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1. Introduction

The theory on conformal vector fields is one of the core contents of conformal

geometry, which plays an important role in differential geometry and physics. (α, β)-

metrics form a special and important class of Finsler metrics which can be expressed

in the form F = αϕ(s), s = β
α , where α :=

√
aij(x)yiyj is a Riemannian metric,

β := bi(x)y
i is a 1-form on M and ϕ(s) is a C∞ positive function on some open

interval. In particular, when ϕ(s) = 1
s , the Finsler metric F = α2

β is called a Kropina

metric. Kropina metrics, which were first introduced by L. Berwald in connection

with a two-dimensional Finsler space with rectilinear extremal and investigated by

V.K. Kropina 6, seem to be among the simplest nontrivial Finsler metrics with

many interesting applications in physics etc 12.

Zermelo’s navigation problem is to determine the shortest time paths for an

object with constant internal force in R2 under the influence of an external force.

Later, Z. Shen discussed the navigation problem in a more general setting 1,2. It

is known that a Finsler metric is a Randers metric if and only if it is a solution

of Zermelo’s navigation problem on a manifold M with a Riemannian metric h =

1
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√
hij(x)yiyj under the influence of an external force field W = W i(x) ∂

∂xi by

F =

√
λh2 +W 2

0

λ
− W0

λ
, W0 := Wiy

i, (1)

where Wi := hijW
j and λ := ∥W∥h< 1. Here ∥W∥ denotes the norm of W with

respect to h. The condition ∥W∥h< 1 is essential for obtaining a positive definite

Randers metric by Zermelo’s navigation problem. In Ref15 have shown that Kropina

metrics are singular solutions of Zermelo’s navigation problem. Let h =
√
hij(x)yiyj

be a Riemannian metric and W i(x) ∂
∂xi be a vector field with ∥W∥h< 1. Then the

solution of the following Zermelo’s navigation problem

h

(
x,

y

F (x, y)
− Vx

)
= 1, y ∈ TxM. (2)

F is determined from (2) by h and W . Thus there is an one-to-one correspondence

between a Kropina metric F and a pair (h,W ) with ∥W∥ = 1 and it is easy to

see that a Kropina metric can be regarded as the limit of the navigation problem

for Randers metrics when ∥W∥h → 1. We also call the pair (h,W ) the navigation

data of a Kropina metric F . Motivated by above researches and based on the char-

acterizations of conformal vector fields on Kropina manifolds given in 1, we study

Zermelo’s navigation problem on a Kropina manifold (M,F = α2

β ).

The flag curvature in Finsler geometry is a natural analogue of sectional curva-

ture in Riemannian geometry and is an important Riemannian geometric quantity.

For a Finsler manifold (M,F ), the flag curvature K = K(P, y) of F is a function

of flag P ∈ TxM and flagpole y ∈ TxM at x with y ∈ P . A Finsler metric F is

said to be of weakly isotropic flag curvature if K = 3θ
F + σ, where σ = σ(x) is

a scalar function and θ is a 1-form on M . In 9 classified locally projectively flat

Kropina metrics with constant Ricci curvature and obtain Kropina metrics of zero

flag curvature. G. Yang studied a class of singular (α, β)-metrics which are locally

projectively flat with constant flag curvature in dimension n = 2 and n ≥ 3 respec-

tively and Kropina metrics which are projectively flat with constant flag curvature

(see 15). Z. Shen and Q. Xia studied conformal vector fields on a locally projectively

flat Randers manifold (see 11).

Recently, some progress has been made in the study of the conformal vector fields on

a Finsler manifold 3,5,10. In particular, we have completely determined all conformal

vector fields on a Kropina metric of weakly isotropic flag curvature and constructed

a On m-Kropina Finsler Metrics of Scalar Flag Curvature3,14. For a Kropina met-

ric F = α2

β , if there is a closed 1-form η such that F̄ := α2

β̄
(β̄ := β − η) is of

weakly isotropic flag curvature, then F = α2

β is projectively equivalent to F̄ := α2

β̄

and hence it is of scalar flaag curvature. Kropina metrics F = α2

β with such prop-

erty are said to be of projectively isotropic flag curvature. Obviously, every locally

projectively flat Kropina metrics or every Kropina metrics of weakly isotropic flag

curvature is of projectively isotropic flag curvature and consequently of scalar flag
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curvature. The purpose of the present paper is to study and characterize confor-

mal vector fields on a Kropina metrics of projectively isotropic flag curvature. In

particular, we completely determine conformal fields on a locally projectively flat

Kropina manifold.

