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In this paper, we study and characterize conformal vector fields on a Finsler manifold
with Kropina metric of projectively isotropic flag curvature. Further, we prove that any
conformal vector field on a non-Riemannian locally projectively flat Kropina metric of
dimension n > 3 must be homothetic and completely determine conformal vector fields
on a locally projectively flat Kropina metric.
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1. Introduction

The theory on conformal vector fields is one of the core contents of conformal
geometry, which plays an important role in differential geometry and physics. (o, 3)-
metrics form a special and important class of Finsler metrics which can be expressed
in the form F = a¢(s), s = g, where a = /a;;(z)y*y’ is a Riemannian metric,
B := bi(z)y’ is a 1-form on M and ¢(s) is a C° positive function on some open
interval. In particular, when ¢(s) = %, the Finsler metric F' = %2 is called a Kropina
metric. Kropina metrics, which were first introduced by L. Berwald in connection
with a two-dimensional Finsler space with rectilinear extremal and investigated by
V.K. Kropina ©, seem to be among the simplest nontrivial Finsler metrics with
many interesting applications in physics etc 2.

Zermelo’s navigation problem is to determine the shortest time paths for an
object with constant internal force in R? under the influence of an external force.
Later, Z. Shen discussed the navigation problem in a more general setting 2. It
is known that a Finsler metric is a Randers metric if and only if it is a solution
of Zermelo’s navigation problem on a manifold M with a Riemannian metric h =
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V/hij(x)y'y7 under the influence of an external force field W = W(z) 52 by
VARZ+WE W, »
F:——ili——ﬁtmzwwa (1)
A A
where W; := h;;WJ and A := |W||,< 1. Here ||[W|| denotes the norm of W with
respect to h. The condition ||[W]|;,< 1 is essential for obtaining a positive definite
Randers metric by Zermelo’s navigation problem. In Ref!'® have shown that Kropina
metrics are singular solutions of Zermelo’s navigation problem. Let h = \/h;;(z)y'y
be a Riemannian metric and W¥(z)52; be a vector field with ||[WW||,< 1. Then the
solution of the following Zermelo’s navigation problem

y
e, —2— -V, ) =1, yeT,M. 2
<me ) ®

F is determined from (2) by h and W. Thus there is an one-to-one correspondence
between a Kropina metric F' and a pair (h, W) with ||W| = 1 and it is easy to
see that a Kropina metric can be regarded as the limit of the navigation problem
for Randers metrics when ||W]|;, — 1. We also call the pair (h, W) the navigation
data of a Kropina metric F'. Motivated by above researches and based on the char-
acterizations of conformal vector fields on Kropina manifolds given in !
Zermelo’s navigation problem on a Kropina manifold (M, F' = O‘T;)

The flag curvature in Finsler geometry is a natural analogue of sectional curva-

, we study

ture in Riemannian geometry and is an important Riemannian geometric quantity.
For a Finsler manifold (M, F'), the flag curvature K = K(P,y) of F is a function
of flag P € T, M and flagpole y € T, M at z with y € P. A Finsler metric F is
said to be of weakly isotropic flag curvature if K = % + o, where 0 = o(z) is
a scalar function and 6 is a 1-form on M. In ? classified locally projectively flat
Kropina metrics with constant Ricci curvature and obtain Kropina metrics of zero
flag curvature. G. Yang studied a class of singular («, 8)-metrics which are locally
projectively flat with constant flag curvature in dimension n = 2 and n > 3 respec-
tively and Kropina metrics which are projectively flat with constant flag curvature
(see 1°). Z. Shen and Q. Xia studied conformal vector fields on a locally projectively
flat Randers manifold (see 11).

Recently, some progress has been made in the study of the conformal vector fields on
a Finsler manifold 3510, In particular, we have completely determined all conformal
vector fields on a Kropina metric of weakly isotropic flag curvature and constructed
a On m-Kropina Finsler Metrics of Scalar Flag Curvature®!4. For a Kropina met-
ric F = %2, if there is a closed 1-form 7 such that F := %—2(5 = 0B —mn) is of
weakly isotropic flag curvature, then F = %2 is projectively equivalent to F := 9;
and hence it is of scalar flaag curvature. Kropina metrics F' = O‘T; with such prop-
erty are said to be of projectively isotropic flag curvature. Obviously, every locally
projectively flat Kropina metrics or every Kropina metrics of weakly isotropic flag
curvature is of projectively isotropic flag curvature and consequently of scalar flag
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curvature. The purpose of the present paper is to study and characterize confor-
mal vector fields on a Kropina metrics of projectively isotropic flag curvature. In
particular, we completely determine conformal fields on a locally projectively flat
Kropina manifold.

