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1. Introduction
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The study of the metallic means family was started by Kappara
Spinadel 2425, The Gold mean, Silver mean, Bronze mean, etc. are members of the
metallic means family. Let 22 —ax — b, Va, b € N, where N is the set of positive inte-
gers, be polynomial of degree 2 and the set of positive solutions of 2 —az —b = 0 is
represented o4, = 3[a + va? + 4b] and said to be the metallic means family. How-
ever, the polynomial structures on the differentiable manifold were developed by
goldberg, Yano and petridis *?. Andreou, Yano and Al-Aqeel %26 studied a struc-
ture defined by a tensor field f satisfying f° + f = 0 and established integrability
conditions.

The polynomial structure of degree 2 stisfying ¢? —a¢—bI = 0,Va,b € N and ¢ is
a tensor field of type (1,1), is known as metallic structure on a differentiable manifold
M 311, Recently, Chaudhary and Blaga ¢ studied the metallic structures and derived
generalized Wintgen inequality for slant submanifolds in metallic Riemannian space
forms. Lifts of metallic structure on the frame bundle and tangent bundle have been
studied by Khan %2, The geometry of the metallic structure has been studied by

=
numerous researchers o,8,12,13'
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This paper aims to study the metallic structure ¢ satisfying ¢? — a¢ — bl =
0,Va,b € N on M and obtain the metallic structure that acts on complementary
distribution D, as an almost product structure and complementary distribution
Dy as the null operator. Some calculations on the Nijenhuis tensor of the metallic
structure on M are determined.

2. Metallic structures

Let M be an n-dimensional differentiable manifold. A tensor field ¢ of type (1,1) is
called the metallic structure on M that satisfies '8

¢* —a¢p — bl =0,Ya,b e N, (1)
where [ is the unit vector field.

Proposition 1. '8 Let £ and M be the projection tensors given as

2 _
£:<Z> a<l>7 @)
b
and
2 _
M:I-(qsbmb). (3)
Then
L+ M=0,
L2=L£, M =M, LM=ML=0, (4)

PL=Lp=¢, ¢M=Mg¢p=0.

where I denotes the identity operator in M.

Let D, and D4 be the complementary distributions analogous to the projection
tensors £ and M, respectively in M. If the rank of ¢ is r, then dimension of D, is
r and the dimension of Dy is (n — r), where the dimension of M is n.

Theorem 2. Let M be an n-dimensional differentiable manifold equipped with the
metallic structure defined in (1). Then

¢* —ap ¢* —ad . ¢’ —ap
— =L, —L=L — M=0. (5)

Thus \/@ acts on Dy as an almost product structure and on Daq as a null
operator.

Proof. The proof is obvious.

Theorem 3. Let M be an n-dimensional differentiable manifold equipped with the
metallic structure ¢ defined in (1). If ¢ is of maximal rank, ¢ remains a metallic
structure on M.
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Proof. Let the rank of ¢ be maximal then r = n. Therefore dimL = n and dimM = 0
i.e. M =0 and £ = 1. Thus in the view of (2), we obtain

¢* —ap
b =1
&% —ap— bl = 0. (6)

ﬁ:

Hence ¢ is a metallic structure on M.

Theorem 4. Let M be an n-dimensional differentiable manifold equipped with the
metallic structure defined in (1). A tensor field of type (1,1) J defined by

¢* —ag
.

J=2 1 (7)
gives an almost product structure.
Proof. From (7), we have
2 _ 2 _
J24<¢> ba¢>)4<¢ ba¢)+L

J2 =1 (8)

Hence J is an almost product structure on M.

Theorem 5. Let p and q be the tensor fields p and ¢ on M as

p=Miy T ©)
and

p=mM—y| T (10)
Then

pg=qp=M—1I. (11)

Proof. The proof is obvious.

3. Nijenhuis tensor

The Nijenhuis tensor N(X,Y) of ¢ satisfying equation (1) in M is expressed as
follows

N(X)Y) = [6X, Y] — ¢[¢X,Y] — ¢[X, ¢Y] + ¢*[X, Y], (12)

for every vector field X,Y on M.
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Theorem 3.3 The conditions listed below are equivalent.

;. MN(X,Y) =0,
i M[pX, Y] =0,
iii. MN <¢2 ;mX’ Y) =0,

. M [(bgga%x, qu] — 0,
* — a¢
b

v M { LoX, ¢Y] o,

where X and Y are vector fields.
Proof: We need demonstrate that

(i) < (i)
Let MN(X,Y) = 0. By using (12), the obtain equation is

MN(X,Y) = M[X, 6Y] — MO[6X, Y] — Mo[X, 6Y] + MG*[X, Y],
since M¢ = 0, we have
MN(X,Y) = M[pX, ¢Y],
since MN(X,Y) =0, then
M[pX, Y] =0,
Thus,
MN(X,Y) =0 & M[X, ¢Y] = 0.
(i) < (idi)
Let M[¢X,¢Y] = 0. By using (12), the obtain equation is

2 2 2 _
MV 5, v) = T 0%, 0v] - Mol T 20X, v
2 _
- Mol E 0K oY)
2 _
+ MRy (13)
since, ¢2;“¢ =L, Mg =0, then (13) becomes
2 _
MN(EZ92XY) = MILGX, 6Y] = MI6X 6V ]as Lo =0,
since M[pX, Y] = 0, then we have
MN(@X, Y) =0,
Thus,

M[pX,$Y] =0 < MN(¢2 - 9@ X ¥)=0.
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(i3i) < (iv)
Let MN(¢ ;‘WX, Y') = 0 and using M¢ = 0. Then the obtain equation is
¢* —a¢ ¢* —ag

MN(F—E2X,Y) = MIE—26X, 6V,
since,
M[¢2 chﬁX, $Y] =0
Thus,
MN(d)Q - WX V)= 0 —s M[¢2 7 995X, 6] = 0.
(v) & (v)
Let M[£2%6X, ¢Y] = 0 and using L6 = ¢, ¢M = 0. Then the obtain
equation is
MN("52 ; Wrxy)— M[Lba(bﬁqﬁX, oY),
= ME 24X 6v] as Lo =0,
S0 MZT 2 Lox, 6] = m(T L ox. ov]
As ./\/l[¢2 ;“%X, $Y] =0,
Thus,
M[d)Q n 994X, Y] = 0 — M[¢2 7 9@ r6X, 6Y] = 0.

. 2_
(v) & (i) Let M[252LLOX, pY] = 0.
By using (4), the obtain equations are

M[L29X, Y] =0,
MI[LPX, ¢Y] =0,

MpX, Y] =0, as Lo = ¢,
Since MN(X,Y) = M[¢X, Y] as M[pX,¢Y] =0,
MN(X,Y) =0,

Thus, M[£F%LLHX, $Y] = 0 — MN(X,Y) = 0.
This completes the proof.
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