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1. Introduction

R. Miron and M. Anastesiei [4] have developed theory of subspaces of gen-
eralized Lagrange spaces to a large extent in their monograph “Vector bundles
and Lagrange spaces, application in relativity”. In 1989 T. Kawaguchi and R.
Miron [3] gave a class of generalized Lagrange space M"™ = (M, g;;(x,y)) where

1
gij(x,y) = vij(x) + 2Vl

7ij(z) being a Riemannian metric on the n—dimensional differentiable manifold
M and y; = 7;;(z)y’. J. L. Synge [7], M. C. Chaki and B. Barua [2] used the
metric )
(0 00) =)+ (1= )

which occurs in the study of relativistic optics [6]. In this case (x) is a generic
point, v(z) is the velocity vector of the point and n(z,v(x)) is the refractive
index of the optical medium. If, in particular n(x,v(z)) = 1, the medium is
transparent. Also, if the refractive index is independent of velocity, i.e. if
17 = n(z) then the optical medium is called non dispersive.

In this paper we use the metric g;;(z,y) = vi;(x) + y;y; and

T2

n*(x)
we denote the generalized Lagrange space with this metric as GL™. The purpose
of the present paper is to discuss the properties of subspace of GL™.
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2. Generalized Lagrange space GL™

Let M be a n—dimensional differentiable manifold, (7'M, 7, M) its tangent
bundle and (¢, ) (i, 4,... = 1,2,3,...,n = dim M) the canonical coordinates of
the points u € TM, 7(u) = x in a coordinate neighbourhood 7~!(U), where U
is a coordinate neighbourhood of M at x i. e. x € U C M. One can consider a
Riemannian metric 7;;(z) on M and the Riemannian space V" = (M, ~v;;(z)).

-0
The Liouville vector field y = y’ﬁ is globally defined on the total space
Yy
TM. Thus the covector field

21) Y =)y
is globally defined on T'M , and also the square of the norm of y and the functions
as is defined respectively by

(2.2) Il =i (2)y" o,

1—

(2.3) aq(z,y) =1+0

] lly||?, o € N (the set of natural numbers).

1
n*(z)

On TM we can consider the d—tensor field

(2.4)  gij(z,y) = vij(z) + (1 - %) Yiyy-

The reciprocal of tensor field g¥/(z,y) is given by

(25) g9 (x,y) =~"(x) — al(j:y) (1 - 772195)> Yyl

The d—tensor field Cj;, is defined by

9gjn L 9%k _ 99;k
oyk oy oyh )’

Then from (2.5) we get
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) 1 1 )
2. (A (R — P
( 6) C]lc ay ( nz(x)> ’Y]ky

The non-linear connection of the space GL™ is given by [3]

(27 Nj(zy) = {;"%}v"

where {;’;} is the Christoffel symbol of the Riemannian space V" constructed
from ~;;j(x). The canonical metrical connection L;k of the space GL" is defined
by

2 oxk dxd Sxh

i 1 i (0gin | Ogrn  O0gjk
kT 9 + o

where

éfci = a?gi —Nf%. Using equations (2.4) and (2.7) we get L;k ={0);%}-

3. Subspace of generalized Lagrange space

Let M be a differentiable manifold of dimension m,1 < m < n immersed
in the n—dimensional manifold M by the immersion i : M — M. Locally the
immersion ¢ can be given in the form

ox’

3.1 =gt (uh el u™), k||=—
(3.1) =z (u',u®,u u'™) rank || =2

=m.

Throughout this paper the indices 1, j, k, ... take the values 1,2, 3,...,n and the
indices «, 0,1, ... take the values 1,2,3,...,m.

In this case when i is embedding, we shall identify M with i(M) and we
shall say that M is a submanifold of the manifold M. The equations (3.1) will
be called the parametric equations of the submanifold M of M.

The derivatives

3.2 B —M =1,2.3
( . ) a(u)_%7 (a_ y &y 7"'7m)7

determine m local vector field on M. The immersion i : M — M induces an
immersion i* : TM — M. The point (u,v) € TM is applied by i* in the point
(x(u),y(u)). We have

(3.3) ¥y = Bi(u)v,

and we put
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i 0! i api
(34) Baﬁ(u) = W, Boﬂ(u) = Baﬁ

The generalized Lagrange metric g;;(x,y) of GL"™ induces a metric on TM
: a symmetric and positively defined d—tensor field g, is given by

(35)  gap = gij(w(u), y(w)) By (u) Bj(u).

The pair GL™ = (M, gas(u,v)) is called the generalized Lagrange subspace of
the generalized Lagrange space GL". We have a set of n—m unit normal vectors
B, to the subspace GL™ defined by

(3.6)(a)  giBiBL =05, (b) giBLBL =0, \p=1,2,3,..,(n—m).

