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Quasi Sasakian manifold have been introduced by Blair [3]. The purpose of this paper
is to study the existence of the normal hypersurface of 2–Quasi Sasakian manifold in

the sense of Goldberg-Yano [6]. We obtain a characterization for these hypersurfaces and

also a theorem of characterization for the normal structure on a contact totally umbilical
hypersurface of 2–Quasi Sasakian manifold.
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1. Introduction

Let M be a real (2n+2) dimensional differential manifold endowed with an almost

2-contact metric structure (f,ξ1,ξ2,η1,η2,g)satisfying,where f is a tensor field of type

(1,1),ξ1,ξ2 are vector field and η1,η2 are 1-form which satisfies, f2=-I+η1⊗ξ1 +η2⊗ξ2

(1)

η1(ξ1)=η1(ξ1)=1

f(ξ1)=f(ξ2)=0

η1of = η2of=0

η1(ξ2)=η2(ξ1)=0

And g is an associated Riemannian metric on M that is a metric which satisfies

g(fX, fY) = g(X, Y) –η1(X).η1(Y)-η2(X).η2(Y)

then we say that (f,ξ1,ξ2,η1,η2,g) is an almost 2-contact metric structure.In such a

way we obtain an almost 2–contact metric manifold. Through out the paper, all

manifold and maps are differentiable of class C∞. We denote by F(M̃) the algebra

of the differentiable function on M̃ and by Γ(E) .The F(M̃)module of the sections
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of a vector bundle E over M.

The Nijenhuis tensor field, denoted by Nf with respect to the tensor field f, is

given by

Nf (X, Y) = [fX, fY] + f2[X, Y] – f[fX, Y] – f[X, fY], ∀ X,YϵΓ(TM̃)

(2)

The almost 2-contact metric manifold M̃(f,ξ1,ξ2,η1,η2,g) is called normal if

Nf (X, Y) + 2cη1(X,Y)ξ1 + 2dη2(X,Y)ξ2 = 0,∀ X,YϵΓ(TM̃)

According to [5], we say that an almost 2-contact metric manifold M̃ is a 2–Quasi

Sasakian manifold if and only if ξ1, ξ2 are a killing vector field on M̃ and

(∇̃X f)Y=g(f∇̃Xξ1Y)ξ1-η1(Y)f∇̃Xξ1-η2(Y)f∇̃Xξ2 , ∀ X,YεΓ(TM̃)

(3)

where ∇̃ is a Levi-Civita connection with respect to the metric g.

Next we define a tensor field F of type (1,1)by

FX=-∇̃Xξ1-∇̃Xξ2 , ∀ XεΓ(TM̃)

(4)

Lemma 1: Let M̃ be a 2–Quasi Sasakian manifold. Then we have

(a) g(FX,Y) + g(X,FY) = 0,∀ X,YεΓ(TM̃)

(b) f 0 F = F 0 f

(c) F(ξ1)= F(ξ2)

(d) η1O F = η2O F = 0

(e) (∇̃X f)Y=η1(Y)fFX + η2(Y)fFX-g(fFX,Y)ξ1-g(fFX,Y)ξ2 , ∀ X,YεΓ(TM̃)

(5)

Let M̃ be a 2–Quasi Sasakian manifold and M a hypersurface of M̃ such that ξ1,ξ2
are tangent to M. Denote by the same symbol g the induced metric on M and N

the unit vector field normal to M. The normal vector bundle to M, denoted by

TM⊥,satisfies

T M̃=TM
⊕

TM⊥

(6)
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The Gauss and Weingarten formula are given by,

(a) ∇̃XY=∇XY+B(X,Y)N

(7)

(b) ∇̃XN=-AX , ∀ X,YεΓ(TM)

where ∇ is the 2–Quasi Sasakian manifold such that B(X, Y) = g(N,∇̃XY) and

A is the shape operator with respect to the section N. Denoting by U = fN, from

(1-f ) we induce f(U,U) = 1. Moreover it is easy to see that UεΓ(TM).Denote by

D⊥=SpanU the One Dimensional distribution,and by D the orthogonal complement

of D⊥ ⊕
(ξ1, ξ2) in TM. Then we have

TM=D
⊕

D⊥ ⊕
(ξ1, ξ2)

(8)

It is easy to see that fD = D. According to [1] from (8) we deduce that M is a

CR-sub manifold of M̃.

We say that M is contact totally umbilical if

h(X,Y) = g(fX,fY)H + η1(X)h(Y,ξ1) + η1(Y)h(X, ξ1) + η2(X)h(Y,ξ2)+

η2(Y)h(X,ξ2),

∀ X,Y ∈ Γ(TM)

(9)

Where h(X, Y) = B(X, Y)N and HεΓ(TM⊥) is the mean curvature vector field

of M, denoting by ”P” the projection morphism of TM to D and using (8), we

deduce

X = PX + a(X)U + η1(X)ξ1 + η2(X)ξ2, ∀ XεΓ (TM)

(10)

Where a is a 1-form on M defined by,

a(X)=g(X,U), XεΓ (TM)

From (10) and (1-a)we infer

fX=tX-a(X)N ,XεΓ (TM)

where t is the tensor field defined by,

tX=fPX , XεΓ (TM)

Next from [5] we recall the following:
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Lemma 2: Let M be a hypersurface of a 2–Quasi Sasakian manifold M̃, Then

we have

(a) FU = fAξ1 + fBξ2

(12)

(b) FN = Aξ1 + Bξ2

(c) [U, ξ1, ξ2] = 0

By straight forward calculation we get.

