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In this paper, we generalized the work of Sheykhi (2011) and Ghose (2014) and establish
the connection between Holographic Dark energy interacting with modified Chaplygin

gas and then obtain the the evolution of holographic dark energy with corresponding

equation of state. In the first part of the paper, we have generalized the work of Sheykhi
(2011) by choosing Hubble radius as system’s IR cut-off and construct the analytical

form of the potentials as a function of scalar fields, namely V = V (ϕ) as well as this
dynamics of the scalar fields as a function of time, namely ϕ = ϕ(t) then we have imple-

mented the connection between Holographic dark energy and scalar fields model includ-

ing quintessence, tachyon,K−essence and dilaton energy density in a (2+1)−dimensional
spacetime FRW universe. In the second part of the paper, we have generalized the work

of Ghose (2014) and investigate holographic dark energy (HDE) correspondence of in-

teracting Modified Chaplygin Gas (MCG) and obtained evolution of the HDE with
corresponding equation of state. Considering the present value of the density parameter

a stable configuration is found which accommodates Dark Energy (DE). We note a con-

nection between DE and Phantom fields. It reveals that the DE might have evolved from
a Phantom state in the past. We also obtained the stability of the model and analyzed

the physical and geometrical interpretations of the cosmological model with reference to

the (2 + 1)−dimensional spacetime.
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1. Introduction.

The recent revolution coming from string theory and black hole theory has taught

us many unexpected things about the nature of spacetime and its relation to matter,

energy and entropy. Such a conceptual paradigm shift must eventually have serious

implications for cosmology. The most native dark energy (DE) candidate is the
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cosmological constant introduced by Einstein. Although cosmological constant is

consistent with the cosmological observations, there exits a fine-tunning problem in

particle physics. This fine -tuning problem in the greatest challenge in high energy

physics. Therefore cosmologists and particle physicists have proposed some other DE

models, for example quintessence 1, phantom 2, K−essence 3, Tachyon 4, Chaplygin

gas 5 etc.

Holographic dark energy (HDE) models have got a lot of enthusiasm because they

link the DE density to cosmic horizon, a global property of the universe, and have

a close relationship to the spacetime foam. In the literature various models of HDE

have been investigated via considering different system’s IR cutoff. According to the

holographic principle, the entropy of the system scales not with its volume, but with

its surface area. Cohen 6 suggested that in quantum field theory a short distance

cut-off is related to a long distance cut-off due to the limit set by formation of black

hole, namely it is quantum zero point energy density caused by a short distance

cut-off, the total energy in a region of size L should not exceed the mass of a black

hole of the same size, thus L3ρD ≤ LM2
p . Choosing the largest IR cut-off L which

saturates the inequality, we obtain

ρD = 3c2M2
pL

−2, (1)

where c is the unknown constant and Mp = (8πG)−1/2 is the planck mass.

In (N + 1)− dimension with N = n + 3, the mass of the Schwarzschild black hole

is given by 7,

M =
(N − 1)ΩN−1r

N−2
H

16πGN
,

where 8πGN = M1−N
∗ .

If we can see the effect of extra dimensions then we have the relation

L3ρD ∼ (N − 1)ΩN−1L
N−2

16πGN
,

⇒ ρD =
d(N − 1)ΩN−1L

N−5

16πGN
,

where d is the unknown constant.

In (N + 1)−dimension the dark energy as follows

ρD =
d(N − 1)ΩN−1

2
MN−1

∗ LN−5. (2)

If we choose the Hubble horizon as the IR cut-off, then we have

ρD =
d(N − 1)ΩN−1

2
MN−1

∗ H5−N . (3)

In (2+1)− dimension holographic dark energy (HDE) reaches in the following form

ρD =
d(N − 1)ΩN−1

2
MN−1

∗ L−3. (4)
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In the presence of interaction between DE and DM, the simple choice for IR cutoff

be the Hubble radius, L = H−1, which can be simultaneously drive accelerated

expansion and solve the coincidence problem 8 9. In the literature maximum author

used L = H−1 in the framework of (3 + 1)−dimension. Sharif 10 used L = H−1

as system IR cutoff in the higher dimensions. In this paper, it is very difficult to

construct the analytical form of the potentials V = V (ϕ) and dynamics of the

scalar field ϕ = ϕ(t) by choosing L = H−1 as system IR cutoff in the framework

of (2 + 1)−dimension so for the simplicity we choose Hubble radius L3/2 = H−1 as

system’s IR cut-off, we are able to construct the analytical form of the potentials

as a function of scalar field, namely V = V (ϕ) as well as the dynamics of the scalar

fields as a function of time, namely ϕ = ϕ(t). We are establishing the correspondence

between holographic DE density, quintessence, tachyon, K−essence and dilaton

energy density in the framework of (2 + 1)−dimensions theory of gravitation.

