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In this paper, we generalized the work of Sheykhi (2011) and Ghose (2014) and establish
the connection between Holographic Dark energy interacting with modified Chaplygin
gas and then obtain the the evolution of holographic dark energy with corresponding
equation of state. In the first part of the paper, we have generalized the work of Sheykhi
(2011) by choosing Hubble radius as system’s IR cut-off and construct the analytical
form of the potentials as a function of scalar fields, namely V' = V(¢) as well as this
dynamics of the scalar fields as a function of time, namely ¢ = ¢(¢) then we have imple-
mented the connection between Holographic dark energy and scalar fields model includ-
ing quintessence, tachyon, K —essence and dilaton energy density in a (2+1)—dimensional
spacetime FRW universe. In the second part of the paper, we have generalized the work
of Ghose (2014) and investigate holographic dark energy (HDE) correspondence of in-
teracting Modified Chaplygin Gas (MCG) and obtained evolution of the HDE with
corresponding equation of state. Considering the present value of the density parameter
a stable configuration is found which accommodates Dark Energy (DE). We note a con-
nection between DE and Phantom fields. It reveals that the DE might have evolved from
a Phantom state in the past. We also obtained the stability of the model and analyzed
the physical and geometrical interpretations of the cosmological model with reference to
the (2 + 1)—dimensional spacetime.
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1. Introduction.

The recent revolution coming from string theory and black hole theory has taught
us many unexpected things about the nature of spacetime and its relation to matter,
energy and entropy. Such a conceptual paradigm shift must eventually have serious
implications for cosmology. The most native dark energy (DE) candidate is the
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cosmological constant introduced by Einstein. Although cosmological constant is
consistent with the cosmological observations, there exits a fine-tunning problem in
particle physics. This fine -tuning problem in the greatest challenge in high energy
physics. Therefore cosmologists and particle physicists have proposed some other DE
models, for example quintessence !, phantom 2, K —essence 2, Tachyon 4, Chaplygin
gas 5 etc.

Holographic dark energy (HDE) models have got a lot of enthusiasm because they
link the DE density to cosmic horizon, a global property of the universe, and have
a close relationship to the spacetime foam. In the literature various models of HDE
have been investigated via considering different system’s IR cutoff. According to the
holographic principle, the entropy of the system scales not with its volume, but with
its surface area. Cohen ¢ suggested that in quantum field theory a short distance
cut-off is related to a long distance cut-off due to the limit set by formation of black
hole, namely it is quantum zero point energy density caused by a short distance
cut-off, the total energy in a region of size L should not exceed the mass of a black
hole of the same size, thus L?pp < LM?. Choosing the largest IR cut-off L which
saturates the inequality, we obtain

pp =3 ML, (1)
where c is the unknown constant and M,, = (87G)~!/? is the planck mass.
In (N + 1)— dimension with N = n + 3, the mass of the Schwarzschild black hole
is given by 7,
(N —1)Qn_yrpy >

M:
167TGN ’

where 87G N = M}V,
If we can see the effect of extra dimensions then we have the relation
N — 1)QN_1LN72

167T'GN ’

LSPD ~ (

d(N - 1)QN_1LN_5
167TGN ’

= PD =

where d is the unknown constant.
In (N + 1)—dimension the dark energy as follows

d(N — I)QN_l

pp = 5 MN-ILN=5, (2)
If we choose the Hubble horizon as the IR cut-off, then we have
d(N —1)Qn_— 5
D= ( 2) N 1M>£VleofN. (3)
In (2+1)— dimension holographic dark energy (HDE) reaches in the following form
d(N —1)Qn_
pp = T ZDON v, (®)