2. Preliminaries

In this section, we characterize the navigation problem and some results on confor-
mal vector fields on a Kopina manifold (M; F' = “T;)

Lemma 2.1

Let F' = ‘%2 be a Kropina metric on a manifold M of dimension n > 3 with
navigation data (h, W)!. Then F is of weakly isotropic flag curvature Kp = % +0o
if and only if, at every point x € M, there is a local coordinate system, in which h
and W = W? 321‘ are given by one of the following:

(1) h = |y| is an Euclidean metric in R™ and W = W?* 8?:1‘ is a nonzero constant

2
vector field. In this case, F' = % is a Minkowski metric with Kz = 0, where

Wy = (W,y) and (,) denotes Euclidean inner product in R".
(2)

VA F plzP)yP — ple,y)?

h =
L+ plaf?

, 3)

W = Qx + p{d, x)x + d, (4)

where p is a positive constant, d is a nonzero constant vector with |d| = 1, and

Q is a skew symmetric matrix with Qd = 0 and QT Q + ud’d = pE, where

T denotes the transpose of a matrix and F is an identity matrix. In this case,
2

Wl =1, Wo = (Qz +d,y)1 + p|z|> and F = 2}’70 is a Kropina metric with

Kp=0c=p>0and 6 =0.

We call the above expressions of h and W the local standard expression of F.
With this, we can determine all conformal vector fields V' with conformal factor ¢(z)
on a Kropina manifold (M, F') of weakly isotropic flag curvature when dim M > 3
3. In fact, in the same local coordinates for the local standard expression of F, V
is given by one of the following !

(1) V = 2@, where @ and v are those in (2.8) with vQ = 0(v # 0). In this case,
c=0.

(2)

2|z|%a

141+

where € is a constant and a is a nonzero constant vector in R". In this case,
e+{a,x)

V1tulz|?

V = 2(ey/T+ alaf? + (a, 7))z (5)
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(3)
V =2e\/1+ plz2e 4+ 2Q + d + plz, d)z, (6)
where € is a constant with de = 0, ) and d are those in (2.8) with dd = ped =
€@ = 0. In this case, ¢ = \/ﬁe.

A vector field V on a Finsler manifold (M, F') is called a conformal vector field
with a conformal factor ¢ = ¢(x) if the 1-parameter transformation ¢; generated by
V is a conformal transformation on (M, F'). In local coordinates, conformal vector
fields V' are characterized by

Vi + Vii +2C0 V9 = 4cgij (7)

(%] plg

where Cjj;;, are the coeflicient of Cartan torsion C' of F, Cf} = gP1C44q, Vi = gijVj
and “|” is the horizontal covariant derivative with respect to the Chern connection of

F3 When F = %2 be a Kropina metric, conformal vector fields V' are characterized
by

‘/z,j + ‘/j,l = 4caija (8)

Vb + WV = 2(2¢ — p)b;. (9)

where we use the Riemannian metric tensor a;; to raise and lower the indices of
V or b and " is the covariant derivative with respect to a. We can also express
F = %2 in terms of the navigation data (h, W) by (2). It has been shown that V is
conformal with respect to F' if and only if

Vb + ¥V, = 2(2¢c — p)W;. (11)

where we use the Riemannian metric tensor h;; to raise and lower the indices of V'
or W and “” is the covariant derivative with respect to h (3, 4).

3. Conformal Vector Field on Projectively flat Kropina Metric

In this section, we will study conformal vector fields on a Kropina manifold of
projectively isotropic flag curvature and prove Theorem 3.1 and 3.2.
Theorem 3.1
2
Let F' = % be a Kropina metric on an n-dimensional manifold M (n > 3) such
that F = %—2 is a Kropina metric of weakly isotropic flag curvature and n :=n — 7

is closed. Let (h, W) be the navigation data of F' and V' be a conformal vector field
on (M, F) with conformal factor c¢(z). Assume n = n;y° # 0 and V satisfies

VIni 41 Via = 2(2¢ — p)n; (12)
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where “;” denotes the covariant derivative with respect to the Levi-Civita connection
of Riemannian metric & and and p = p(z) is a scalar function on M. Then V must
be homothetic with respect to F. First, we need the following Lemmas.

Lemma 3.2

Let F = O‘T; and F' = O‘Tj be Kropina metrics on a manifold M. Let  := 8 — 8
and (h, W) be the navigation data for F. Assume V is a vector field on M. Then
each two of the following imply the third one.