Preposition 1:

Let M be a hypersurface of 2–Quasi Sasakian manifold M̃ ,Then we have

(a) tU = 0

(13)

(b) t1ξ1 + t2ξ2=0

(c) tX=-X+a(X)U+η1(X)ξ1+η1(X)ξ2
(d) g(TX,Y)+g(X,TY)=0 ,∀ X,Y εΓ(TM)

Using (6) and (12-b) we infer,

FX=αX - η1(AX)N - η2(BX)N ,

∀XεΓ(TM̃)(14)

Where α is a tensor field of type (1,1) on M.

Theorem 1: Let M be a hypersurface of a 2–Quasi Sasakian manifold M̃. Then the

covariant derivative of tensor t, a, b,η1,η2 are given by

(a) (∇Xt)Y = η1(Y)[tα(X)- η1(AX)U] + η2(Y)[tβ(X)-η2(BX)U]-a(Y)AX -

b(Y)BX + g(FX, fY)ξ1 + g(FX, fY)ξ2 + B(X,Y)U,

(b) (∇Xa)Y = B(X,tY) + η1(Y)η1(AtX) + η2(Y)η2(BtX)

(c) (∇Xη1)Y = g(Y,∇Xξ1) + g(Y,∇Xξ2), ∀ X,Y ϵΓ(TM)

2. Characterizations of normal structure on hypersurfaces of a 2-Quasi

Sasakian Manifold:

The purpose of this section is to study the notion of normal structure in sense

of Goldberg-Yano [6] and to establish a necessary and sufficient condition for the
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existence of this structure on a hypersurface of 2–Quasi Sasakian manifold tangent

to ξ1, ξ2. First we define the tensor field of type (1, 2) as follows

S(X, Y) = Nt(X, Y) + 2da(X,Y)U + 2db(X,Y)V + 2dη1(X,Y)ξ1 + 2dη2(X,

Y)ξ2,

∀ X,Y εΓ(TM)

where Nt is the Nijenhuis tensor with respect to the tensor field t. Next we state

the following.

Theorem2:

On a hypersurface M of a 2–Quasi Sasakian manifold M̃ the tensor field S is

given by ,

S(X,Y) = a(X)(AtY-tAY)+ a(Y)(AtX-tAX)

+ b(X)(BtY-tBY)- b(Y)(BtX-tBX) + (a
∧

η1)(X,Y)tAξ1 + (b
∧

η2)(X,Y)tBξ2 +

[a(X)η1(AtY)-a(Y)η1(AtX)]ξ1+[b(X)η2(BtY)-b(Y)η2(BtX)]ξ2 , ∀ X,YεΓ(TM)

(16)

Proof : From (15a) and the fact that ∇ is a torsion free connection on M, we infer

Nt(X,Y) = ∇tXtY -∇tY tX + t[(∇yt)X- (∇Xt)Y]

= η1(Y)[tαtX - η1(AtX)U] + η2(Y)[tαtX - η2(BtX)U] + g(FY,ftX)ξ1+

g(FY,ftX)ξ2-a(Y)AtX + b(Y) BtX + c(tX, Y)U - η1(X)[tαtγ-η1(AtY)U]-

η2(X)[tαtγ- η2(BtY)U] -g(ftY, FX)ξ1- g(ftY,FX)ξ2+ a(X)AtY + b(X)BtY -

c(X,tY)U + tη1(X)tαY - η1(Y)tαX + η2(X)tαY -η2(Y)tαXa(Y)AX + b(Y)BX -

a(X)AY - b(Y)BY

Nt(X,Y) = a(X)(AtY - tAY)-a(Y)(AtX - tAX) + b(X)(BtY - tBY)-b(Y)(BtX -

tBX) + η1(Y)(tαtX - t2αX) - η1(X)(tαtY - t2αY) + η2(Y)(tβtX - t2βX)-η2(X)(tβtY

- t2βY) + g(ftX, FY) - g(ftY, FX) ξ1 + g(ftX, FY) - g(ftY, FX)ξ2 + c(tX,Y) - c(X,

tY) + η1(X)η1(AtY) + η2(X)η2(BtY) - η1(Y)η1(AtX) + η2(Y)η2(BtX)U, ∀ X,Y

εΓ(TM)

(17)

On the other hand (15b), we deduce

2da(X,Y) = (∇Xa)Y - (∇Y a)X

= c(tY,X)-η1(Y)η1(AtX) + η2(Y)η2(BtX)- c(tX, Y)- η1(X)η1(AtY)-

η2(X)η2(BtY).