2
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In the presence of interaction between DE and DM, the simple choice for IR cutoff
be the Hubble radius, L = H~!, which can be simultaneously drive accelerated
expansion and solve the coincidence problem 8 ?. In the literature maximum author
used L = H~! in the framework of (3 + 1)—dimension. Sharif !* used L = H~!
as system IR cutoff in the higher dimensions. In this paper, it is very difficult to
construct the analytical form of the potentials V' = V(¢) and dynamics of the
scalar field ¢ = ¢(t) by choosing L = H~! as system IR cutoff in the framework
of (2 + 1)—dimension so for the simplicity we choose Hubble radius L3/2 = H~! as
system’s IR cut-off, we are able to construct the analytical form of the potentials
as a function of scalar field, namely V = V(¢) as well as the dynamics of the scalar
fields as a function of time, namely ¢ = ¢(t). We are establishing the correspondence
between holographic DE density, quintessence, tachyon, K —essence and dilaton
energy density in the framework of (2 + 1)—dimensions theory of gravitation.
Recently Chaplygin gas (CQG) is considered in the literature as one of the prospective
candidate for DE which however was first introduced in 1904 in aerodynamics.
Although it contains a positive energy density it is referred as an exotic fluid due
to its negative nature of pressure. CG may be described by a complex scalar field
originating from generalized Born-Infeld action. The equation of state for CG is
given by: An interesting model to describe DE is CG ® 1. Pure CG obeys equation
of state (EoS) 12 of the form,

p= (5)
where p and p are pressure and energy density respectively and B is positive con-
stant.

Chaplygin Gas (CG) is not consistent with observational data 3. Motivated by the
desire to investigate the observational loopholes better and better the form of EoS
of matter is later generalized by adding arbitrary constant with an exponent over
the mass density, which is called as Generalized Chaplygin Gas (GCG).

The equation of state for the GCG is given by

p=—— (6)

where 0 < o < 1.

Later on GCG is again modified through the addition of an ordinary matter field,
which is termed in the literature as Modified Chaplygin Gas (MCG), claiming even
better match with observational results. The MCG equation of state has two parts:
the first term gives an ordinary fluid obeying a linear barotropic EoS, and the
second term relates pressure to some negative power energy density. So here we are
essentially dealing with a two-fluid model.

MCG obeys EoS of the form,

B
p=Ap— —, 7
P (7)
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where 0 < A < 1/3,0 < a <1, B> 0 are positive constants.

Here A and B describes the features of dark energy models and Chaplygin gas
respectively.

In the past few decades, there has been a large interest in (2 + 1)—dimensional
gravity, particularly after the demonstration of the fact that it’s quantum version
is solvable by Witten !4 and contains black-hole solutions by Bafnados '°. Recently
there has been much attention given to study gravitational theories in dimensions
other than four. The reasons for this are many and varied; however, the principal
motivation comes from string theory, grand unified theory, and quantum gravity.
The unique status of Einstein’s field equations in two space and one time dimensions
provides the principal reason to focus on (2 + 1)—dimensions theory of gravitation.
General relativity (GR) in (241)—dimensions are known to have a number of unique
simplifying characteristics: there are no gravitational waves, no black holes within
the absence of negative cosmological constant, the Weyl curvature is identically
zero, and the theory’s weak field limit does not correspond to Newtonian gravity in
2—space aspects.

In the year 1990s, the interest was motivated by the discovery of the (2 +

1)—dimension stationary circularly symmetric black hole solution by 6 17, which
has certain characteristics intrinsic in black holes (3+1). Although most of the stud-
ies in (2 4+ 1)—gravity are related to black hole physics, certain attention has been
devoted to cosmology. Some Friedmann-Robertson-Walker (FRW) models were an-
alyzed by '%7 in (2 + 1)—dimensional spacetime.
In (2 + 1)—dimensional Einstein gravity, Cornish and Frankel 2 constructed solu-
tions for isotropic dust-filled and radiation-dominated universes for k = —1,0, 1.
Saslaw 2! developed an interesting concept of a possible relationship between the
homogeneity of the universe and the dimensionality of space ; if our universe went
through a spatially two-dimensional stage, determined by a (2 4+ 1)—dimensional
dust-filled model, it might be possible to account for its present large-scale homo-
geneity.

