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1. Introduction

In this paper, due to its fascinating role in differential geometry, we are concentred
on symmetric manifolds. These manifolds were introduced by E. Cartan 2, in the
late twenties as a generalization of manifolds with constant curvature. Since then,
many abstractions and extensions of this curvature symmetry are studied. Semi-
symmetric, Ricci symmetric, pseudo symmetric and many others are different such
generalizations.

The projective curvature tensor, apart from the conformal curvature tensor, is
an important tensor in differential geometry. Let N be a Riemannian manifold of
dimension n. If any coordinate neighbourhood of N has a one-to-one correspondence
with a domain in Euclidian space, and any geodesic of the Riemannian manifold
corresponds to a straight line in Euclidean space, NV is said to be locally projectively
flat. For n > 3, N is locally projectively flat if and only if the well circulated
projective curvature tensor P vanishes. Here P is defined by '3

P(X,Y,Z,U)=R(X,Y,Z,U) — %{S(Y, 2)9(X,U) - S(X,2)g(Y,U)}, (1)
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for X,Y,Z,U € x(N), where R is the curvature tensor and S indicates the Ricci
tensor. In reality, N is projectively flat (that is, P = 0) if and only if the manifold
has constant curvature (pp. 84-85 of 22). As a result, the projective curvature tensor
is a measure of the failure of a Riemannian manifold to be of constant curvature.

In a Riemannian manifold (N™,g) (n > 3) the conformal curvature tensor is
given by

C(U VYW = R(U, V)WV — L[g(V, WHQU — g(U,W)QV

n—2
+S(V,W)HU — S(U, W)V
+m[g(va W)U — g(U,W)V], (2)

r being the scalar curvature, @ is the Ricci operator defined by ¢(QY, Z) = S(Y, Z).
Let V be the Levi-Civita connection of (N", g). If VR = 0, then N", the Rie-
mannian manifold is called locally symmetric 2. The above local symmetry condition
is equivalent to the case that F(P), the local geodesic symmetry is an isometry 14,
for each point P € N. A very natural generalization of the class of Riemannian
locally symmetric manifolds is the class of manifolds of constant curvature. Many
geometers in several ways have weakened the interesting idea of locally symmetric
manifolds over the past few decades, for more details see ( Ref 1:4:5:15:17:20),
According to Chaki ®, for a non-zero 1-form A the (N",g),(n > 2), a non-flat
Riemannian manifold is called pseudo symmetric if its curvature tensor obeys

(VvR)(X,Y,Z,U) =2A(V)R(X,Y,Z,U)+ A(X)R(\V,Y, Z,U)
+AY)R(X,V,Z,U)+ A(Z)R(X,Y,V,U)
+A(U)R(X,Y,Z,V), (3)
where p indicates the vector field defined by

9(X, p) = A(X), (4)
for all X. The 1-form A is called the associated 1-form of N". If A = 0, then N™
reduces to a symmetric manifold in the Cartan sense. A pseudo symmetric manifold
of dimension n is usually denoted by (PS),,. The existence of such a manifold was
ensured by Sen and Chaki '6 to study hypersurfaces of a conformally flat space of
class one.

A non-flat Riemannian manifold is called pseudo projective symmetric ¢ if the
projective curvature tensor obeys
+AY)YP(X,V,Z,U)+ A(Z)P(X,Y,V,U)
+AU)YP(X,Y,Z,V). (5)
Throughout the paper we assume that p is a unit vector, that is, A(p) = g(p, p) = 1.
A non-flat Riemannian manifold obeying the condition
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where a, b are real numbers and A being the 1-form, is named a quasi-Einstein
manifold 8.

Gray '° has presented the O(n)-invariant orthogonal irreducible decomposition
of the space of all tensors of type-(0, 3) obeying only the identities of the gradient of
the Ricci tensor V.S. This decomposition introduced the seven classes of Einstein-
like manifolds whose Ricci tensors fulfill the defining condition of each subspace.

According to this investigation, in most of the cases, the pseudo projective sym-
metric manifold reduces to a quasi-Einstein manifold under certain restriction on
the curvature tensor.

Hence, the present paper is organized as follows:

After brief discussion on pseudo projective symmetric manifolds in section 2 we
examine all seven cases of the Gray’s decomposition. Finally, we study conformally
flat pseudo projective symmetric manifolds and establish that it is a manifold of
quasi constant curvature.

