Bi
α(u) vα,

and we put
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(3.4) Bi
αβ(u) =

∂2xi

∂uα∂uβ
, Bi

0β(u) = vαBi
αβ .

The generalized Lagrange metric gij(x, y) of GLn induces a metric on TM

: a symmetric and positively defined d−tensor field gαβ is given by

(3.5) gαβ = gij(x(u), y(u))Bi
α(u) Bj

β(u).

The pair GL̄m = (M, gαβ(u, v)) is called the generalized Lagrange subspace of
the generalized Lagrange space GLn. We have a set of n−m unit normal vectors
Bλ to the subspace GL̄m defined by

(3.6)(a) gijB
i
λBj

µ = δλµ, (b) gijB
i
αBj

λ = 0, λ, µ = 1, 2, 3, ..., (n−m).

The inverse of the matrix of
∣∣∣∣Bi

α(u) Bi
λ(u, v)

∣∣∣∣ will be denoted by ||Bα
i (u, v)

Bλ
i (u, v)

∣∣∣∣. Thus we have

(3.7) Bα
i Bi

β = δα
β , Bλ

i Bi
α = 0, Bα

i Bi
λ = 0

Bλ
i Bi

µ = δλ
µ and Bi

αBα
j + Bi

λBλ
j = δi

j .

From (3.5) and (3.6) we deduce

(3.8) gαβBα
i = gijB

j
β, δλµBµ

i = gijB
j
λ.

The non-linear connection N (Nα
β(u, v)) on TM induced by the non-linear

connection N(N i
j(x, y)) is given by [4]

(3.9) Nα
β(u, v) = Bα

i (u, v){Bi
0β(u, v) + N i

j(x(u), y(u, v))Bj
β(u)}.

Let N(N i
j) and N(Nα

β) be non-linear connections on TM and TM re-
spectively, then the connection DΓ(N) = (Lα

βγ(u, v), Cα
βγ(u, v)) induced by the

metrical d−connection DΓ(N) = (Li
jk(x, y), Ci

jk(x, y)) is given by [4]

(3.10)(a) Lα
βγ = Bα

i (Bi
βγ + Bj

βLi
jγ),

(b) Cα
βγ = Bα

i Bj
βCi

jγ ,

where

(3.11)(a) Li
jα = Bk

αLi
jk + Hλ

αBk
λCi

jk,

(b) Ci
jα = Bk

αCi
jk,

(c) Hλ
α = Bλ

i (Bi
0α + N i

jB
j
α).
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Hence Hλ
α(u, v) are components of a mixed d−tensor field which has been called

first fundamental h−tensor in the case of Finsler space [4].

The induced canonical metrical d−connection DΓ(N) of GL
m has the fol-

lowing properties:

(3.12)(a) gαβ|γ = 0, gαβ |γ = 0

(b) vα|β = 0, ||v||2|β = 0, ||v||2∣∣
β

= 2vβ,

(c) γαβ|γ = 0, γαβ |γ = − 1
a1

(
1− 1

η2(x)

)
(γαβvγ + γβγvα),

(d) Dα
β = Nα

β − Lα
βγvγ = 0, vα |β = δα

β − 1
a1

(
1− 1

η2(x)

)
vαvβ,

(e) Cα
βγ|δ = 0, Cα

βγ |δ =
1
a1

(
1− 1

η2(x)

){
δα
δ γβγ −

vα

a1

(
1− 1

η2(x)

)

(γβδvγ + γγδvβ − γβγvδ)

}

The h− and v−covariant derivatives of Bi
α are given by

Bi
α|β = Hλ

αβBi
λ, Bi

α

∣∣∣β = Kλ
αβBi

λ ,

where

(3.13)(a) Hλ
αβ = Bλ

i (Bi
αβ + Bj

αLi
jβ),

(b) Kλ
αβ = Bλ

i Bj
αCi

jβ).

The quantities Hλ
αβ and Kλ

αβ are components of mixed tensor fields. These tensor
fields have been called the second fundamental h-and v-tensor fields respectively
in the case of Finsler space [4].

4. Subspace of GLn with metric gij(x, y) = γij(x)+
(
1 − 1

η2(x)

)
yiyj

Consider a Riemannian subspace V m of Riemannian space V n = (M, γij(x))
and subspace GL

m of the generalized Lagrange space GLn = (M, gij(x, y)) given
by (2.4). Let ni

λ be the set of (n−m) unit normal vectors to the subspace V m

of V n defined by

(4.1) γij ni
λnj

µ = δλµ, γijB
i
αnj

λ = 0, λ, µ = 1, 2, 3, ..., (n−m) and let
(Bα

i nλ
i ) be the inverse matrix of (Bi

α ni
λ).
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The functions Bi
α may be regarded as components of m linearly independent

tangent vectors of both the subspaces V m and GL
m. In view of equation (3.3)

and (4.1), we have

(4.2) yi n
i
λ = 0.

Thus the equations (2.4) and (4.1) give

(4.3) gij ni
λnj

µ = δλµ, gij Bi
αnj

λ = 0.

Hence we have the following:

Theorem (4.1). The linear frame (Bi
1, B

i
2, ..., B

i
m, ni

1, n
i
2, ..., n

i
n−m) of V n is

same the linear frame of GLn such that either (4.1) is satisfied along V m or
(3.6) is satisfied along GL

m. In particular Bi
λ = ni

λ for λ = 1, 2, 3, ..., (n−m).

From equations (2.4), (3.3) and (3.5) it follows that

(4.4) gαβ(u, v) = γαβ(u) +

(
1− 1

η2(x)

)
vαvβ,

where

(4.5) γαβ = γij(x) Bi
αBj

β, vα = γαβvβ = yi B
i
α.

The reciprocal d−tensor field gαβ(u, v) of gαβ(u, v) is given by

(4.6) gαβ(u, v) = γαβ(u)− 1
a1

(
1− 1

η2(x)

)
vαvβ.

From (3.3) and (4.5), we have

||y||2 = γij(x)yiyj = γαβ(u) vαvβ = ||v||2.

Thus we have

aσ(x, y) = 1 + σ

[
1− 1

η2(x)

]
||y||2 = 1 + σ

[
1− 1

η2(x)

]
||v||2.

Therefore the induced d−tensor field Cα
βγ is obtained from (2.6), (3.10)(b) and

(3.11)(c), which is given by

(4.7) Cα
βγ =

1
a1

(
1− 1

η2(x)

)
γβγvα.
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The intrinsic d−tensor field Cα
βγ of GL

m is defined from induced gαβ by

Cα
βγ = gαδCβδγ =

1
2
gαδ

(
∂gβδ

∂vγ
+

∂gδγ

∂vβ
− ∂gβγ

∂vδ

)
.

Thus from (4.4), we have

(4.8) Cα
βγ =

1
a1

(
1− 1

η2(x)

)
γβγvα.

Hence from (4.7) and (4.8) we have the following :

Theorem (4.2). The induced d−tensor field Cα
βγ of GL

m is identical with the
intrinsic d−tensor field Cα

βγ of GL
m.
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