Cruz and Martinez 22 derived flat FRW model for a homogeneous scalar field
minimally coupled to gravity in (2 4+ 1)—dimension. Wang and Abdalla ?* used
(2+1) FRW models to examine the cosmic holographic principle. Khadekar 2 find
the holography in (2+ 1)-dimensional cosmological model with generalized equation
of state and Khadekar and Gharad 2° were investigating (2 + 1)-dimensional cos-
mological viscous models with G and A variable. While Khadekar et al. 26 studied
modified Chaplygin gas with bulk viscous cosmology in FRW (2 + 1)—dimensional
spacetime and Islam et al. 2 investigated (2 + 1)—dimensional cosmological models
in f(R,T) gravity with A(R,T).

Sheykhi 28 established the connection between the scalar field model of DE
including quintessence, tachyon, K —essence and dilaton energy density by choosing
Hubble radius L = H~! as system’s IR cut-off for interacting HDE. Similarly,
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Ghose 2% investigated HDE model considering interacting GCG in the framework
of (4+ 1)—dimensional spacetime and obtained the evolution of the modified HDE
with corresponding EoS.

With the motivation of the above work in this paper we have generalized the work
of Sheykhi 2% and Ghose 2? in the framework of (2+1)—dimensional spacetime. This
paper is divided into two parts. In the first part of the paper we have generalized
the work of Sheykhi 2® by choosing Hubble radius L3/?2 = H~! as system’s IR
cut-off and construct the analytical form of the potentials as a function of scalar
field, namely V = V(¢) as well as this dynamics of the scalar fields as a function of
time, namely ¢ = ¢(t) then we have implemented the connection between HDE and
scalar fields model including quintessence, tachyon, K —essence and dilaton energy
density in a (2 4+ 1)—dimensional spacetime FRW universe.

In the second part of the paper, we have generalized the work of Ghose 2 and
investigate holographic dark energy (HDE) correspondence of interacting Modi-
fied Chaplygin Gas (MCG) and obtained evolution of the HDE with corresponding
equation of state. Considering the present value of the density parameter a stable
configuration is found which accommodates Dark Energy (DE). We note a connec-
tion between DE and Phantom fields. It reveals that the DE might have evolved
from a Phantom state in the past. We also obtained the stability of the model and
analyzed the physical and geometrical interpretations of the cosmological model
with reference to the (2 4+ 1)—dimensional spacetime.

This paper is organized as follows: section 2, deals with Einstein field equations

for flat FRW models in (24 1)—dimension. We have obtained EoS parameter of HDE
by choosing HDE of the form pp = 2C2M§L_3 with Hubble radius L3/2 = H~! as
system’s IR cut-off in section 3. In section 4, we have established the connection
between scalar model of the dark energy namely, quintessence, tachyon, K —essence
and dilaton energy density. As a results we have reconstructed the analytic form of
potential V = V(¢) as well as the dynamics of the scalar field as a function of time
ie. ¢ = o(t).
In second part of the paper we have proposed the interacting Holographic Modified
Chaplygin Gas (MCGQG) in (24 1)—dimensional spacetime in section 5. The stability
of the model is discussed in section 6 and finally section 7, we have given a brief
discussion and conclusion.

2. FRW Model and Friedmann equations
We consider (2 4 1)—dimensional FRW line element of the form

dr?
1 — kr2

ds* = dt? — a*(t) { + r2d92] : (8)
where, a(t) denotes the scale factor.

The coordinates (¢,r,6) represent the co-moving coordinates and the constant k
denotes the curvature of the space k = 0,1, —1 for flat, closed and open universe
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respectively.
The Einstein field equations in (2 + 1)-dimension spacetime is given by 2°,

1
G#u = le - iRg#V = 271—GTIW7 (9)

where G, is the Einstein tensor, R, is the Ricci tensor, R is the Ricci scalar. In
future, we consider 27G = 1.
The energy momentum tensor is given by,

T;w = (P + p)uuuu — PYuv, (10)

where p & p is the energy density and pressure respectively.

Also, u* is the velocity three vector with g"”utu, = 1.

The field equations (9) with the help of line element (8) in (2 4+ 1)—dimensions are
given by,

where “(*)” denotes derivative with respect to cosmic time ¢.