Recently Chaplygin gas (CG) is considered in the literature as one of the prospective

candidate for DE which however was first introduced in 1904 in aerodynamics.

Although it contains a positive energy density it is referred as an exotic fluid due

to its negative nature of pressure. CG may be described by a complex scalar field

originating from generalized Born–Infeld action. The equation of state for CG is

given by: An interesting model to describe DE is CG 5 11. Pure CG obeys equation

of state (EoS) 12 of the form,

p =
B

ρ
, (5)

where p and ρ are pressure and energy density respectively and B is positive con-

stant.

Chaplygin Gas (CG) is not consistent with observational data 13. Motivated by the

desire to investigate the observational loopholes better and better the form of EoS

of matter is later generalized by adding arbitrary constant with an exponent over

the mass density, which is called as Generalized Chaplygin Gas (GCG).

The equation of state for the GCG is given by

p = − B

ρα
, (6)

where 0 < α ≤ 1.

Later on GCG is again modified through the addition of an ordinary matter field,

which is termed in the literature as Modified Chaplygin Gas (MCG), claiming even

better match with observational results. The MCG equation of state has two parts:

the first term gives an ordinary fluid obeying a linear barotropic EoS, and the

second term relates pressure to some negative power energy density. So here we are

essentially dealing with a two-fluid model.

MCG obeys EoS of the form,

p = Aρ− B

ρα
, (7)
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where 0 < A < 1/3, 0 < α ≤ 1, B > 0 are positive constants.

Here A and B describes the features of dark energy models and Chaplygin gas

respectively.

In the past few decades, there has been a large interest in (2 + 1)−dimensional

gravity, particularly after the demonstration of the fact that it’s quantum version

is solvable by Witten 14 and contains black-hole solutions by Bañados 15. Recently

there has been much attention given to study gravitational theories in dimensions

other than four. The reasons for this are many and varied; however, the principal

motivation comes from string theory, grand unified theory, and quantum gravity.

The unique status of Einstein’s field equations in two space and one time dimensions

provides the principal reason to focus on (2+ 1)−dimensions theory of gravitation.

General relativity (GR) in (2+1)−dimensions are known to have a number of unique

simplifying characteristics: there are no gravitational waves, no black holes within

the absence of negative cosmological constant, the Weyl curvature is identically

zero, and the theory’s weak field limit does not correspond to Newtonian gravity in

2−space aspects.

In the year 1990s, the interest was motivated by the discovery of the (2 +

1)−dimension stationary circularly symmetric black hole solution by 16 17, which

has certain characteristics intrinsic in black holes (3+1). Although most of the stud-

ies in (2 + 1)−gravity are related to black hole physics, certain attention has been

devoted to cosmology. Some Friedmann-Robertson-Walker (FRW) models were an-

alyzed by 18,? in (2 + 1)−dimensional spacetime.

In (2 + 1)−dimensional Einstein gravity, Cornish and Frankel 20 constructed solu-

tions for isotropic dust-filled and radiation-dominated universes for k = −1, 0, 1.

Saslaw 21 developed an interesting concept of a possible relationship between the

homogeneity of the universe and the dimensionality of space ; if our universe went

through a spatially two-dimensional stage, determined by a (2 + 1)−dimensional

dust-filled model, it might be possible to account for its present large-scale homo-

geneity.

Cruz and Martinez 22 derived flat FRW model for a homogeneous scalar field

minimally coupled to gravity in (2 + 1)−dimension. Wang and Abdalla 23 used

(2+1) FRW models to examine the cosmic holographic principle. Khadekar 24 find

the holography in (2+1)-dimensional cosmological model with generalized equation

of state and Khadekar and Gharad 25 were investigating (2 + 1)-dimensional cos-

mological viscous models with G and Λ variable. While Khadekar et al. 26 studied

modified Chaplygin gas with bulk viscous cosmology in FRW (2 + 1)−dimensional

spacetime and Islam et al. 27 investigated (2+1)−dimensional cosmological models

in f(R, T ) gravity with Λ(R, T ).

