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The purpose of the present paper is to initiate the study of CR-submanifolds of a Ken-
motsu manifold and obtain some properties. The conditions under which the distributions
required by CR- submanifolds to be integrable, are obtained. D-parallel normal section
of CR-submanifolds have been studied.
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1. Introduction

In 1978, Bejancu introduced the notion of CR-Submanifold of Kaehler manifold
[1]. On the other hand CR-submanifold of a Sasakian manifold have been stidied
by Kobayashi [5], Shahid et al.[8], Yano and Kon[l11], and others. Bejancu and
Papaghuic [2] studied CR-submanifolds of a Kenmotsu manifold. In this paper we
obtain certain results in generalised form of [5],[6] and [7].

2. Preliminaries

Let M(%H)(qﬁ, &, 1, g) be an almost contact Riemannian manifold, where ¢ is (1,1)
tensor field, n is a 1-form and g is the Riemannian metric [3],[10]

$(§) =0, n(¢X)=0, n¢) =1, (1)

¢*(X) = =X +1(9), (2)

9(X,§) = n(X), (3)

9(¢X,9Y) = g(X,Y) = n(X)n(Y), (4)
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for any vector fields X,Y on M.
If Moreover

(Vx@)Y =g(6X,Y){ —n(Y)oX, XY € x(M) (5)

(Vx&) =X —n(X)¢ (6)

Where V denotes the Riemannian connection of g, then (M, ¢,£,n, g) is called an
almost Kenmotsu manifold [4].

Definition 2.1[9]. An m-dimensional Riemannian submanifold M of a Ken-
motsu manifold M is called a CR-submanifold if £ is tangent to M and there exists
a differentiable distribution D:x € M —D,C T, M such that

1. the distribution D, is invariant under ¢, that is, ¢ D, CD, for each z€M;

2. the complementary orthogonal distributions Dt:x € M—D}+C T, M of D is
anti-invariant under ¢, that is, D+ CT;- M for all z€ M, where T, M and T;- M are
the tangent space and the normal space of M at x, respectively.

If dimD;=0(resp., dimD,=0), then the CR-submanifold is called an invari-
ant (resp., anti invariant) submanifold.The distribution D (resp.,D*) is called the
horizontal (resp.,vertical) distribution. Also, the pair (D,D+) is called ¢-horizontal
(resp.,vertical) if £,€D,(resp.,&,€Dy) [5]. For any vector field X tangent to M, we
put

X = PX + QX, (7)

Where PX and QX belong to the distributions D and D*. For any vector field N
normal to M, we put

¢N = BN + CN, (8)

Where BN (resp.,C'N) denotes the tangential(resp.,normal) component of ¢N. Let
V(resp.,V be the covariant differentiation with respect to the Levi-civita connection
on M (resp.,M). The Gauss and Weingarten formulas for M are respectively given
by

VxY =VxY +h(X,Y) VxN=-AyX+VxN (9)

for any X,Y€TM and N&T+M where h(resp., A) is the second fundamental
form(resp.,tensor)of M in M, and V+ denotes the normal connection. Moreover,we
have

g(h(X7Y>7N):g(ANXvY) (10)

3. Some basic lemmas.

First we prove the following lemma.
Lemma 3.1 Let M be a CR-submanifold of a Kenmotsu manifold M. Then

P(Vx¢PY)+ P(Vy¢PX) — P(ApqovX) — P(ApoxY)
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= ¢PVxY + ¢PVy X — (Y )oPX +1(X)pPY, (11)
Q(VxoPY) + Q(VyoPX) — Q(Apqv X) — Q(AgoxY)
=2Bh(X,Y) = n(Y)$QX + n(X)¢QY, (12)
h(X,dPY) + h(Y,pPX) + Vx ¢QY + VioQX

= oQVxY + ¢pQVy X +2Ch(X,Y) (13)

for any X, YeT M.
Proof. From the definition of a Kenmotu manifold and using equations
(2.7),(2.8), and (2.9),we get

Vx¢PY + h(X,¢PY) — Agoy X + VxQY — ¢(VxY + h(X,Y))
+VydPX + h(Y,pPX) — ApoxY + Vy QX — 6(Vy X + h(X,Y))