The Hubble parameter is defined as H = %

We assume the law of conservation energy (74" = 0) in (2 + 1)—dimensional space-
time is given by,

p+2H(p+p)=0. (13)
By using the equation of state p = wp in Eq. (13) reduce to,
p+2H(1+w)p=0. (14)

In the following section, consider two types of fluids with total energy density as
P = pm + pp, Where p,, and pp represents the energy density of dark matter
and dark energy density consisting Cold Dark Matter (CDM) respectively with an
equation of state parameter w,, = 0. For non interacting fluids, the conservation
equations for pp, pm and pp, py, satisfy separately.

3. Holographic Dark Energy with Hubble Radius L = H~2/3 as an
IR Cut-off

In terms of Hubble parameter the first Friedmann equation for flat universe in
(2 + 1)—dimension can be rewritten as

" = 2]\142 (o0 + o) (15)

However, in the case of interacting DE models, the following equations results from
the conservation equations for Dark matter (DM) and DE are

pm+2HPm = Q» (]‘6)
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pp+2H(1+wp)pp = —Q, (17)

where wp = pp/pp is the equation of state (EoS) parameter of HDE, and @ stands
for the interaction term.

It should be noted that the ideal interaction term must be motivated from the
theory of quantum gravity.

In this paper we consider the simple form of interacting term Q o~ Hpp,

Q =20°Hpp, (18)
where b? is a coupling constant.
By using Eq. (4) the Holographic Dark Energy density in (2 + 1)—dimension has
the form
pD = 2C2Mp2L_3,
In terms of Hubble radius the HDE has the form
pp =2 M H?, (19)

where Hubble radius L = H~2/3 the holographic dark energy.

This Eq. (19) is analogous to the Eq. taken by Sheykhi 2® in (3 + 1)—dimensional
spacetime.

After inserting Eq. (19) into Eq. (15), we get

u= <1 C2CQ>, (20)

where o= u is the energy density ratio.

From Eq. (19) it is noted that the ratio of the energy densities is a constant.

Note that this condition also fulfilled in (2 + 1)—dimension for all time; otherwise
the dark energy density would not even approximately be proportional to L~=2. By
differentiating Eq. (19) w. 1. to ¢, we get

pp =4c* M2HH. (21)
Differentiating Eq. (15) w. r. to ¢, we get
1 ( . . :
—(pim + pD) —oH 1. (22)
202

Adding Eq. (16) and (17) and put u = % we get

(p'm+pb> = —2Hpp [u+ (1+wD)}, (23)
put this value in Eq. (22), we get

—Hpp
M;

[u +1+ wD] —2HH. (24)
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put this value in Eq. (21), we get

pb::_mﬁﬂpD[u+q.+wD], (25)
put this value in Eq. (17) after using the value of @ from Eq. (18), we get
—b?
Wp = 1_ 2 . (26)

Here the ¢ and b are constants and hence the EoS parameter wp is also constant.
In the absence of interaction term b? = 0, we get dust case with wp = 0. We note
that 1 — ¢ # 0 in equation (26). If 1 — ¢ = 0 then ¢ < 1 or 1 > ¢? then wp < 0.
Beside the acceleration expansion (wD < —%) then from Eq. (26), we have
—b? -1 9

—— < — = > 1202

-2 ~72 7°
Thus, this model can describe the accelerated expansion if 1 — 20> < ¢ < 1 in
(2+1)—dimensional spacetime. Moreover, wp can cross the phantom line (wp < —1)
provided b? > 1 — ¢2. The analogous results discussed by Sheykhi 28.

2

4. Correspondence with Scalar field Model

In this section of the paper, we are implementing a correspondence between inter-

acting HDE and various scalar field models of the type i.e. Holographic quintessence
model, Holographic tachyon model, Holographic K —essence model, Holographic
dilaton model by equating the equation of state for this model with the equations
of state parameter of interacting HDE obtained Eq. (26).