The inverse of the matrix of ’ ‘B;‘l (u) Bi(u, v){ ’ will be denoted by || B (u, v)
B} (u,v)||. Thus we have

(37)  BfBj=03,  BB,=0, BB{=0
B}Bj, = 6, and B}, B§ + BiB} = d..
From (3.5) and (3.6) we deduce
(38)  gapBf =gijB},  OauBl' = gi B,
The non-linear connection N (N (u,v)) on TM induced by the non-linear
connection N (N J’(x, y)) is given by [4]
(39)  N§(u,v) = Bf(u,v){Bjjs(u,v) + Nj(w(u), y(u, v)) By(u)}.

Let N (N]’) and N(NG) be non-linear connections on T'M and TM re-
spectively, then the connection DI'(V) = (Lg, (u,v), C§ (u,v)) induced by the
metrical d—connection DI'(N) = (Lé.k(x, Y), C;k(x,y)) is given by [4]

(3.10)(a) LY = B{(Bj, + B3L:),
(b)  C§, = B ByCj,,
where

(3.11)(a) L}, = B5Li, + HyBYCY,
(c)  H)=BNBj, + N;B).
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Hence H2(u,v) are components of a mixed d—tensor field which has been called
first fundamental h—tensor in the case of Finsler space [4].

The induced canonical metrical d—connection DT'(N) of GL™ has the fol-
lowing properties:

(b) v =0, [folPs=0, [[l[?|,=2vs,

1

1
—0 SR [ -
(C) YapBly y YapB |7 a1 < 772(‘T)> (’Yaﬁvy + 7[37'1)04)7

al

1 1 Ve 1
a «a - _—[|1= a —— 1=
@ Che=0 Cli=7 ( n2(x)> {55 K ( n%ﬁ))

(7850 + Vy5v8 — '7,6’77)6)}

(d)  D§=Ng§-L§ o =0, ua\ﬁ:(sg—i(u#x)) Vg,

The h— and v—covariant derivatives of B!, are given by
i A pi i A pi
al = HaﬁB)n B, B8 = Ka,BB)\ )
where
(3.13)(a)  H)g = B} (BlLg+ BaLiy),
(b)  K)z= B}BiCly).

The quantities H C)Cﬁ and K ;‘ﬁ are components of mixed tensor fields. These tensor
fields have been called the second fundamental h-and v-tensor fields respectively
in the case of Finsler space [4].

4. Subspace of GLn with metric g;j(x,y) = v;;(x)+ (1 — n%(w)> YiYj

Consider a Riemannian subspace V'™ of Riemannian space V" = (M, v;;(x))
and subspace GL™ of the generalized Lagrange space GL" = (M, gij(z,y)) given
by (2.4). Let n} be the set of (n — m) unit normal vectors to the subspace V™
of V™ defined by

(4.1) Vi nf\nﬂ = Oxu, %-jBflnﬂ =0, Ap=1,23, .. (n—m) and let
(B& n?) be the inverse matrix of (BY, n}).
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The functions B, may be regarded as components of m linearly independent
tangent vectors of both the subspaces V™ and GL". In view of equation (3.3)
and (4.1), we have

(4.2) y;ins = 0.

Thus the equations (2.4) and (4.1) give
(4.3)  gignin =0y, iy Bin) =0.
Hence we have the following;:

Theorem (4.1). The linear frame (B, B, ..., B ni,nb ..,ni_ ) of V" is

ynh
same the linear frame of GL™ such that either (4.1) is satisfied along V™ or
(3.6) is satisfied along GL™". In particular Bi = nd for A\=1,2,3,...,(n —m).

From equations (2.4), (3.3) and (3.5) it follows that

1
(4'4> gaﬁ(u7v> = Vaﬂ(u) + <1 - 772(96)> Valg,

where
(45)  Yap ="ij(¥) BLB},  va =apv® = y; Bl
The reciprocal d—tensor field gaﬁ(u, v) of gap(u,v) is given by

(4.6) 9P (u,v) = v (u) — L (1 - 1$)> v,

ai
From (3.3) and (4.5), we have
111> = i (@)y"y = Yap(u) v*0” = [Jv] >
Thus we have

o) =140 1= | P = 1o 1= s ol

Therefore the induced d—tensor field Cg is obtained from (2.6), (3.10)(b) and
(3.11)(c), which is given by

1 1
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The intrinsic d—tensor field C'3. of GL"™ is defined from induced Jap by

1 dg9ps | 095y  Ogp
oY — 0450 — 00 Yo 7
by = 9 2piy =9I < o7 TP o

Thus from (4.4), we have

1 1
(48)  Cp, = . (1 - 772(95)> By

Hence from (4.7) and (4.8) we have the following :

Theorem (4.2). The induced d—tensor field Cj. of GL™ is identical with the
intrinsic d—tensor field ng of GL™.
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