Sheykhi 28 established the connection between the scalar field model of DE

including quintessence, tachyon, K−essence and dilaton energy density by choosing

Hubble radius L = H−1 as system’s IR cut-off for interacting HDE. Similarly,
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Ghose 29 investigated HDE model considering interacting GCG in the framework

of (4 + 1)−dimensional spacetime and obtained the evolution of the modified HDE

with corresponding EoS.

With the motivation of the above work in this paper we have generalized the work

of Sheykhi 28 and Ghose 29 in the framework of (2+1)−dimensional spacetime. This

paper is divided into two parts. In the first part of the paper we have generalized

the work of Sheykhi 28 by choosing Hubble radius L3/2 = H−1 as system’s IR

cut-off and construct the analytical form of the potentials as a function of scalar

field, namely V = V (ϕ) as well as this dynamics of the scalar fields as a function of

time, namely ϕ = ϕ(t) then we have implemented the connection between HDE and

scalar fields model including quintessence, tachyon, K−essence and dilaton energy

density in a (2 + 1)−dimensional spacetime FRW universe.

In the second part of the paper, we have generalized the work of Ghose 29 and

investigate holographic dark energy (HDE) correspondence of interacting Modi-

fied Chaplygin Gas (MCG) and obtained evolution of the HDE with corresponding

equation of state. Considering the present value of the density parameter a stable

configuration is found which accommodates Dark Energy (DE). We note a connec-

tion between DE and Phantom fields. It reveals that the DE might have evolved

from a Phantom state in the past. We also obtained the stability of the model and

analyzed the physical and geometrical interpretations of the cosmological model

with reference to the (2 + 1)−dimensional spacetime.

This paper is organized as follows: section 2, deals with Einstein field equations

for flat FRWmodels in (2+1)−dimension. We have obtained EoS parameter of HDE

by choosing HDE of the form ρD = 2c2M2
pL

−3 with Hubble radius L3/2 = H−1 as

system’s IR cut-off in section 3. In section 4, we have established the connection

between scalar model of the dark energy namely, quintessence, tachyon, K−essence

and dilaton energy density. As a results we have reconstructed the analytic form of

potential V = V (ϕ) as well as the dynamics of the scalar field as a function of time

i.e. ϕ = ϕ(t).

In second part of the paper we have proposed the interacting Holographic Modified

Chaplygin Gas (MCG) in (2+1)−dimensional spacetime in section 5. The stability

of the model is discussed in section 6 and finally section 7, we have given a brief

discussion and conclusion.

2. FRW Model and Friedmann equations

We consider (2 + 1)−dimensional FRW line element of the form

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2

]
, (8)

where, a(t) denotes the scale factor.

The coordinates (t, r, θ) represent the co-moving coordinates and the constant k

denotes the curvature of the space k = 0, 1,−1 for flat, closed and open universe



6 Praveen Kumar and G. S. Khadekar

respectively.

The Einstein field equations in (2 + 1)-dimension spacetime is given by 20,

Gµν = Rµν − 1

2
Rgµν = 2πGTµν , (9)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, R is the Ricci scalar. In

future, we consider 2πG = 1.

The energy momentum tensor is given by,

Tµν = (ρ+ p)uµuν − pgµν , (10)

where ρ & p is the energy density and pressure respectively.

Also, uµ is the velocity three vector with gµνuµuν = 1.

The field equations (9) with the help of line element (8) in (2 + 1)−dimensions are

given by,

ȧ2

a2
+

k

a2
=

ρ

2
, (11)

ä

a
= −p, (12)

where “(.)” denotes derivative with respect to cosmic time t.

The Hubble parameter is defined as H = ȧ
a .

We assume the law of conservation energy (Tµν
;ν = 0) in (2+1)−dimensional space-

time is given by,

ρ̇+ 2H(ρ+ p) = 0. (13)

By using the equation of state p = ωρ in Eq. (13) reduce to,

ρ̇+ 2H(1 + ω)ρ = 0. (14)

In the following section, consider two types of fluids with total energy density as

ρ = ρm + ρD, where ρm and ρD represents the energy density of dark matter

and dark energy density consisting Cold Dark Matter (CDM) respectively with an

equation of state parameter ωm = 0. For non interacting fluids, the conservation

equations for ρD, ρm and pD, pm satisfy separately.