4.1. Reconstructing Holographic quintessence model

In this part of the paper, we assume the quintessence scalar field model of DE to
establish the correspondence between HDE and quintessence scalar field.
The energy density and pressure in (2 4+ 1)—dimension spacetime is given by

po = %q? +V(9), (27)

po =582~ V(9), (28)

where ¢ is the kinetic energy and V(¢) potential be the function of scalar field ¢.
From Egs. (27) and (28) with py = wepe, we get

142
w¢:P7¢:§¢ Vi(9)

Py 12+ V(¢)
After solving above Egs. for ¢ and V(¢), we get

¢ = (1 + W¢>p¢, (29)
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1w
V(9) = (—52) por (30)
and
p2 — 2V
= & —2V(9) (31)
P> +2V(9)
For implementing the correspondence between HDE and quintessence scalar-field,
we identify py = pp and wy = wp then from Egs. (19), (26) and (29) gives

1/ ><cMH

After integrating and considering the constant of integration is zero i.e ¢(a, = 1) =
0, we get

o(a) = cM, ( — 1b262) X Ina. (32)
Hence, from Eq. (30), we have
V@):1<1+ o >x28AFH? (33)
2 1—¢2 P
Again from Eq. (25) with Egs. (19) and (20), we have
éi{1ffi4. (34)

Let us take k = ( ) then the above equation reduces in the form of

H

mo
Integrating on both sides, we have

1
Again, integrating on both sides, we have
a(t) = t'/*, (36)
In this case Eq. (32) can be written as
cM, 2
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Fig. 1. The kinetic energy ¢ is shown against time for the different values of the constants
c=0.1,B=1,M? =1,k =0.5,b% = 0.200(black), 0.270(red), 0.600(blue).
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Fig. 2. The potential V(¢) is shown against time for the different values of the constants ¢ =
0.1, B=1,M2 =1,k = 0.5,b% = 0.200(black), 0.270(red), 0.600(blue).

By using Eq. (37), we have
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Fig. 3. The potential V(¢) is shown against time for the different values of the constants ¢ =
0.1, B=1,M? =1,k = 0.5,b% = 0.200(black), 0.270(red), 0.600(blue).

put this value in Eq. (38), we get
A M? b2 —2ko(t) 2b% \—1/2
Vig) = —= (1 x (2- ) 40
() k2 ( +1—62> exp{ cM, 1—¢2 (40)
From the scale factor Eq. (36) it is noted that the obtained potential leads to an
accelerated universe at the present time. This expression is different than the ex-

pression obtained earlier by Sheykhi 2%. In addition to the fact that the exponential
potential can give rise to an accelerated expansion in which the field energy density

pg is proportional to the matter energy density py,.

From the Eq. (26) we can easily implemented a correspondence between interacting
HDE and scalar field model of the type tachyon, K —essence and dilaton energy
density in a (2 + 1)—dimension FRW universe. It is observed that we get analogous
results obtained earlier by Sheykhi 2® in the framework of (3+1)— dimension space-
time. Hence, we are not discussed the same here in details. But we only discussed
the graphical representation of the potential function of scalar field V' = V(¢) and
dynamics of the scalar field ¢ = ¢(t) in the concluding remark of the paper that
was not discussed earlier by Sheykhi 28.

5. Interacting Holographic MCG Model

In this section we have generalized the work of Ghose 2° and obtained HDE model
by considering interacting MCG in (2 + 1)— dimensional spacetime. We consider
the interaction quantity @ to be of the form @ = I'pp and denote the ratio of the
energy densities for the two fluids with r, i.e. r = %. For @Q > 0, one define decay
of MCG into CMD and T is the decay rate.
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We define effective equation of state parameters as given by Setare 3°,

eff _ -
wp wD—|—2H
and

The conservation equations are given by
Pim + 2H,0<1 +w$nff) —0,

D +2Hp(1 +wgff) —0,

Density parameters are defined as

P P
O, = —
Per  2MZ2H?
and
PD PD
QOn = —
P e T 2MZH?

where p, = 2M2H?.
In terms of density parameters equation (15) becomes

1

=5
2MZH?