= —¢[n(Y)X +n(X)Y] (14)

for any X, Y €T M. Now using equation (2.7) and equating horizontal,vertical and
normal component in equation (3.4), we get the result.
Lemma 3.2 Let M be a CR-submanifold of a Kenmotsu manifold M.Then

2(Vxd)(Y) =VxoY — VyoX + h(X,9Y) — h(Y, $X)

—o[X,Y] = ¢[n(Y)X +n(X)Y] (15)
for any X,YeD.
2(Vy¢)(X) = =Vx9Y + Vy¢oX — h(X,¢Y) + h(Y, $X)

+o[X, Y] = o[n(Y)X +n(X)Y] (16)

for any X,YeD.
Proof. By Gauss formula we get

Vx6Y — VyoX = VxdY + h(X,dY) — Vy X — h(Y, $X) (17)
Also, we have
Vx¢Y = Vy¢X = (Vx¢)(Y) = (Vyo)(X) + ¢[X, Y] (18)
From equations (3.6) and (3.7),we get
(Vxo)(Y) = (Vyd)(X) = Vx oY + h(X,9Y) - VyoX

—h(Y,9X) — ¢[X,Y] (19)
Also for Kenmotsu manifold,we have

(Vxo)(Y) + (Vy9)(X) = —¢[n(Y) X +n(X)Y] (20)
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Adding and Subtracting equations (3.8) and (3.9),the lemma follows.
Lemma 3.4 Let M be a CR-submanifold of a Kenmotsu manifold M .Then
2Vy)(Z) = Apy Z — AgzY + Vy¢Z — VoY

=Y, Z] = ¢[n(2)Y +n(Y)Z] (21)

2Vzd)(Y) = —Agy Z + AgzY — Vo Z + VoY

+olY, Z] = ¢[n(2)Y +n(Y)Z] (22)

for any Y,ZeD*.
Proof. From Weingarten formula, we have

V20Y —Vy¢Z = —Agy Z + VoY + AgzY — VioZ (23)
Also,we have
V20Y = Vy¢Z = (Vz9)(Y) = (Vy9)(Z) - ¢[Y, Z] (24)
From equations (3.13) and (3.14),we get
(Vyo)(Z) = (Vz0)(Y) = Agy Z — ApzY + Vy¢Z = Vz0Y — Y, 2] (25)
Also for Kenmotsu manifold,we have
(Vyd)(Z) = (Vzo)(Y) = =¢[n(Z)Y +n(Y)Z] (26)
Adding equations (3.15) and (3.16),we get
2Vy§)(2) = Apy Z — AgzY + Vy¢Z = V76V

~o1Y, 2]~ oln(2)Y +u(¥)7Z] (21)
Subtracting equations (3.15) and (3.16),we get
2Vz0)(Y) = —Apy Z + ApzY — Vy¢Z + V7Y
+olY, Z] = ¢[n(2)Y +n(Y)Z] (28)

This proves our assertions.
Lemma 3.4 Let M be a CR-submanifold of a Kenmotsu manifold M.Then

2(Vxd)(Y) = —Apy X + Vx oY — VyoX — h(Y, ¢X)
—¢[X, Y] = o[n(Y)X +n(X)Y] (29)
2(Vy¢)(X) = Apy X — Vx oY + VyoX + h(Y, ¢ X)

+o[X, Y] = ¢[n(Y)X + n(X)Y] (30)
for any Y,ZeDt.
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Proof. By using Gauss and Weingarten equations for X€D and Y €D respec-

tively we get
VxoY = VyoX = —Agy X + VoY — VyoX — h(Y,¢X) (31)

Also we have
Vx¢Y = Vy¢X = (Vx¢)(Y) = (Vy¢)(X) + ¢[X,Y] (32)

From equations (3.21) and (3.22), we get
(Vxo)(Y) = (Vy9)(X) = ~Apy X + Vx oY

~Vy¢X — h(Y,¢X) — ¢[X,Y] (33)
Also for Kenmotsu manifold,we have
(Vyd)(2) = (Vz9)(Y) = =¢[n(Z)Y +n(Y)Z] (34)
Adding equations (3.23) and (3.24),we get
2(Vx9)(Y) = —Agy X + V@Y — VyoX — h(Y, ¢X)

—O[X, Y] = ¢[n(Y)X +n(X)Y] (35)
Subtacting equations (3.23) and (3.24),we get
2(Vy¢)(X) = Apy X — Vx0Y + VydX + h(Y, ¢X)

TOIX, Y] = on(Y)X +n(X)Y] (36)

Hence the Lemma.