(1) V is a conformal vector field on (M, F') with conformal factor ¢(z);
(2) V is a conformal vector field on (M, F) with conformal factor c(z);
(3) n = (n;) satisfies

Vi + 07 Vi = 2(2¢ = p)mi (13)

where we use }_zij to raise and lower the indices of V and 7 and “;” is the covariant
derivative with respect to the Levi-Civita connection of h.

Proof: We shall only prove that (1) and (3) imply (2). From [!°, Corollary 2.1],
V is a conformal field with conformal factor c¢(x) with respect to F' = a + (8 + 1)
if and only if V satisfies

Xy (a?) = dea?, (14)

Xv(B+n) =2(2c—p)(B +n), (15)
where Xy = V? 821' + o ‘ggj 8?/"' (seeilo) is a complete lift of V' on TM\0. We have
the following expressions for a and 3:

\/ARZ + W2

A
- Wo
67 5\7

where A := 1 — [W|2. Equations (14) and (15) are rewritten as the following in
terms of (h, W,n):

XXy (R2) — 4ch?] + WXy (32) = 20 Xy (7) — 2(2c — p)n]. (16)

o = 5

N[ Xy (Wo) — 2(2¢ — p)Wo] + Wo Xy (A2) = —X2[ Xy (n) — 2(2¢ = p)n).  (17)
If Xy (n)—2(2¢c— p)n =0, then (3.5) and (3.6) are reduced to
A2[Xy (h2) — 4ch?] = —h2 Xy ()\2). (18)

N[ Xy (Wo) = 2(2¢ — p)Wo] = =W Xv (A2). (19)
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Xv(n) =2(2c—p)n. (20)

Observe that (18) and (19) are exactly (14) and (15) in [*], which are equivalent to
Xy (a?) = 4ca? and Xy (B) = 2(2c — p)f, that is, V is conformal with respect to
F=<, Moreover,

o

Xv(n) = Xv(my') = Vinzy’ +n'Vigy. (21)
Thus, Xy (n) —2(2¢— p)n = 0 is equivalent to (3.2). Consequently (1) and (3) imply
(2). |

Lemma 3.3
Let F = "’T; be a Kropina metric on an n-dimensional manifold M with the naviga-
tion data (h, W). Suppose that n = 1,y is a closed 1-form on M and V = (V%) is
a vector field on M satisfying (13). Then either ¢(x) = constant or n = v(2¢o — p),
where v = v(z) is a scalar function on M with v;(2¢; — p) = vi(2¢; — p) and
(2co — p) = (2¢; — p)y* is a 1-form on M, here (2¢; — p) := (2¢4i — p) and v; 1= v.

Proof: By assumption and (13), we have n;,; = n;,; and V = (V) satisfies
Vi + 1 Vi = 2(2¢ = p)ns. (22)
Taking the covariant derivative on the both sides of (22), we get
Vimgi + VI + 10 Vi + 07 Viw = 2(2c — p)ni + 2(2cx — p)mi- (23)
Exchanging the indices 4, &k in (23) yields
Kfnj;k + VI + 77;jiVj;k + 107 Vigei = 2(2¢ — p)nii + 2(2¢; — p)n.. (24)
observe that
VIR ik + Vi Ry Lk = VIn' Ry, + Vi Ry, = 0, (25)
where Rji; is a Riemannian curvature tensor of h. Subtracting (23) from (24) yields
(2ck = p)ni = (2¢i — p)nk- (26)

Here we have used the Ricci identity and (25).
Assume that de # 0. Tt follows from (26) that there is a scalar function v = v(x)
such that

ni = v(2¢c; — p)

Further, dn = 0 implies that
vi(2¢; — p) = vi(2¢; — p). |

Now we prove the main Theorem.3.1
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Proof: We prove the theorem by contradiction. Assume that V is a conformal
vector field on (M, F') with a non-constant conformal factor ¢ = ¢(z). By Lemma 3.2,
V is also a conformal vector field (M, F') with the same conformal factor ¢ = ¢(x).

Since F = %—2 is of weakly isotropic flag curvature and n > 3, at any point, there

is a local coordinate system (U, (z*)), in which h = \/h;;y'y? and W = W* B‘zi are
given by (3) and (4). We have

— O i ,uxixj
hi; = X — 27
T A T 27
Its inveres (%) and the connection coefficients f‘fj are respectively given by
_ o _ p(x;0% + x;6F
WO = (L )6y + paiad), Ty = —EGEE0)

1+ plaf?
Assume that c(z) # constant on U. By (5) and (6), V is given by one of the

following

(E1) V =2(ey/1+ u\x|2+(a,x>)m—& (a # 0). in this case, ¢ = —@0)
1+4/1+plz|? \ 1+p|z]?