(18)
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From (11), (12b), (13c), we infer that

g(ftX,FY) - g(ftY,FX) = g(t2X,FY) - g(t2Y,FX)

= g(FX,Y) - g(X,FY) + a(X)g(U,FY) - a(Y)g(U,FX)

= -2dη1(X,Y)- 2eη2(X,Y)+ a(Y)g(X,fAξ1) + b(Y)g(X,fBξ1) - a(X)g(Y,fAξ1) -

b(X)g(Y,fBξ1)

= -2dη1(X,Y) - 2eη2(X,Y) + a(X)η1 + b(X)η2 - a(Y)η1(AtX) - b(Y)η2(BtX)

(19)

Next by using (11) and (14) we get

tα tX - t2αX = (fαtX - ftαX)T

= m[a(X)fAξ1 + b(X)fBξ2 - η1(AX)N - η2(BX)N]T

(20)

where XT denote the tangential part of X, the relation (16) follows from (17) - (19).

The proof is complete.

Definition 1: The hyper surface M of a 2–Quasi Sasakian manifold M is normal

in the sence of Goldberg-Yano [6] if S = 0.

Now we give a characterization for a normal hypersurface of 2–Quasi Sasakian

manifold M̃.

Theorem 3: Let M be a hypersurface of a 2–Quasi Sasakian manifold / M.

Then M is normal in sence Goldberg-Yano (or shortly Normal) if and only if

AtX = tAX ,∀ X εΓD

(21)

Proof: First let X,Y εΓ(D
⊕

{ξ1 + ξ2}) then a(X) = a(Y) = 0 and from (16) we

obtain S(X,Y) = 0. If we consider X = ξ1 + ξ2, Y = U in (16) then we get

S(U,ξ1,ξ2) = (tAξ1 + tBξ2) - (tAξ1 + tBξ2) = 0.

Finally, if XεΓ(D) and Y = U from (16) we deduce

S(X,U) = tAX - η1(AtX)ξ1 - η2(BtX)ξ2, ∀ X εΓ(D)

(22)

If (21) is true, then from (22) it follows that S = 0. Then from (22) we deduce that
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tAX + η1(AtX)ξ1 + η2(BtX)ξ2 = tAX, ∀X εΓ(D).

By direct calculation using (13-b) we obtain

η1(AtX)+ η2(BtX) = 0

and from (22) we obtain (21). The proof is complete. From Theorem (3) we deduce

Corollary1: The hyper surface M of a 2–Quasi Sasakian manifold M̃ is normal

iff

c(X,tY) + c(tX,Y) = 0, ∀ X εΓ(D), YεΓ(TM).

Corollary2: If the hypersurface M of a 2–Quasi Sasakian manifold M̃ is normal,

then we have

a. FX = αX

b. ∇XU εΓ(D)

c. ∇Xξ1 + ∇Xξ2εΓ(D), ∀XεΓ(D)

Proof: From (4),(14),(21) we deduce the assertion (a) and (c).For Y = U, from

(15-a), we infer that

∇XU = -tAX + η1(AtX)ξ1 + η2(BtX)ξ2, ∀XεΓ(TM)

(23)

Which proves assertion (c). The proof is complete.

Next we obtain the following

Theorem4:

The hyper surface M of a 2–Quasi Sasakian manifold is normal if and only if U

is a killing vector field.

Proof:

Using (23),we deduce

g(∇XU,Y) + g(∇Y U, X) = g(AtX - tAX + η1(AtX)ξ1 + η2(BtX)ξ2 - η1(X)tAξ1-

η2(X)tBξ2, Y), ∀ X,YεΓ(TM)

(24)

Suppose that U is a killing vector field then from (24) it follows

AtX - tAX + η1(AtX)ξ1 + η2(BtX)ξ2 = 0, ∀X εΓ(D)

(25)

Now from (25) we obtain η1(AtX) + η2(BtX) = 0, ∀X εΓ(D) and using (25) we

deduce (21).

Conversely by using (24) we infer that

g(∇XU,Y) + g(∇Y U,X) = 0, ∀ X εΓ(D), ∀ YεΓ(TM)
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(26)

Next since ∇ is a metric connection, from (13) and (23) we infer that

g(∇UU,X) = a(AtX) = 0, ∀ XεΓ(TM)

(27)

By using (4),(5a),(12a),(12c), we get

g(∇XU,ξ1,ξ2)+g(∇ξ1U + ∇ξ2U , X )= - g(U,∇Xξ1+∇Xξ2 )+ g(X,∇Uξ1+∇Uξ2)

= 2a(FX)

= 2[η1 (AtX) + η2(BtX)] = 0 ∀ X εΓ(TM)

(28)

From (26) - (28) it follows that U is a killing vector field.
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Math. J., 22(1970), 362-370.

7. S. KAnemaki, Quasi Sasakian manifolds, Tôhoku Math. J., 29(1977), 227-
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