3. Holographic Dark Energy with Hubble Radius L = H−2/3 as an

IR Cut-off

In terms of Hubble parameter the first Friedmann equation for flat universe in

(2 + 1)−dimension can be rewritten as

H2 =
1

2M2
p

(
ρD + ρm

)
. (15)

However, in the case of interacting DE models, the following equations results from

the conservation equations for Dark matter (DM) and DE are

˙ρm + 2Hρm = Q, (16)
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˙ρD + 2H(1 + ωD)ρD = −Q, (17)

where ωD = pD/ρD is the equation of state (EoS) parameter of HDE, and Q stands

for the interaction term.

It should be noted that the ideal interaction term must be motivated from the

theory of quantum gravity.

In this paper we consider the simple form of interacting term Q ∝ HρD,

Q = 2b2HρD, (18)

where b2 is a coupling constant.

By using Eq. (4) the Holographic Dark Energy density in (2 + 1)−dimension has

the form

ρD = 2c2M2
pL

−3,

In terms of Hubble radius the HDE has the form

ρD = 2c2M2
pH

2, (19)

where Hubble radius L = H−2/3 the holographic dark energy.

This Eq. (19) is analogous to the Eq. taken by Sheykhi 28 in (3 + 1)−dimensional

spacetime.

After inserting Eq. (19) into Eq. (15), we get

u =

(
1− c2

c2

)
, (20)

where ρm

ρD
= u is the energy density ratio.

From Eq. (19) it is noted that the ratio of the energy densities is a constant.

Note that this condition also fulfilled in (2 + 1)−dimension for all time; otherwise

the dark energy density would not even approximately be proportional to L−2. By

differentiating Eq. (19) w. r. to t, we get

˙ρD = 4c2M2
pHḢ. (21)

Differentiating Eq. (15) w. r. to t, we get

1

2M2
p

(
˙ρm + ˙ρD

)
= 2HḢ. (22)

Adding Eq. (16) and (17) and put u = ρm

ρD
we get

(
˙ρm + ˙ρD

)
= −2HρD

[
u+ (1 + ωD)

]
, (23)

put this value in Eq. (22), we get

−HρD
M2

p

[
u+ 1 + ωD

]
= 2HḢ. (24)
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put this value in Eq. (21), we get

˙ρD = −2c2HρD

[
u+ 1 + ωD

]
, (25)

put this value in Eq. (17) after using the value of Q from Eq. (18), we get

ωD =
−b2

1− c2
. (26)

Here the c and b are constants and hence the EoS parameter ωD is also constant.

In the absence of interaction term b2 = 0, we get dust case with ωD = 0. We note

that 1− c2 ̸= 0 in equation (26). If 1− c2 = 0 then c2 < 1 or 1 > c2 then ωD < 0.

Beside the acceleration expansion
(
ωD < − 1

2

)
then from Eq. (26), we have

−b2

1− c2
<

−1

2
⇒ c2 > 1− 2b2.

Thus, this model can describe the accelerated expansion if 1 − 2b2 < c2 < 1 in

(2+1)−dimensional spacetime. Moreover, ωD can cross the phantom line (ωD < −1)

provided b2 > 1− c2. The analogous results discussed by Sheykhi 28.

4. Correspondence with Scalar field Model

In this section of the paper, we are implementing a correspondence between inter-

acting HDE and various scalar field models of the type i.e. Holographic quintessence

model, Holographic tachyon model, Holographic K−essence model, Holographic

dilaton model by equating the equation of state for this model with the equations

of state parameter of interacting HDE obtained Eq. (26).

4.1. Reconstructing Holographic quintessence model

In this part of the paper, we assume the quintessence scalar field model of DE to

establish the correspondence between HDE and quintessence scalar field.

The energy density and pressure in (2 + 1)−dimension spacetime is given by

ρϕ =
1

2
ϕ̇2 + V (ϕ), (27)

pϕ =
1

2
ϕ̇2 − V (ϕ), (28)

where ϕ is the kinetic energy and V (ϕ) potential be the function of scalar field ϕ.

From Eqs. (27) and (28) with pϕ = ωϕρϕ, we get

ωϕ =
pϕ
ρϕ

=
1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
.