(E2) V = 2(ey/1+4 pl|z|? (1 # 0,6 # 0). In this case, ¢ = \/ﬁw Moreover,
by Lemma 3.3, there is a function v on M such that n; = v(2¢; — p) # 0 with
vj(2¢; — p) = v;(2¢; — p). Consequently, there is a function o(z) on M such that
v; = 0(2¢; — p). Noting that c,.; = —ucﬁij from Lemma 5.2.9 in 2 when n > 3. We
have

n' = hve; = v\/1+ plz?(a’ — pex’),

Nisj = VjC; — ucyi_uj =ocicj — ,U,C’Ui_lij. (29)
Case I: If V' is given by (E1), then
_ ) 201 2z2a;
‘/i _ h”VJ o CZ; _ |Z‘| a; (30)

Sl (L ) (14 T+ plaf?)
where the indices of @ and z are raised and lowered by ¢;;. From (30) and (28), we

have

- 2(ajz; — a;xj)

Vit =20 e oy

Plugging (29) and (31) into (13) yields
Az+ (1 +71)"'Ba=0, (32)
A= —u(2c — p)r(aD + 2(2¢c — p)v) — 2v|a|* + 2uev(z, a), (33)

B :=0o7?(14+7)D 4+ 2u(2c — p)vr|z|® + 2v(1 + 7)({z, a) — pe|z|?),  (34)

2a,a)?  2a2o2 22— plu(eto)
T T7(147) 1+71

D :=VI(2¢c; — p) = 2¢la, ) + z|*, (35)
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where 7 := /1 + p|z|?. From (32) and a # 0, we get A=0and B=0.1If p =0,
then A = 0 implies v = 0, that is n = 0. This is impossible by assumption. Hence
u # 0. Multiplying 7(1 + 7) on both sides of A = 0 and 2(2¢ — p)u on both sides of
B =0, and adding these two identities yield

— 7214 7)pu2c — p)? —7(1 + 7)|al® + 7(1 4 7)pe(z, a) + (2¢ — rho)*p?r|z|?

+ (14 7)(2¢ — p)u((x, a) — pe|z|*) = 0. (36)
By the irrationality of 7, (36) is decomposed as

T4 (—=u(2¢ = p)* — |af* + pe(z, a)) + (2¢ — p)p((z, a) — pelz?) = 0. (37)

—(2e— p)*7 —af*+ e, @) + (2c— p)2 2|l + (2c— ), 0) — el ]?) = 0. (38)
(37) and (38) gives

a,z) = |af? + (2 — p)p (39)
Plugging (39) into (37) and using u # 0, ¢ # constant yield (x,a) — pe|z|?> = 0.
By replacing by —r and adding these two identities, we get (r,a) = pe|z|> = 0,
which means ¢ = 0. This is a contradiction with a # 0. Consequently, ¢ is a constant.

Case II: If V is given by (E2), then
2(2¢ — p)x; -

Vi= e Viij = 2chy;. (40)
In this way as Case I, we get Az = 0, which means A = 0, where
A= a(2e - p)(e + Olal? — (1+7)(2¢ — p)2uv. (41)
Since p # 0 and c¢ is not constant, A = 0 means v = 0 by the irrationality of 7,
which is impossible because of 1 # 0. This complete the proof. O
Theorem 3.2

Let F and F be as in Theorem 3.1. Assume (h, W) is the navigation data of F
given by (3)-(4). Let V be a vector field on R" given by one of the following

(1) V = 2@, where @Q and v are those in (2.3) with vQ = 0(v # 0);
(2) V =2ey/1+ plz|?x+ Qz + p{d, z)x + d where € is a constant with ey = e§ = 0,
and @ and d are those in (2.3) with éd = eQ = 0.

If there is a function f = f(z) on M such that n = df # 0, which satisfies
VI foi =2(2c = p)f =k, (42)

where k is a constant, then V' is a homothetic vector field of F' with dilation e.
Conversely, if V' is a homothetic vector field of F' with dilation € and n = df # 0
satisfying (42), then V must be given by (1) or (2) above.

We need the following Lemma to prove the Theorem 3.3
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Lemma 3.4

Assume that the vector field V in Lemma 3.2 is homothetic, that is ¢ = constant
and n = df for some scalar function f = f(x). Then (13) is equivalent to the following
equation

VI foi = 22— p)f =k, (43)

where k = constant.