(pD + pm);
By using Eq. (44), we get

= Qp+Q,=1.
Again, by using Eq. (15) and (44), we obtain

L 1-9p
T=q,
After inserting Eq. (7) into Eq. (13), we have
B C e
PD = {(1 Iy + a2(1+a)(1+A):|

where C' is the constant of integration.
The EoS parameter wp is given by

Pp B
)
By using Eq. (47), we get

B

wD:A—

B c
[(1+A) + a2<1+a>(1+A>]

(45)

(46)

(47)
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From Eq. (41), we have

Wil = A - - B +%. (49)
1A T earaan
We choose decay rate which is given as
I =2v*(1+7r)H, (50)
where b? is coupling constant.
By using Egs. (50) and (26) into Eq. (49), we get
wi !’ =v? <QlD - 1_162) (51)
350]
300
2501
2007
150
100 T
W T
R 0 5— 1 15 2
[— a=01—— a:;.s - = =09

Fig. 4. Hubble parameter versus red shift the different values of the constants A = 1/3,B =
1,a = 0.1(black), o = 0.5(red), o = 0.9(blue).

If we establish the correspondence between the holographic dark energy and
MCG energy density the by equating Egs. (19) and (47), we have

B C 14+«
2 27172 __
2c° M, H” = [(1+A) + a2(1+a)(1+A):| J

C = a2(1+a)(1+A) |:(2C2Mp2H2)(1+01) . (1 fA):| ) (52)
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[— o=01——a=05—"— a=09

Fig. 5. Hubble parameter versus red shift the different values of the constants A = 1/3,B =
1,a = 0.1(black), o = 0.5(red), o = 0.9(blue).

Now, using the EoS parameter of holographic dark energy from Egs. (26) and
(48), we get

B —b2

A— = ,
[ B_ 4 C ] (1—¢c?)
1+A4) T @2GFaFa

Substituting the value of C in the above equation we get the following

b2
B =@M |4 . 53
R (53)
Substituting the value of B in Eq. (52) we get the value of C as
(202M2H2a2(1+‘4))(1+a)

It is noted that from Egs. (53) and (54) that B and C' are time-dependent which
was also obtained by Setare®’. By using CG as an alternative to quintessence ®
obtained as A = A(A + p,,). Shapiro 3! observed that this result leads to the fact

that if A vary with time, B does not remain constant.

6. Squared Speed of Sound in CG and Stability of the Model

The squared speed of sound is defined as

2 dpp
v = —.
¢ dpp
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Fig. 6. EoS parameterwp versus scale factor for the different values of the constants A =1/3, B =
1,a = 0.5,C = 0.4(black),C = 1(red), C = 1.6(blue).

The MCG model is unstable if vg < 0. In our holographic MCG model, we get
dpp _ pp

2
vp = 96
b dpp PD ( )
In this case pp is given by
pp =3’ pp +wi o, (57)
where “(*)” means differentiation with respect to cosmic time.
Divide Eq. (57) throughout by pp, we get the expression for squared speed as
03 = Wil TP (58)
PD
By using Eq. (51), we obtain
e b
D
where Qp is determined from Eqs. (44) and (18), we get
: H
QD = 262E’ (6())
By using &%/ and Qp in Eq. (59), we get
1 1 ?
2 2
=b|=———+ = 61
VD (QD 1—c2+9%> (61)

Using the observed value Qp ~ 0.73 in Eq. (61), we get v%, = 0.10220 which ensures
that v%, > 0 thus, it evident that the modified Chaplygin gas model is stable in the
framework of (2 + 1)—dimensional spacetime.



16  Praveen Kumar and G. S. Khadekar

a%ff

B> =0270 — — 5> =0.500 —-— b*=1.000

Fig. 7. Effective DE equation of state wefo
0.270(black), b> = 0.500(red), b> = 1.000(blue).

versus Qp for the different values ¢ = 0.1,b% =

— p2=0270 —— »*=0.500 —-— b>=1.000

Fig. 8. Squared speed for MCG ”2D versus Qp for the different choice of b2.