After solving above Eqs. for ϕ and V (ϕ), we get

ϕ̇2 =
(
1 + ωϕ

)
ρϕ, (29)
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V (ϕ) =
(1− ωϕ

2

)
ρϕ, (30)

and

ωϕ =
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (31)

For implementing the correspondence between HDE and quintessence scalar-field,

we identify ρϕ = ρD and ωϕ = ωD then from Eqs. (19), (26) and (29) gives

⇒ ϕ̇ =

√
2

(
1− b2

1− c2

)
× cMpH,

After integrating and considering the constant of integration is zero i.e ϕ(ao = 1) =

0, we get

ϕ(a) = cMp

√
2

(
1− b2

1− c2

)
× lna. (32)

Hence, from Eq. (30), we have

V (ϕ) =
1

2

(
1 +

b2

1− c2

)
× 2c2M2

pH
2. (33)

Again from Eq. (25) with Eqs. (19) and (20), we have

Ḣ

H2
= −

[
1− b2c2

1− c2

]
. (34)

Let us take k =
(
1− b2c2

1−c2

)
then the above equation reduces in the form of

Ḣ

H2
= −k.

Integrating on both sides, we have

H =
1

kt
. (35)

Again, integrating on both sides, we have

a(t) = t1/k. (36)

In this case Eq. (32) can be written as

ϕ(t) =
cMp

k

√
2

(
1− b2

1− c2

)
logt, (37)

and from Eq. (33), we get

V (ϕ) =
c2M2

p

k2

(
1 +

b2

1− c2

)
× 1

t2
. (38)
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Fig. 1. The kinetic energy ϕ is shown against time for the different values of the constants
c = 0.1, B = 1,M2

p = 1, k = 0.5, b2 = 0.200(black), 0.270(red), 0.600(blue).

Fig. 2. The potential V (ϕ) is shown against time for the different values of the constants c =
0.1, B = 1,M2

p = 1, k = 0.5, b2 = 0.200(black), 0.270(red), 0.600(blue).

By using Eq. (37), we have

t2 = exp

[
2kϕ(t)

cMp

(
2− 2b2

1− c2

)−1/2
]
, (39)
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Fig. 3. The potential V (ϕ) is shown against time for the different values of the constants c =
0.1, B = 1,M2

p = 1, k = 0.5, b2 = 0.200(black), 0.270(red), 0.600(blue).

put this value in Eq. (38), we get

V (ϕ) =
c2M2

p

k2

(
1 +

b2

1− c2

)
× exp

[
−2kϕ(t)

cMp

(
2− 2b2

1− c2

)−1/2
]
, (40)

From the scale factor Eq. (36) it is noted that the obtained potential leads to an

accelerated universe at the present time. This expression is different than the ex-

pression obtained earlier by Sheykhi 28. In addition to the fact that the exponential

potential can give rise to an accelerated expansion in which the field energy density

ρϕ is proportional to the matter energy density ρm.

From the Eq. (26) we can easily implemented a correspondence between interacting

HDE and scalar field model of the type tachyon, K−essence and dilaton energy

density in a (2+ 1)−dimension FRW universe. It is observed that we get analogous

results obtained earlier by Sheykhi 28 in the framework of (3+1)− dimension space-

time. Hence, we are not discussed the same here in details. But we only discussed

the graphical representation of the potential function of scalar field V = V (ϕ) and

dynamics of the scalar field ϕ = ϕ(t) in the concluding remark of the paper that

was not discussed earlier by Sheykhi 28.

5. Interacting Holographic MCG Model

In this section we have generalized the work of Ghose 29 and obtained HDE model

by considering interacting MCG in (2 + 1)− dimensional spacetime. We consider

the interaction quantity Q to be of the form Q = ΓρΛ and denote the ratio of the

energy densities for the two fluids with r, i.e. r = ρm

ρD
. For Q > 0, one define decay

of MCG into CMD and Γ is the decay rate.
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We define effective equation of state parameters as given by Setare 30,

ωeff
D = ωD +

Γ

2H

and

ωeff
m = −1

r

Γ

2H
. (41)

The conservation equations are given by

˙ρm + 2Hρ
(
1 + ωeff

m

)
= 0, (42)

˙ρD + 2Hρ
(
1 + ωeff

D

)
= 0, (43)

Density parameters are defined as

Ωm =
ρm
ρcr

=
ρm

2M2
pH

2

and

ΩD =
ρD
ρcr

=
ρD

2M2
pH

2
, (44)

where ρcr = 2M2
pH

2.