4. Parallel distributions

Definition 4.1. The horizontal (resp.,vertical) distribution D (resp.,D') is said to
be parallel [1] with respect to the connection V on M if VxY € D(resp.,VzW €
D) for any vector field X,Y €D (resp.,W,ZeD>).

Now we prove the following proposition.
Propostion 4.2. Let M be a {-vertical CR-subamnifold of a Kenmotsu manifold
M. If the horizontal distribution D is parallel, then

h(X,¢Y) = h(Y, ¢X) (37)

for all X,YeD.
Proof. Using parallelism of horizontal distribution D, we have

Vxo¢Y € D, Vy¢pXD  forany X,Y €D (38)
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Thus using the fact QX=QY =0 for Y €D, equation (3.2) gives

Bh(X,Y) = g(X,Y)Q¢ forany X,Y € D (39)
Also, since
oh(X,Y) = Bh(z,y) + Ch(X,Y), (40)
then
Oh(X,Y) = g(X,Y)QE + Ch(X,Y)E forany X,Y € D. (41)

Next from equation (3.3), we have
B(X,6Y) + h(Y, 6X) = 2Ch(X,Y) = 20h(X,Y) — 2(X,Y)QE,  (42)
for any X,Ye€D.Putting X=¢X€D in equation (4.6),we get

h(@X, 9Y) + h(Y,6°X) = 20h(6X,Y) — 29(¢X,Y)Q¢ (43)
or
Mo X, ¢Y) — h(Y, X) = 20h(X,Y) — 29(¢X, Y)QE. (44)
Similary, putting Y=¢Y €D in equation (4.6),we get
h(9Y,pX) — h(Y, X) = 20h(X, ¢Y) — 29(X, ¢Y)QE. (45)
Hence from equations (4.8) and (4.9), we have
Ph(X, 9Y) — ¢h(Y, ¢X) = g(X, ¢Y)QE — g(6X,Y)QE. (46)
Operating ¢ on both sides of equation (4.10) and using ¢£=0,we get
h(X,¢Y) = h(Y, ¢X) (47)

for all X,YeD.
Now, for the distribution D+, we prove the following proposition.

Propostion 4.3. Let M be a £-vertical CR-submanifold of a Kenmotsu manifold
M If the distribution D= is parallel with respect to the connection on M then

(Apgy Z + AyzY) € DY foranyY ,Z € D+ (48)
Proof. Let Y,Ze D", then using Gauss and Weingarten formula ,we obtain
~AgzY +V$0Z — Apy Z + V%Y = ¢Vy Z + ¢V 7Y + 20h(Y, Z)

=—¢n(2)Y +n(Y)Z] (49)
for any Y Z€D*. Taking inner product with X€D in equation (4.13),we get
9(Apy Z, X) + g(ApzY, X) = g(Vy Z,¢X) + g(VzY, 9X). (50)
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If the distribution D+ is parallel, then Vy Z€D* and VzY €D* for any Y,ZeD*.
So from equation (4.14) we get
9(Apy Z, X) + g(ApzY,X) =0 or g(ApyZ + ApzY,X) =0 (51)
which is equivalent to
(ApzZ + AyzY) € DY foranyY,Z € D*, (52)

this completes the proof.

Definition 4.4[5]. A CR-submanifold is said to be mixed totally geodesic if
h(X,Z)=0 for all X€D and Z€D>.

The following lemma is an easy consequence of (2.7).

Lemma 4.5. Let M be a CR-submanifold of a Kenmotsu manifold M. Then M is
mixed totally geodesic if and if Ay XeD for all XeD.

Definition 4.6[5]. A normal vector field N#0 is called D-parallel normal section
if V% N=0 for all XeD.

Now we have the following proposition.

Proposition 4.7. Let M be a mixed totally geodesic &-vertical CR-subamanifold
of a Kenmotsu manifold M. Then the normal section Ne¢D+ is D-parallel if and
only if Vx¢NeD for all XeD.