2. Preliminaries

In this section, we characterize the navigation problem and some results on confor-

mal vector fields on a Kopina manifold (M ;F = α2

β ).

Lemma 2.1

Let F = α2

β be a Kropina metric on a manifold M of dimension n ≥ 3 with

navigation data (h,W )11. Then F is of weakly isotropic flag curvature KF = 3θ
F +σ

if and only if, at every point x ∈ M, there is a local coordinate system, in which h

and W = W i ∂
∂xi are given by one of the following:

(1) h = |y| is an Euclidean metric in Rn and W = W i ∂
∂xi is a nonzero constant

vector field. In this case, F = |y|2
2W0

is a Minkowski metric with KF = 0, where

W0 = ⟨W, y⟩ and ⟨, ⟩ denotes Euclidean inner product in Rn.

(2)

h =

√
(1 + µ|x|2)|y|2 − µ⟨x, y⟩2

1 + µ|x|2
, (3)

W = Qx+ µ⟨d, x⟩x+ d, (4)

where µ is a positive constant, d is a nonzero constant vector with |d| = 1, and

Q is a skew symmetric matrix with Qd = 0 and QTQ + µdT d = µE, where

T denotes the transpose of a matrix and E is an identity matrix. In this case,

||W ||h = 1, W0 = ⟨Qx + d, y⟩1 + µ|x|2 and F = h2

2W0
is a Kropina metric with

KF = σ = µ > 0 and θ = 0.

We call the above expressions of h and W the local standard expression of F .

With this, we can determine all conformal vector fields V with conformal factor c(x)

on a Kropina manifold (M,F ) of weakly isotropic flag curvature when dim M ≥ 3
3. In fact, in the same local coordinates for the local standard expression of F , V

is given by one of the following 11

(1) V = xQ, where Q and v are those in (2.8) with vQ = 0(v ̸= 0). In this case,

c = 0.

(2)

V = 2(ϵ
√
1 + µ|x|2 + ⟨a, x⟩)x− 2|x|2a

1 +
√

1 + µ|x|2
, (5)

where ϵ is a constant and a is a nonzero constant vector in Rn. In this case,

c = ϵ+⟨a,x⟩√
1+µ|x|2
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(3)

V = 2ϵ
√
1 + µ|x|2x+ xQ+ d+ µ⟨x, d⟩x, (6)

where ϵ is a constant with δϵ = 0, Q and d are those in (2.8) with δd = µϵd =

ϵQ = 0. In this case, c = ϵ√
1+µ|x|2

ϵ.

A vector field V on a Finsler manifold (M,F ) is called a conformal vector field

with a conformal factor c = c(x) if the 1-parameter transformation φt generated by

V is a conformal transformation on (M,F ). In local coordinates, conformal vector

fields V are characterized by

Vi;j + Vj;i + 2Cp
ijVp|qy

q = 4cgij (7)

where Cijp are the coefficient of Cartan torsion C of F , Cp
ij = gpqCijq, Vi = gijV

j

and “|” is the horizontal covariant derivative with respect to the Chern connection of

F 3. When F = α2

β be a Kropina metric, conformal vector fields V are characterized

by

Vi;j + Vj;i = 4caij , (8)

V jbi;j + bjVj;i = 2(2c− ρ)bi. (9)

where we use the Riemannian metric tensor aij to raise and lower the indices of

V or b and “;” is the covariant derivative with respect to α. We can also express

F = α2

β in terms of the navigation data (h,W ) by (2). It has been shown that V is

conformal with respect to F if and only if

Vi;j + Vj;i = 4chij , (10)

V jbi;j + bjVj;i = 2(2c− ρ)Wi. (11)

where we use the Riemannian metric tensor hij to raise and lower the indices of V

or W and “;” is the covariant derivative with respect to h (3, 4).

3. Conformal Vector Field on Projectively flat Kropina Metric

In this section, we will study conformal vector fields on a Kropina manifold of

projectively isotropic flag curvature and prove Theorem 3.1 and 3.2.