In terms of density parameters equation (15) becomes

1 =
1

2M2
pH

2
(ρD + ρm),

By using Eq. (44), we get

⇒ ΩD +Ωm = 1. (45)

Again, by using Eq. (15) and (44), we obtain

r =
1− ΩD

ΩD
. (46)

After inserting Eq. (7) into Eq. (13), we have

ρD =

[
B

(1 +A)
+

C

a2(1+α)(1+A)

] 1
1+α

. (47)

where C is the constant of integration.

The EoS parameter ωD is given by

ωD =
pD
ρD

=

[
A− B

ρα+1
D

]
,

By using Eq. (47), we get

ωD = A− B[
B

(1+A) +
C

a2(1+α)(1+A)

] . (48)
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From Eq. (41), we have

ωeff
D = A− B[

B
(1+A) +

C
a2(1+α)(1+A)

] +
Γ

2H
. (49)

We choose decay rate which is given as

Γ = 2b2(1 + r)H, (50)

where b2 is coupling constant.

By using Eqs. (50) and (26) into Eq. (49), we get

ωeff
D = b2

(
1

ΩD
− 1

1− c2

)
. (51)

Fig. 4. Hubble parameter versus red shift the different values of the constants A = 1/3, B =

1, α = 0.1(black), α = 0.5(red), α = 0.9(blue).

If we establish the correspondence between the holographic dark energy and

MCG energy density the by equating Eqs. (19) and (47), we have

2c2M2
pH

2 =

[
B

(1 +A)
+

C

a2(1+α)(1+A)

]1+α

,

C = a2(1+α)(1+A)

[
(2c2M2

pH
2)

(1+α) − B

(1 +A)

]
. (52)
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Fig. 5. Hubble parameter versus red shift the different values of the constants A = 1/3, B =
1, α = 0.1(black), α = 0.5(red), α = 0.9(blue).

Now, using the EoS parameter of holographic dark energy from Eqs. (26) and

(48), we get

A− B[
B

(1+A) +
C

a2(1+α)(1+A)

] =
−b2

(1− c2)
,

Substituting the value of C in the above equation we get the following

B = (2c2M2
pH

2)
(1+α)

[
A+

b2

(1− c2)

]
. (53)

Substituting the value of B in Eq. (52) we get the value of C as

C =
(2c2M2

pH
2a2(1+A))(1+α)

1 +A

(
1 + ωD

)
. (54)

It is noted that from Eqs. (53) and (54) that B and C are time-dependent which

was also obtained by Setare30. By using CG as an alternative to quintessence 5

obtained as A = Λ(Λ + ρm). Shapiro 31 observed that this result leads to the fact

that if Λ vary with time, B does not remain constant.

6. Squared Speed of Sound in CG and Stability of the Model

The squared speed of sound is defined as

v2g =
dpD
dρD

. (55)
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Fig. 6. EoS parameterωD versus scale factor for the different values of the constants A = 1/3, B =
1, α = 0.5, C = 0.4(black), C = 1(red), C = 1.6(blue).

The MCG model is unstable if v2g < 0. In our holographic MCG model, we get

v2D =
dpD
dρD

=
˙pD
˙ρD
. (56)

In this case ˙pD is given by

˙pD = ω̇eff
D ρD + ωeff

D ˙ρD, (57)

where “(.)” means differentiation with respect to cosmic time.

Divide Eq. (57) throughout by ˙ρD, we get the expression for squared speed as

v2D = ωeff
D + ω̇eff

D

ρD
˙ρD
. (58)

By using Eq. (51), we obtain

ω̇eff
D =

b2

Ω2
D

Ω̇D, (59)

where Ω̇D is determined from Eqs. (44) and (18), we get

Ω̇D = 2c2
Ḣ

H
, (60)

By using ω̇eff
D and Ω̇D in Eq. (59), we get

v2D = b2
(

1

ΩD
− 1

1− c2
+

c2

Ω2
D

)
. (61)

Using the observed value ΩD ≈ 0.73 in Eq. (61), we get v2D = 0.10220 which ensures

that v2D > 0 thus, it evident that the modified Chaplygin gas model is stable in the

framework of (2 + 1)−dimensional spacetime.
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Fig. 7. Effective DE equation of state ωeff
D versus ΩD for the different values c = 0.1, b2 =

0.270(black), b2 = 0.500(red), b2 = 1.000(blue).

Fig. 8. Squared speed for MCG v2D versus ΩD for the different choice of b2.