2. Pseudo projective symmetric manifolds

Let

n

P(X,U) = P(X,ese:,U), (7)

i=1

where {e;}_; is an orthonormal basis of the tangent space at each point on the
manifold N.
Then we acquire from (1)

P(X,U) = %S(X, U) — ﬁg(X, U), (8)

where S denotes the Ricci tensor and 7 is the scalar curvature. Now, putting ¥ =
Z =e; in (5), we get

(VyP)(X,U) =2A(V)P(X,U) + A(X)P(V,U)
+P(X,V,p,U) + P(X,p,V,U)
+AU)YP(X,V), (9)

It is known that in a pseudo projective symmetric manifold é,

r = constant and S(X,p) = %g(X7 ). (10)
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Using (1), (8), (10) in (9), we infer that

(Vv 8)(X,U) = 2nS(X,U) = rg(X, D) A(V)
+%[nS(U, V) —rg(U,V)]A(X)
1

S[nS(X, V) —rg(X, V)]A®U)

n—1

[R(X,V,p,U) + R(X,p,V,U)]
22X, D)AV) — gV, 0)A(X) - (V)AL (1)

n n

3. Gray’s Decompositions

In '°, Gray proposed that the gradient of the Ricci tensor, V.S can be decomposed
into O(n)-invariant terms, (for more details, we refer 211). This covariant derivative
can be expressed as follows 12:

(V28)(V, W) = R(Z, V)W + a(Z)g(V, W)
+B8(V)g(Z,W) + B(W)g(V. Z), (12)
for all vector fields Z, V, W, where

n n—2
O DA it s y T ey

with R(Z, V)W = R(Z, W)V is the trace-less tensor that can be written as a sum
of its orthogonal components.

a(Z) = Vr, (13)

R(Z, V)W :%[R(Z, V)W + R(V,W)Z + R(W, Z)V] (14)
+%[R(Z, V)W — R(V, Z)W] + %[R(Z, V)W — R(W, Z)V].

The decompositions (12) and (14) provide O(n)-invariant subspace, character-
ized by invariant equations that are linear in (Vz.S5)(V, W).
Therefore, the relation between V.S and the divergence of the Weyl conformal

curvature tensor C' are connected by the equation 2
(div Q)(Z, V)W = "2 [R(Z, V)W — R(W, 2)V]. (15)

In Gray’s decomposition we have the subsequent subspaces:
Yy p

(i) The trivial subspace is characterized by V.S = 0.
(ii) The subspace T is characterized by R(Z, V)W = 0, that is,

(VzS)(V,W) = a(Z)g(V, W) + w(V)g(Z, W) + w(W)g(V, Z).  (16)

Such manifolds equipped with the condition (16) are called Sinyukov manifolds
18,19
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(iii) The orthogonal complements I’ (also called as the subspace A) is characterized
by

(VzS)(V,IW) + (Vv S)(Z, W)+ (VwS)(Z,V) =0, (17)

which also infers that the scalar curvature r is constant. Also, according to the
above equation the Ricci tensor is Killing 2!.
(iv) In the subspaces B and B’ the Ricci tensor is of Codazzi type, that is,

(Vz8)(V,W) = (Vv S)(Z,W). (18)
(v) In the subspace T & A, the Ricci tensor obeys the following cyclic condition
(VzS) (V. W) + (Vv S)(Z, W) + (VwS)(Z,V) (19)
dr(Z) dr(V) dr(W)
=2 2——=g(Z 2 Z, V).
2 IV W) +20m g (Z W) + 2229 (2,V)

(vi) In the subspace T @® B, the Ricci tensor fulfills the subsequent Codazzi condition

Vz[sv,w) - (v, w)| = vy [szw) - 9(2.W)]. (20)

r r
2(n—1)" 2(n — 1)

which entails that the Weyl conformal curvature tensor C' is of divergence-free.
(vii) In the subspace A @ B, the scalar curvature is covariant constant.

Now we will examine each of these seven cases separately:
Case (i): The condition VS = 0 implies the scalar curvature r is constant.
Putting V' = p in the equation (11), we acquire

2S(X,0) ~ rg(X, U)A(p) + ~ [nS(U, ) ~ rg(U, p)]A(X)
LnS(X, p) — rg(X, pA(U) + "2 R(X . p,U) + R(X, ., U)
229X, U0)A(p) — L a(p, 1)AX) ~ S(X, p)AW)] = 0. (21)

Using the equation (10), the foregoing equation yields

r(n+1)
n2

provided A(R(p, X)U) = 0. Thus, we have the following theorem:

S(X,U) = 9(X,U) = AW)A(X), (22)

Theorem 1. If a pseudo projective symmetric manifold belongs to the triv-
1al subspace, then the manifold becomes a quasi-Finstein manifold, provided
A(R(p, X)U) = 0.

Case (ii): In the subspace Z, the Ricci tensor fulfills the condition R(Z, V)W =
0, for all Z, VW € x(M) and hence from the relation (15) we get div C' = 0. Hence

we have ?