Theorem 3.1

Let F = α2

β be a Kropina metric on an n-dimensional manifold M(n ≥ 3) such

that F̄ = α2

β̄
is a Kropina metric of weakly isotropic flag curvature and η := η − η̄

is closed. Let (h̄, W̄ ) be the navigation data of F̄ and V be a conformal vector field

on (M,F ) with conformal factor c(x). Assume η = ηiy
i ̸= 0 and V satisfies

V jηi;j + ηjVj;i = 2(2c− ρ)ηi (12)
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where “;” denotes the covariant derivative with respect to the Levi-Civita connection

of Riemannian metric h̄ and and ρ = ρ(x) is a scalar function on M . Then V must

be homothetic with respect to F . First, we need the following Lemmas.

Lemma 3.2

Let F̄ = α2

β̄
and F = α2

β be Kropina metrics on a manifold M . Let η := β − β̄

and (h̄, W̄ ) be the navigation data for F̄ . Assume V is a vector field on M . Then

each two of the following imply the third one.

(1) V is a conformal vector field on (M,F ) with conformal factor c(x);

(2) V is a conformal vector field on (M, F̄ ) with conformal factor c(x);

(3) η = (ηi) satisfies

V jηi;j + ηjVj;i = 2(2c− ρ)ηi (13)

where we use h̄ij to raise and lower the indices of V and η and “;” is the covariant

derivative with respect to the Levi-Civita connection of h̄.

Proof: We shall only prove that (1) and (3) imply (2). From [10, Corollary 2.1’],

V is a conformal field with conformal factor c(x) with respect to F = α + (β̄ + η)

if and only if V satisfies

XV (α
2) = 4cα2, (14)

XV (β̄ + η) = 2(2c− ρ)(β̄ + η), (15)

where XV = V i ∂
∂xi + yj ∂V i

∂xj
∂

∂yi (see 10) is a complete lift of V on TM\0. We have

the following expressions for α and β̄:

α =

√
λ̄h̄2 + W̄ 2

0

λ̄
,

β̄ = −W̄0

λ̄
,

where λ̄ := 1 − ∥W̄∥2
h̄
. Equations (14) and (15) are rewritten as the following in

terms of (h̄, W̄ , η):

λ̄2[XV (h̄2)− 4ch̄2] + h̄2XV (λ̄2) = 2λ̄W̄0[XV (η̄)− 2(2c− ρ)η]. (16)

λ̄2[XV (W0)− 2(2c− ρ)W0] +W0XV (λ̄2) = −λ̄2[XV (η)− 2(2c− ρ)η]. (17)

If XV (η)− 2(2c− ρ)η = 0, then (3.5) and (3.6) are reduced to

λ̄2[XV (h̄2)− 4ch̄2] = −h̄2XV (λ̄2). (18)

λ̄2[XV (W0)− 2(2c− ρ)W0] = −W0XV (λ̄2). (19)
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XV (η) = 2(2c− ρ)η. (20)

Observe that (18) and (19) are exactly (14) and (15) in [4], which are equivalent to

XV (α
2) = 4cα2 and XV (β̄) = 2(2c − ρ)β̄, that is, V is conformal with respect to

F̄ = α2

β̄
. Moreover,

XV (η) = XV (ηiy
i) = V iηj;iy

j + ηiVi;jy
j . (21)

Thus, XV (η)−2(2c−ρ)η = 0 is equivalent to (3.2). Consequently (1) and (3) imply

(2).

Lemma 3.3

Let F̄ = α2

β̄
be a Kropina metric on an n-dimensional manifold M with the naviga-

tion data (h̄, W̄ ). Suppose that η = ηiy
i is a closed 1-form on M and V = (V i) is

a vector field on M satisfying (13). Then either c(x) = constant or η = ν(2c0 − ρ),

where ν = ν(x) is a scalar function on M with νj(2ci − ρ) = νi(2cj − ρ) and

(2c0 − ρ) = (2ci − ρ)yi is a 1-form on M , here (2ci − ρ) := (2cxi − ρ) and νi := νxi .