Proof. Let Ne¢pD+. Then from equation (3.2) we have

Q(Vy¢X)=0 foranyX € D, Y € D*. (53)
In particular,we have Q(Vy X)=0.By using it in equation (3.3),we get
VxoQY = ¢QVxY or VyN = —¢Q(Vx¢N) (54)

Thus, if the normal section N#£0 is D-parallel, then using Definition (4.6) and (4.18),
we get

PQ(Vx¢pN) =0 (55)

which is equivalent to Vx¢NeD for all XeD.The converse part easily follows from
equation (4.18).

5. Integrability conditions of distributions.

First we calculate the Nijenhuis tensor Ny(X,Y) on a Kenmotsu manifold M. For
this, first we prove the following lemma.
Lemma 5.1. Let M be a Kenmotsu manifold,then

(Voxd)(Y) = (V)X —n(Y)n(X)é — n(X)VyE

+(Vy ¢)(X) +n(Vy X)E (56)
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for any X,Y €T M.
Proof.From the definition of Kenmotsu manifold M, we have

(Voxd)(Y) = =n(Y)$* X — n(¢pX)pY — (Vy¢)(¢X) (57)
Also,we have
(Vy9)(9X) = Vy ¢’ X — ¢VysX
= Vy ¢’ X — ¢Vy o X + ¢(¢Vy X) — ¢(¢Vy X)
= -Vy X +n(X)Vy€ - 6(VyoX — ¢Vy X) — ¢(¢Vy X)

= —Vy X +0(X)Vy€ = ¢(Vy¢)(X) + Vy X —n(Vy X)E. (58)
Using equation (5.3) in (5.2),we get
(Voxd)(Y) = n(Y)X —n(Y)n(X)§ = n(X)Vy &+ ¢(Vy ) (X) +n(Vy X)E (59)

for any X,Y €T M ,which completes the proof of the lemma.

On a Kenmotsu manifold 17, Nijenhuis tensor is given by
Ny(X,Y) = (Vexd) (V) = (Voy9)(X) = ¢(Vxo)(Y) + 6(Vye)(X)  (60)
for any X,Y €TM. From equations (5.1) and (5.5),we get
Ny(X,Y) =n(Y)X = n(X)Y = n(X)Vy & +n(Y)VxE+n(VyX)E

—n(VxY)§ = 26(Vx¢)(Y) +26(Vy¢)(X) (61)
Thus using equation (2.3) in above equation and after some calculations,we obtain

Ny(X,Y) = —n(Y)X = 3n(X)Y —n(X)Vy& +n(Y)VxE+n(Vy X)E

—n(VxY)E +46(Vy d)(X) + 4n(Y)n(X)E. (62)

for any X,Y €T M.
Now we prove the following proposition.

Proposition 5.2. Let M be a &-vertical CR-submanifold of a Kenmotsu mani-
fold M .Then, the distribution D is integrable if the following are satisfied:
S(X.Y)eD, WX, ¢Z)=h(¢X,Z) (63)

for any X,Z€D.
Proof.The torsion tensor S(X,Y) of the almost contact structure (¢,£,n,9) is given
by

S(X,Y) = No(X,Y) +2dn(X,Y)E = Ny(X,Y) +29(¢ X, Y)E. (64)
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Thus, we have
S(X,Y) = [¢X, Y] — [0 X, Y] — ¢[X, 9Y] + 29(¢ X, Y){ (65)

for any X,Ye TM. Suppose that the distribution D is integrable.So,for
X, YeD,Q[X,Y] =0 and n([X,Y]) =0 as £eD+.
If S(X,Y)eD, then from equations (5.7) and (5.9) we have

29X, Y)E+n[X, Y€+ 49Vy o X + 4oh(Y, ¢ X) + 4Vy X +4h(X,Y)] € D (66)
or

29(6X,Y)QE + n([X, Y])QS + 4(oQVy ¢ X + ¢h(Y, 0 X)

+QVy X +h(X,Y)) =0 (67)
for any X,Ye€D Replacing Y by ¢Z for Z€D in above equation, we get
29(¢X, dZ)QE + APQV y20X + dh(9Z, ¢.X)

+QVyzX + (X, ¢0Z)) =0 (68)

Interchanging X and Z for X,Z€D in equation (5.13) and subtracting these rela-
tions,we obtain