(Vv S)(X,U) — (VxS)(V,0) = glo(V, X)dr(D)

—g(V,U)dr(X)]. (23)
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Making use of the equation (10), the previous equation gives
(VyS)(X,U) = (VxS)(V,U). (24)
Using the equation (11) and putting V' = p in the equation (23), we obtain

2 [nS(X,U) ~ rg(X, U] A(p) + ~ [nS(U, p) ~ rg(U, p)]A(X)
[nS(X,p) — rg(X, p)JAW) + " [R(X, p,p,U) + R(X. p, . V)]
1 2r

~[=2g(X,U)A(p) = ~9(p, U)A(X) = S(X, p) A(U)]

= 20805, 0) ~ r9(p, DIA(X) + - [0S(U, X) ~ rg(U, X)]A(p)

L[S (p, X) — rglp, XJAW) + L [R(p, X, p,U) + Rp, p, X, U)]
22 g(p, D)AX) ~ Lg(X,U)A(p) ~ S(p, X) AD)] (25)

Utilizing the equation (10), the above equation infers

2r

S(X,U) = 29(X,U) - %A(U)A(X), (26)

provided A(R(p, X)U) = 0.
Thus, we conclude the following;:

Theorem 2. If a pseudo projective symmetric manifold belongs to the class T, then
the manifold becomes a quasi-Einstein manifold, provided A(R(p, X)U) = 0.

Case (iii): Assume that the Ricci tensor belongs to the subspace A. Then, the
condition (17) holds which entails that

(VpS)(X,U) + (Vx)(U, p) + (VuS)(p, X) = 0. (27)
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Making use of the equation (11) in the equation (23), we obtain

2 (S (X,0) ~ rg(X, U)|A(p) + ~ [nS(U, p) — rg(U, p)]A(X)
[S(X, ) — 19X, P AWU) + " R(X, p,p, U) + ROX, p,,U)
——[Z9(X. U)A(p) = —g(p, U)A(X) = S(X, p)A(U)]

+2[nS(p,0) ~ rg(p, UYA(X) + ~[nS(U, X) ~ rg(U, X)]A(p)

n—1

L[S (o, X) — rolp, X)AW) +
L

+2[n8(p, X) ~ r9(p, X)AW) + - [S(U, X) — rg(U, X A(p)

[R(p, X, p,U) + R(p, p, X, U)]

9(p. UJA(X) = ~g(X. U)A(p) ~ S(p, X)A(U)

n—1

[nS(p,U) ~ r9(p, UNAX) + "2 [R(p, U p, X) + Rip,p, U, X))

1. 2r r
=g, X)AU) — Zg(X,U)A(p) ~ S(p, U)A(X)]. (28)
Using the equation (10), the foregoing equation yields
3r
in —1

S(X,U) = 9(X,0), (29)

provided A(R(p, X)U) = 0.
Thus, we can state that:

Theorem 3. If a pseudo projective symmetric manifold belongs to the class A, then
the manifold becomes an Einstein manifold, provided A(R(p, X)U) = 0.

Case (iv): If a perfect fluid spacetime belongs to B and B, then the Ricci tensor
is of Codazzi-type and so the equation (25) holds.
Therefore, we can state the result as in Theorem 2 :

Theorem 4. If a pseudo projective symmetric manifold belongs to classes B and B’,
then the manifold becomes a quasi-Einstein manifold, provided A(R(p, X)U) = 0.

Case (v): In this case, we have the relation (19), from which we infer the scalar
curvature r is constant and hence div C = 0. Hence we can state that:

Theorem 5. If a pseudo projective symmetric manifold belongs to the subspace I ®
A, then the manifold becomes a quasi-FEinstein manifold, provided A(R(p, X)U) = 0.

Case (vi): Let the pseudo projective symmetric manifold belongs to Z@® B. In
this case, we get div C' = 0 and state the same result as in Theorem 2.

Case (vii): In the subspace A @ B, the scalar curvature is covariant constant
and hence r = constant. Therefore, from ¢ we conclude that — is an eigen value of
the Ricci tensor S and p is an eigen vector corresponding to the eigenvalue.
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4. Conformally flat pseudo projective symmetric manifolds

In this section we characterize conformally flat pseudo projective symmetric man-
ifolds. Conformally flat manifold reflects that the manifold is of divergence free
conformal curvature tensor, that is, div C = 0. Hence, from case (ii) it follows that
the manifold is quasi-Einstein of the form (26).

Now, C = 0 implies that

R(U,V, W, Z) = ——[g(V, W)S(U, Z) — (U, W)S(V, 2)

n—2
+S(V,W)g(U, Z) — S(UW)g(V, Z)]
*m[g(v’ W)g(U, Z) — g(U,W)g(V, Z)]. (30)

Using (26) in the above expression yields

RU,V,W, Z) = —alg(V.W)g(U, Z) — g(U,W)g(V, Z)]
+Blg(U W)A(V)A(Z) + g(V, Z)A(U)A(W)
—g(V.W)AU)A(Z) — g(U, Z)A(V)A(W)], (31)

where o = [nQ(iT—2) — (n—l)T(n—2)] and 3 = %, which implies that a conformally
flat pseudo projective symmetric manifold is a manifold of quasi constant curvature
7. Thus, we conclude the following:

Theorem 6. A conformally flat pseudo projective symmetric manifold is a manifold
of quasi constant curvature.
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