Proof: By assumption and (13), we have ηi;j = ηj;i and V = (V i) satisfies

V jηi;j + ηjVj;i = 2(2c− ρ)ηi. (22)

Taking the covariant derivative on the both sides of (22), we get

V j
;kηj;i + V jηj;i;k + ηj;kVj;i + ηjVj;i;k = 2(2c− ρ)ηi;k + 2(2ck − ρ)ηi. (23)

Exchanging the indices i, k in (23) yields

V j
;iηj;k + V jηj;k;i + ηj;iVj;k + ηjVj;k;i = 2(2c− ρ)ηk;i + 2(2ci − ρ)ηk. (24)

observe that

V jηlR̄j
l
ik + Vlη

jR̄j
l
ik = V jηlR̄jlik + V lηjR̄jlik = 0, (25)

where R̄jlik is a Riemannian curvature tensor of h̄. Subtracting (23) from (24) yields

(2ck − ρ)ηi = (2ci − ρ)ηk. (26)

Here we have used the Ricci identity and (25).

Assume that dc ̸= 0. It follows from (26) that there is a scalar function ν = ν(x)

such that

ηi = ν(2ci − ρ)

Further, dη = 0 implies that

νj(2ci − ρ) = νi(2cj − ρ).

Now we prove the main Theorem.3.1
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Proof: We prove the theorem by contradiction. Assume that V is a conformal

vector field on (M,F ) with a non-constant conformal factor c = c(x). By Lemma 3.2,

V is also a conformal vector field (M, F̄ ) with the same conformal factor c = c(x).

Since F̄ = α2

β̄
is of weakly isotropic flag curvature and n ≥ 3, at any point, there

is a local coordinate system (U, (xi)), in which h̄ =
√
hijyiyj and W̄ = W̄ i ∂

∂xi are

given by (3) and (4). We have

h̄ij =
δij

1 + µ|x|2
− µxixj

(1 + µ|x|2)2
(27)

Its inveres (h̄ij) and the connection coefficients Γ̄k
ij are respectively given by

h̄ij = (1 + µ|x|2)(δij + µxixj), Γ̄k
ij = −

µ(xiδ
k
j + xjδ

k
i )

1 + µ|x|2
. (28)

Assume that c(x) ̸= constant on U . By (5) and (6), V is given by one of the

following

(E1) V = 2(ϵ
√

1 + µ|x|2+⟨a, x⟩)x− 2|x|2a
1+

√
1+µ|x|2

(a ̸= 0). in this case, c = ϵ+⟨a,x⟩√
1+µ|x|2

.

(E2) V = 2(ϵ
√
1 + µ|x|2 (µ ̸= 0, ϵ ̸= 0). In this case, c = ϵ√

1+µ|x|2
. Moreover,

by Lemma 3.3, there is a function v on M such that ηi = ν(2ci − ρ) ̸= 0 with

νj(2ci − ρ) = νi(2cj − ρ). Consequently, there is a function σ(x) on M such that

νi = σ(2ci − ρ). Noting that c;i;j = −µch̄ij from Lemma 5.2.9 in 2 when n ≥ 3. We

have

ηi = h̄ijνcj = v
√
1 + µ|x|2(ai − µϵxi),

ηi;j = νjci − µcνh̄ij = σcicj − µcvh̄ij . (29)

Case I: If V is given by (E1), then

Vi = h̄ijV
j =

2cxi

1 + µ|x|2
− 2|x|2ai

(1 + µ|x|2)(1 +
√
1 + µ|x|2)

, (30)

where the indices of a and x are raised and lowered by δij . From (30) and (28), we

have

Vj;i = 2ch̄ij −
2(ajxi − aixj)

(1 + µ|x|2)2
, (31)

Plugging (29) and (31) into (13) yields

Ax+ (1 + τ)−1Ba = 0, (32)

A := −µ(2c− ρ)τ(σD + 2(2c− ρ)ν)− 2ν|a|2 + 2µϵν⟨x, a⟩, (33)

B := στ2(1 + τ)D + 2µ(2c− ρ)ντ |x|2 + 2ν(1 + τ)(⟨x, a⟩ − µϵ|x|2), (34)

D := V j(2cj − ρ) = 2ϵ⟨a, x⟩+ 2⟨a, x⟩2

τ
− 2|a|2|x|2

τ(1 + τ)
− 2(2c− ρ)µ(ϵ+ c)

1 + τ
|x|2, (35)
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where τ :=
√
1 + µ|x|2. From (32) and a ̸= 0, we get A = 0 and B = 0. If µ = 0,

then A = 0 implies ν = 0, that is η = 0. This is impossible by assumption. Hence

µ ̸= 0. Multiplying τ(1 + τ) on both sides of A = 0 and 2(2c− ρ)µ on both sides of