7. Discussion and Conclusion

This paper is divided into two parts in the first part of the paper we generalized the

work of Sheykhi 28 by choosing the Hubble radius L = H−2/3 as system’s IR cutoff

for interacting holographic dark energy and established a connection between the

scalar-field model of dark energy including quintessence, tachyon, K−essence, and

dilaton energy density and holographic energy density of the form ρD = 2c2M2
pH

2
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in the framework of (2 + 1)−dimension theory of gravitation. As a result, we have

reconstructed the analytical form of potentials, namely, V = V (ϕ) as well as the

dynamics of the scalar fields as a function of time explicitly, namely, ϕ = ϕ(t).

According to the evolutionary behavior of the interacting holographic dark en-

ergy model, we found that in the case of quintessence from the scale factor Eq.

(36) it is noted that the obtained potential leads to an accelerated universe at the

present time. Requiring ä > 0 for the present time, leads to k < 0, which can be

translated into c2 > 0. Note that the condition k < 1 valid only for the late time

where we have a dark energy universe. In general k depends on c, and for matter

dominated epoch where c is no longer a constant, then k is also not a constant and

varies with time. We have obtained the value of Hubble parameter is standard i.e.

the age of the universe. In addition to the fact that the exponential potential can

give rise to an accelerated expansion in which the energy density ρD is propositional

to the matter energy density ρm. In the Fig. (1) shows that the kinetic energy ϕ

increases as cosmic time t increases and the potential V (ϕ) decreases as the cosmic

time t increases in fig. (2) while in the Fig. (3) we observed that the potential V (ϕ)

decreases as kinetic energy ϕ increases for the holographic quintessence model.

For the holographic tachyon model with a equation of state parameter given by

ωT =
p

ρ
= ϕ̇2 − 1. (62)

To established the correspondence between HDE and tachyon field, we equate the

value of ωD from Eq. (26) with the value of ωT from Eq. (62), we get

ϕ =

[
1− b2

1− c2

]1/2
t, (63)

Similarly, by using above value of ϕ, we get

V (ϕ) = 2c2M2
p × 1

k2t2
× b√

1− c2
. (64)

From Eq. (63) we obtain tachyon potential in terms of the scalar field as

V (ϕ) =
2c2M2

p

k2
b√

1− c2

(
1− b2

1− c2

)
1

ϕ2(t)
. (65)

It is observed that the evolution of tachyon model is given by ϕ(t) is propositional

to the ′t′ and the tachyon potential is inverse a square power law corresponding to

the solution obtained early by Copeland 32. From the Fig. (9) shows that the kinetic

energy ϕ increases as cosmic time ′t′ increases and the potential V (ϕ) decreases as

the cosmic time t increases in fig. (10). while in the Fig. (11) shows that the poten-

tial V (ϕ) decreases as kinetic energy ϕ increases.
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Fig. 9. The kinetic energy ϕ is shown against time for the different values of the constants
c = 0.1, B = 1,M2

p = 1, k = 0.5, b2 = 0.200(black), 0.270(red), 0.600(blue).

Fig. 10. The potential V (ϕ) is shown against time for the different values of the constants c =
0.1, B = 1,M2

p = 1, k = 0.5, b2 = 0.200(black), 0.270(red), 0.600(blue).

For the holographic K−essence model the potential with the equation of state

parameter is given by

ωK =
X − 1

3X − 1
, (66)
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Fig. 11. The potential V (ϕ) is shown against time for the different values of the constants c =
0.1, B = 1,M2

p = 1, k = 0.5, b2 = 0.200(black), 0.270(red), 0.600(blue).

Equating the value of ωD from Eq. (26) with the value of ωK from Eq. (66), we get

X =
1 + b2 − c2

1 + 3b2 − c2
. (67)

Here, X is a positive constant (c2 < 1). The EoS parameter in Eq. (66) diverges

for X = 1/3. Let us consider the cases with X > 1/3 and X < 1/3 separately. In

the first case where X > 1/3, the condition ωK < −1/3 leads to X < 2/3. Thus,

we should have 1/3 < X < 2/3 in this case. We obtain the EoS of a cosmological

constant (ωK = −1) for X = 1/2. In the second case where X < 1/3, we have

X− 1 < −2/3 < 0, thus ωK = X−1
3X−1 > 0 which means that we have no acceleration

at all so this case is ruled out. As a result in K−essence model the accelerated

universe can be achieved provided 1/3 < X < 2/3 which translates into 1 − 3b2 <

c2 < 1. Combining Eq. (67) with X = −ϕ̇2/2 given by Armendariz-Picon 33

ϕ̇2 = 2

(
1 + b2 − c2

1 + 3b2 − c2

)
, (68)

and thus we obtain the expression for the scalar field in the flat FRW background

ϕ(t) =

[
2

(
1 + b2 − c2

1 + 3b2 − c2

)]1/2
t, (69)

where we have taken the integration constant ϕ0 equal to zero.