7. Discussion and Conclusion

This paper is divided into two parts in the first part of the paper we generalized the
work of Sheykhi 28 by choosing the Hubble radius L = H~2/3 as system’s IR cutoff
for interacting holographic dark energy and established a connection between the
scalar-field model of dark energy including quintessence, tachyon, K —essence, and
dilaton energy density and holographic energy density of the form pp = 202M5H 2
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in the framework of (2 + 1)—dimension theory of gravitation. As a result, we have
reconstructed the analytical form of potentials, namely, V = V(¢) as well as the
dynamics of the scalar fields as a function of time explicitly, namely, ¢ = ¢(t).
According to the evolutionary behavior of the interacting holographic dark en-
ergy model, we found that in the case of quintessence from the scale factor Eq.
(36) it is noted that the obtained potential leads to an accelerated universe at the
present time. Requiring ¢ > 0 for the present time, leads to £ < 0, which can be
translated into ¢ > 0. Note that the condition & < 1 valid only for the late time
where we have a dark energy universe. In general k& depends on ¢, and for matter
dominated epoch where c is no longer a constant, then k is also not a constant and
varies with time. We have obtained the value of Hubble parameter is standard i.e.
the age of the universe. In addition to the fact that the exponential potential can
give rise to an accelerated expansion in which the energy density pp is propositional
to the matter energy density p,,. In the Fig. (1) shows that the kinetic energy ¢
increases as cosmic time ¢ increases and the potential V' (¢) decreases as the cosmic
time ¢ increases in fig. (2) while in the Fig. (3) we observed that the potential V'(¢)
decreases as kinetic energy ¢ increases for the holographic quintessence model.

For the holographic tachyon model with a equation of state parameter given by
wr===¢* 1. (62)

To established the correspondence between HDE and tachyon field, we equate the
value of wp from Eq. (26) with the value of wr from Eq. (62), we get

2 1/2
=|1- t 63
2 —| (63)
Similarly, by using above value of ¢, we get
9o 1 b
V(g) = 2" My X —5= X —(—— (64)

k22 71— 2

From Eq. (63) we obtain tachyon potential in terms of the scalar field as

2M7 b b2 1
Vo=t = e (%5)

It is observed that the evolution of tachyon model is given by ¢(¢) is propositional
to the 't’ and the tachyon potential is inverse a square power law corresponding to
the solution obtained early by Copeland 32. From the Fig. (9) shows that the kinetic
energy ¢ increases as cosmic time 't increases and the potential V(¢) decreases as
the cosmic time ¢ increases in fig. (10). while in the Fig. (11) shows that the poten-
tial V() decreases as kinetic energy ¢ increases.
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(1)
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Fig. 9. The kinetic energy ¢ is shown against time for the different values of the constants
c=0.1,B=1,M? =1,k =0.5,b% = 0.200(black), 0.270(red), 0.600(blue).
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Fig. 10. The potential V(¢) is shown against time for the different values of the constants ¢ =
0.1, B=1,M2 =1,k = 0.5,b% = 0.200(black), 0.270(red), 0.600(blue).

For the holographic K —essence model the potential with the equation of state
parameter is given by

X -1

WK = 3T (66)
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15 2

»=0.002 —— »*=0270 = — b =0.600 |

Fig. 11. The potential V(¢) is shown against time for the different values of the constants ¢ =
0.1, B=1,M2 =1,k = 0.5,b% = 0.200(black), 0.270(red), 0.600(blue).

Equating the value of wp from Eq. (26) with the value of wg from Eq. (66), we get

1402 -

14302 -2
Here, X is a positive constant (¢? < 1). The EoS parameter in Eq. (66) diverges
for X = 1/3. Let us consider the cases with X > 1/3 and X < 1/3 separately. In
the first case where X > 1/3, the condition wx < —1/3 leads to X < 2/3. Thus,
we should have 1/3 < X < 2/3 in this case. We obtain the EoS of a cosmological

(67)

constant (wx = —1) for X = 1/2. In the second case where X < 1/3, we have
X —-1<-2/3<0,thus wg = 3))((__11 > (0 which means that we have no acceleration

at all so this case is ruled out. As a result in K —essence model the accelerated
universe can be achieved provided 1/3 < X < 2/3 which translates into 1 — 3b% <
¢? < 1. Combining Eq. (67) with X = —$?/2 given by Armendariz-Picon 3

. 14+b%—¢c2

2= ——— 68

¢ 14362 —c%)’ (68)

and thus we obtain the expression for the scalar field in the flat FRW background
1+b2—c2\]Y?