B = 0, and adding these two identities yield

− τ2(1 + τ)µ(2c− ρ)2 − τ(1 + τ)|a|2 + τ(1 + τ)µϵ⟨x, a⟩+ (2c− rho)2µ2τ |x|2

+ (1 + τ)(2c− ρ)µ(⟨x, a⟩ − µϵ|x|2) = 0. (36)

By the irrationality of τ , (36) is decomposed as

τ2(−µ(2c− ρ)2 − |a|2 + µϵ⟨x, a⟩) + (2c− ρ)µ(⟨x, a⟩ − µϵ|x|2) = 0. (37)

−µ(2c−ρ)2τ2−|a|2+µϵ⟨x, a⟩+(2c−ρ)2µ2|x|2+(2c−ρ)µ(⟨x, a⟩−µϵ|x|2) = 0. (38)

(37) and (38) gives

µ⟨a, x⟩ = |a|2 + (2c− ρ)2µ. (39)

Plugging (39) into (37) and using µ ̸= 0, c ̸= constant yield ⟨x, a⟩ − µϵ|x|2 = 0.

By replacing x by −x and adding these two identities, we get ⟨x, a⟩ = µϵ|x|2 = 0,

which means a = 0. This is a contradiction with a ̸= 0. Consequently, c is a constant.

Case II: If V is given by (E2), then

Vi =
2(2c− ρ)xi

1 + µ|x|2
, Vi;j = 2ch̄ij . (40)

In this way as Case I, we get Āx = 0, which means Ā = 0, where

Ā := σ(2c− ρ)µ2(ϵ+ c)|x|2 − (1 + τ)(2c− ρ)2µν. (41)

Since µ ̸= 0 and c is not constant, Ā = 0 means ν = 0 by the irrationality of τ ,

which is impossible because of η ̸= 0. This complete the proof.

Theorem 3.2

Let F and F̄ be as in Theorem 3.1. Assume (h̄, W̄ ) is the navigation data of F̄

given by (3)-(4). Let V be a vector field on Rn given by one of the following

(1) V = xQ, where Q and v are those in (2.3) with vQ = 0(v ̸= 0);

(2) V = 2ϵ
√
1 + µ|x|2x+Qx+µ⟨d, x⟩x+d where ϵ is a constant with ϵµ = ϵδ = 0,

and Q and d are those in (2.3) with δd = ϵQ = 0.

If there is a function f = f(x) on M such that η = df ̸= 0, which satisfies

V jfxj − 2(2c− ρ)f = k, (42)

where k is a constant, then V is a homothetic vector field of F with dilation ϵ.

Conversely, if V is a homothetic vector field of F with dilation ϵ and η = df ̸= 0

satisfying (42), then V must be given by (1) or (2) above.

We need the following Lemma to prove the Theorem 3.3
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Lemma 3.4

Assume that the vector field V in Lemma 3.2 is homothetic, that is c = constant

and η = df for some scalar function f = f(x). Then (13) is equivalent to the following

equation

V jfxj − 2(2c− ρ)f = k, (43)

where k = constant.

Proof: By assumption, ηi = fxi . Thus ηi;j = ηj;i. Assume that V and η satisfy

(13). Then

(V jηj);i = V jηj;i + V j
;iηj

= V jηi;j + ηjVj;i

= 2(2c− ρ)ηi = 2(2c− ρ)fxi .

Thus

(V jfxj − 2(2c− ρ)f)xi = 0.

We conclude that V jfxj − 2(2c− ρ)f = constant. The converse is trivial.

Now we prove the main Theorem 4.2,

Proof: By the assumption and

V = 2(ϵ
√
1 + µ|x|2 + ⟨a, x⟩)x− 2|x|2a

1 +
√

1 + µ|x|2
, (44)

V = 2ϵ
√
1 + µ|x|2x+ xQ+ d+ µ⟨x, d⟩x, (45)

V is homothetic with respect to F̄ with dilation ϵ. Thus V is homothetic with

respect to F with dilation ϵ from Lemma 4.4 and Lemma 3.2. Conversely, if V is

homothetic with respect to F with dilation ϵ and η satisfies (42), then by Lemma

4.2 and Lemma 3.2, V is also homothetic with respect to F̄ with dilation ϵ and (1)

and (2) in Theorem 3.3 follows from (44) and (45) directly.