PQ¢X, 9Z] + QIX, ¢Z] + MZ,pX) — h(Z,¢X) = 0 (69)

for any X,Y €D and the assertion follows. Now, we prove the following proposition.
Proposition 5.3. Let M be a CR-submanifold of a Kenmotsu manifold M .Then

1
Apy Z — ApzY = §¢P[Y, A (70)
for any Y,Z €D*.

Proof. For Y,Ze D! and XeT (M), we get
29(Ay7Y, X) = 2g(h(X,Y), 62)

— g(h(X,Y),62) + g(h(X,Y), 67)
=9(VxY,0Z) + g(Vy X, ¢Z)
=g(VxY +Vy X, ¢2)
= —g(¢(VxY +VyX),2)
= —g(Vx oY + VyoX +n(Y)pX +n(X)oY, Z)
=—9(VxoY,Z) - g(Vy X, Z)
=9(VyZ,0X)+ g(Apy Z,X)
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The above equation is true for all X €T (M), therefore ,transvecting the vector field
X both sides,we obtain

24,2Y = Apy Z — Ny Z (71)
for any Y,ZeD>. Interchanging the vector fields Y and Z,we get
244y Z = ApzY — ¢V Y (72)
Subtracting equations (5.16) and (5.17), we get
ApsY — Ay Z — %¢p[y, 7] (73)

for any Y',Z €D~ ,completes the proof.
Theorem 5.4. Let M be a CR-submanifold of a Kenmotsu manifold M. Then, the
distribution D is integrable if and only if

ApzY — Ay Z =0 (74)

Proof. First Suppose that the distribution D+ is integrable.Then [Y, Z] € D+ for
any Y,Z € D*. Since P is a projection operator on D,so P[Y, Z]=0.Thus from
equation (5.15) we get equation (5.20).Conversely, we suppose that equation (5.20)
holds.Then using equation (5.15),we have ¢P[Y, Z] = 0 for any Y,Z € D+. Since
rank¢=2n.Therefore,either P[Y, Z]=0 or P[Y, Z]=k&.But P[Y, Z]=k¢ is not possible
as P is a projection operator on D.Thus,P[Y, Z]=0, which is equivalent to [Y, Z] €
D+ for any Y,Z € D* and hence D+ is integrable.

Acknowledgement : The research work of the first author is supported by
research fellowship (JRF) from Department of Science and Technology (DST), New
Delhi.

References

1. Bejancu, A.,CR subamnifolds of a Kaehler manifold.I,
proc.Amer.Math.Soc.69(1978),n0.1,135-142.

2. Bejancu, A. and Papaghuic N. , CR-submanifolds of Kenmotsu manifold,
Rend. Math.7(1984),n0.4,607-622.

3. Blair, D.E., Contact manifolds in Riemannian geometry.Lecture notes in
Math. No. 509,Springer 1976.

4. Kenmotsu, K., A class of almost contact Riemannian manifolds, Tohoku
Math.J.,24(1972),93-103.

5. Kobayashi, M., CR-submanifolds of a Sasakian manifold,Tensor
(N.S.)35(1981),n0.3,297-307.

6. Shahid, M.H., CR~submanifolds of a Trans-Sasakian manifold, Indian J.Pure
Appl.Math.22(1991),n0.12,1007-1012.

7. Shahid, M.H.,CR-submanifolds of a Trans-Sasakian manifold II, Indian J.Pure
appl.Math.25(1994),n0.3,299-307.

8. Shahid, M.H.,Sharfuddin, A.and
Husain S.A.,CR-submanifolds of a Sasakian manifold, Univ.u Novom Sadu
Zb.Rad.Prirod.Mat.Fak.Ser.Mat.15(1985),n0.1,263-278.



10.

11.

Some Properties of CR-Submanifolds ... 29

Solamy, Fallah R. AL-,CR-submanifolds of a Nearly Trans-Sasakian manifold,
IJMMS 31,3(2002),167-175.

Yano, K. and Kon, M., Structures on manifolds,series in pure Mathem-
taics,3.World Scientific Publishing Co..,Springer 1984.

Yano,K. and Kon, M., Contact CR-~submanifolds, Kodai
Math.J.5(1982),n0.2,238-252.