By taking the correspondence between HDE and K−essence into this account.

Equating ρ(ϕ,X) = f(ϕ)(−X + 3X2) with the Eq. (26) we have

f(ϕ) =
2c2M2

p

k2

[
1 + 3b2 − c2

c2 − 1

]
1

ϕ2(t)
. (70)



20 Praveen Kumar and G. S. Khadekar

For the holographic K−essence model the potential has a power law expansion

and it is noted that from Eq. (69) then ϕ̇ is constant this means that kinetic energy

of K−essence become constant through ϕ is not constant and evolves with time.

Fig. 12. The kinetic energy ϕ is shown against time for the different values of the constants

c = 0.1, B = 1,M2
p = 1, k = 0.5, b2 = 0.200(black), 0.270(red), 0.600(blue).

Fig. 13. The potential V (ϕ) is shown against time for the different values of the constants c =

0.1, B = 1,M2
p = 1, k = 0.5, b2 = 0.200(black), 0.270(red), 0.600(blue).
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In the Fig. (12) it is observed that the kinetic energy ϕ of K−essence becomes

constant as cosmic time ′t′ increases while the potential f(ϕ) decreases as the cos-

mic time ϕ increases in fig.(13).

For the case of holographic dilaton field with the equation of state parameter is

given as

ωd =
1− αeλϕX

1− 3αeλϕX
. (71)

To establish the correspondence between HDE and dilaton field we equate the value

of ωD from Eq. (26) with the value of ωd from Eq. (71), we get

ϕ =
2

λ
ln

[
λ√
2α

(
1 + b2 − c2

1 + 3b2 − c2

)1/2

t

]
. (72)

We used the correspondence to find the form of scalar field and established the

region for the constant in which we can except the scaling solution giving rise to

accelerated expansion.

Fig. 14. The kinetic energy ϕ is shown against cosmic time for the different values of the constants
c = 0.1, B = 1,M2

p = 1, k = 0.5, b2 = 0.002(black), b2 = 0.270(red), b2 = 0.600(blue).

The existence of scaling solutions for the dilaton has been studied by Piazza and

Tsujikawa 34 and found that in this case the scaling solution corresponds to Xeλϕ =

constant which has the solution from above Eq. ϕ(t) ∝ lnt. We found the results

by equating the EoS parameter of HDE and dilaton field are consistent which was

obtained earlier by Piazza and Tsujikawa 34. In this work for the simplicity we have

taken c is constant. From the Fig. (14) shows that the kinetic energy ϕ of dilaton
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field increases as cosmic time ′t′ increases.

In the second part of the paper we have investigated the holographic dark energy

of modified Chaplygin gas in the framework of (2 + 1)−dimensional spacetime. We

have obtained the evolution of modified holographic dark energy with corresponding

equation of state by considering the present value of the density parameter and

found stable configuration which accommodate dark energy (DE). Here, we have

noted a connection between dark energy and phantom fields. It reveals that the dark

energy might have evolved from a phantom state in the past. We have also obtained

the stability of the model and analyzed the physical and geometrical interpretations

of the cosmological model in the framework of (2+1)−dimensional spacetime. In the

Fig. (4) it is observed that A = 1/3 and B = 1 the behaviour of Hubble parameter

H in terms of red shift is quite close to observations Thakur 35, while the Hubble

parameter H decreases as the scale factor a increases in fig. (5).

From the Fig. (6) shows that A = 1/3 and B = 1 the behaviour of EoS parameter

ωD approaches −1 as scale factor ′a′ increases while from the fig. (7) it is shown

that the behaviour of effective DE equation of state parameter ωeff
D decreases as

EoS parameter ωD increases. From the fig. (8) it is observed that the behaviour

of squared speed for modified Chaplygin gas v2D decreases as EoS parameter ωD

increases for the different choice of b2.
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