Corollary 3.1.

Let F = α2

β (β ̸= 0) be a locally projectively flat Kropina metric on an n-

dimensional manifold M . Suppose V is a conformal vector field on (M,F ) and dim

M ≥ 3. Then V must be homothetic. In this case,

V = 2ϵ
√
1 + µ|x|2x+ xQ+ d+ µ⟨x, d⟩x,

where δ, µ are constants with δµ = 0, Q is a constant skew symmetric matrix and

d is a constant vector in Rn.



10 M. R. Rajeshwari and S. K. Narasimhamurthy

Consider a special Kropina metric F = α2

β on Rn

α =

√
(1 + µ|x|2)|y|2 − µ⟨x, y⟩2

1 + µ|x|2
, (46)

β = df ̸= 0, (47)

where f = f(x) is a scalar function. F is projectively flat. Let

Φ = fi|jy
iyj , Ψ = fi|j|ky

iyjyk. (48)

where fi|j and fi|j|k are the coe±cients of the covariant derivatives of f with respect

to α. Then the flag curvature of F is given by

KF (x, y) =
µα2

F 2
− Ψ

2F 3
+

3Φ2

4F 2
. (49)

(cf. see (6.10) in 2). Let V be a conformal vector field on (M,F ) with conformal

factor c. Then, V is homothetic and is given by (1). By 8, F̃ generated from (F, V )

by solving (2) is of scalar flag curvature KF̃ (x; y) = KF (x, y − F̃ V )− c2. Thus one

obtains a series of Kropina metric of scalar flag curvature. In general, such F̃ is not

locally projectively flat, not of constant flag curvature. To see this, we consider a

more special case of following lemma.

Lemma 3.5

Let F = α2

β̄
be Kropina metric with ||β||α = 1 and define F̃ = F + η, where η

is a closed 1-form with ||η||α sufficiently small14.

• If F is of scalar flag curvature, then F̃ is also a Kropina metric of scalar flag

curvature.

• Let F be of constant flag curvature. Then F̃ is locally projectively flat if and

only if F is flat-parallel, or equivalently, F̃ can be locally written in the form

F̃ =
|y|
y1

+ η. (50)

In the above lemma 3.5 (ii) easily follows from a known result , since therein

proved that a locally projectively flat Kropina metric with constant flag curvature

is flat-parallel. By lemma 3.5 (ii), we can easily obtain a family of Kropina metrics

which are of scalar flag curvature but are neither locally projectively flat nor of

constant flag curvature in general. Take η = ⟨x, y⟩ with x close to origin, and then

F̃ in (50) is a projectively flat Kropina metric with the flag curvature given by

K =
3

4

{
|y|4(y1)4

(ηy1 + |y|2)4

}
. (51)

Additionally, using Corollary 4.3 14 and a warped product method, we obtain a

family of Kropina metrics which are locally projectively flat (see Proposition 5.2
14).
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4. Conclusion

We have studied the Conformal vector fields on locally projectively flat Kropina

metrics. In the present paper, Theorem 3.1 shows that V must be homothetic with

respect to F and F̄ respectively in this case. Thus, one can determine the homothetic

vector fields on (M,F ) from those on (M, F̄ ). Further, in Theorem 3.1, since F̄ is

of weakly isotropic flag curvature and dim M ≥ 3, at any point, there is a local

coordinate system (U, (xi)), in which h̄ is of constant sectional curvature µ and W̄

is a conformal vector field with conformal factor σ(x) with respect to h̄ according

to 11. In particular, if β̄ = 0 in Theorem 1.1, then η = β is closed and F̄ = α is of

isotropic sectional curvature (=constant if dimM ≥ 3). Thus F = α2

η is projectively

flat. Since F̄ = h̄ = α is a Riemannian metric and V is conformal with respect to

F , (12) holds by (9) and V is conformal with respect to α by Lemma 3.1.

Under the condition (12), V is a conformal vector field on (M,F ) with the conformal

factor c(x) if and only if V is a conformal vector field on (M, F̄ ) with the same

conformal factor c(x), which is regarded as the geometric meaning of the equation

(12) (see Lemma 3.1).
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