)= 2| —5—— t 69

o) = |2( )| (69)

where we have taken the integration constant ¢ equal to zero.
By taking the correspondence between HDE and K —essence into this account.
Equating p(¢, X) = f(¢)(—X + 3X?) with the Eq. (26) we have

C2PMPT143 2] 1
T k2 2-1 [¢2(t)

f(9) (70)



20 Praveen Kumar and G. S. Khadekar

For the holographic K —essence model the potential has a power law expansion
and it is noted that from Eq. (69) then ¢ is constant this means that kinetic energy
of K —essence become constant through ¢ is not constant and evolves with time.

B =0.002 —— 5 =0270 = — 5 =0.600 |

Fig. 12. The kinetic energy ¢ is shown against time for the different values of the constants
c=0.1,B=1,M2? =1,k =0.5,b% = 0.200(black), 0.270(red), 0.600(blue).
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Fig. 13. The potential V(¢) is shown against time for the different values of the constants ¢ =
0.1, B=1,M? =1,k = 0.5,b% = 0.200(black), 0.270(red), 0.600(blue).



Holographic Dark Energy with Modified Chaplygin Gas... 21

In the Fig. (12) it is observed that the kinetic energy ¢ of K —essence becomes
constant as cosmic time ’t’ increases while the potential f(¢) decreases as the cos-
mic time ¢ increases in fig.(13).

For the case of holographic dilaton field with the equation of state parameter is
given as
11— ae*®X
1 - 30X’
To establish the correspondence between HDE and dilaton field we equate the value
of wp from Eq. (26) with the value of wy from Eq. (71), we get

2 [ A (1402 —c2\"?
6= "In e . (72)
A V2 \ 1+ 3b2 — ¢2
We used the correspondence to find the form of scalar field and established the

region for the constant in which we can except the scaling solution giving rise to
accelerated expansion.

Wd (71)
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Fig. 14. The kinetic energy ¢ is shown against cosmic time for the different values of the constants
c=0.1,B=1,M2 =1,k =0.5,b> = 0.002(black), b> = 0.270(red), b* = 0.600(blue).

The existence of scaling solutions for the dilaton has been studied by Piazza and
Tsujikawa 34 and found that in this case the scaling solution corresponds to X e ? =
constant which has the solution from above Eq. ¢(t) « Int. We found the results
by equating the EoS parameter of HDE and dilaton field are consistent which was
obtained earlier by Piazza and Tsujikawa 3%. In this work for the simplicity we have
taken c is constant. From the Fig. (14) shows that the kinetic energy ¢ of dilaton
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field increases as cosmic time ‘¢’ increases.

In the second part of the paper we have investigated the holographic dark energy
of modified Chaplygin gas in the framework of (2 + 1)—dimensional spacetime. We
have obtained the evolution of modified holographic dark energy with corresponding
equation of state by considering the present value of the density parameter and
found stable configuration which accommodate dark energy (DE). Here, we have
noted a connection between dark energy and phantom fields. It reveals that the dark
energy might have evolved from a phantom state in the past. We have also obtained
the stability of the model and analyzed the physical and geometrical interpretations
of the cosmological model in the framework of (2+1)—dimensional spacetime. In the
Fig. (4) it is observed that A = 1/3 and B = 1 the behaviour of Hubble parameter
H in terms of red shift is quite close to observations Thakur 3°, while the Hubble
parameter H decreases as the scale factor a increases in fig. (5).

From the Fig. (6) shows that A = 1/3 and B = 1 the behaviour of EoS parameter
wp approaches —1 as scale factor ‘a’ increases while from the fig. (7) it is shown
that the behaviour of effective DE equation of state parameter wefo decreases as
EoS parameter wp increases. From the fig. (8) it is observed that the behaviour
of squared speed for modified Chaplygin gas v% decreases as EoS parameter wp
increases for the different choice of b2.
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