Proof: By assumption, n; = f,:. Thus n;; = n;,;. Assume that V and 7 satisfy
(13). Then

(VIny) = VIng + Ving
= V7niij + 07 Vi
=2(2c— p)ni = 2(2¢ — p) fas.
Thus

We conclude that V7 f,; — 2(2¢c — p) f = constant. The converse is trivial. m|
Now we prove the main Theorem 4.2,

Proof: By the assumption and

2|z|2a
V =2(ey/1+ pl|z)? + {a,2)) — ——— ———, 44
R (44
V =2ev/1+4 plz)?z + 2Q + d + plz, d)z, (45)

V is homothetic with respect to F with dilation e. Thus V is homothetic with
respect to F' with dilation € from Lemma 4.4 and Lemma 3.2. Conversely, if V' is
homothetic with respect to F' with dilation e and 7 satisfies (42), then by Lemma
4.2 and Lemma 3.2, V is also homothetic with respect to F with dilation € and (1)
and (2) in Theorem 3.3 follows from (44) and (45) directly. m|

Corollary 3.1.

Let FF = O‘T;(,B # 0) be a locally projectively flat Kropina metric on an n-
dimensional manifold M. Suppose V is a conformal vector field on (M, F') and dim
M > 3. Then V must be homothetic. In this case,

V =2ey/1+ plz|2z + 2Q + d + plz, d)z,

where &, p are constants with o = 0, @ is a constant skew symmetric matrix and
d is a constant vector in R".
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Consider a special Kropina metric F' = O‘Tj on R"

VAt plaP)ly? — ple,y)?

= 46
B=df #0, (47)

where f = f(x) is a scalar function. F' is projectively flat. Let
= fuy'y’s U= funy'y'y" (48)

where f;; and f;;x are the coetcients of the covariant derivatives of f with respect
to a. Then the flag curvature of F is given by
2 2
17! v 3P
K = - — 4+ —. 4
F(Ivy) 2 2F3 +4F2 ( 9)
(cf. see (6.10) in ?). Let V be a conformal vector field on (M, F) with conformal
factor c. Then, V is homothetic and is given by (1). By 8, F' generated from (F, V)
by solving (2) is of scalar flag curvature K (z;y) = Kp(z,y — FV) — ¢?. Thus one
obtains a series of Kropina metric of scalar flag curvature. In general, such F' is not
locally projectively flat, not of constant flag curvature. To see this, we consider a
more special case of following lemma.

Lemma 3.5
Let F = %—2 be Kropina metric with ||3||o = 1 and define F' = F + 7, where 7
is a closed 1-form with ||n||, sufficiently small*4.
o If F is of scalar flag curvature, then F' is also a Kropina metric of scalar flag
curvature.
e Let F be of constant flag curvature. Then F is locally projectively flat if and
only if F' is flat-parallel, or equivalently, ' can be locally written in the form

F = yy1| + 7. (50)

In the above lemma 3.5 (ii) easily follows from a known result , since therein
proved that a locally projectively flat Kropina metric with constant flag curvature
is flat-parallel. By lemma 3.5 (ii), we can easily obtain a family of Kropina metrics
which are of scalar flag curvature but are neither locally projectively flat nor of
constant flag curvature in general. Take n = (z,y) with x close to origin, and then

Fin (50) is a projectively flat Kropina metric with the flag curvature given by

3 40, 1\4
4 L(y' + [y?)
Additionally, using Corollary 4.3 '* and a warped product method, we obtain a

family of Kropina metrics which are locally projectively flat (see Proposition 5.2
14y,



Conformal Vector fields on a locally... 11

4. Conclusion

We have studied the Conformal vector fields on locally projectively flat Kropina
metrics. In the present paper, Theorem 3.1 shows that V' must be homothetic with
respect to F and F respectively in this case. Thus, one can determine the homothetic
vector fields on (M, F) from those on (M, F). Further, in Theorem 3.1, since F is
of weakly isotropic flag curvature and dim M > 3, at any point, there is a local
coordinate system (U, (z7)), in which h is of constant sectional curvature y and W
is a conformal vector field with conformal factor o(x) with respect to h according
to . In particular, if 3 = 0 in Theorem 1.1, then 7 = /3 is closed and F = « is of
isotropic sectional curvature (=constant if dimM > 3). Thus F = %2 is projectively
flat. Since F' = h = « is a Riemannian metric and V is conformal with respect to
F, (12) holds by (9) and V is conformal with respect to a by Lemma 3.1.

Under the condition (12), V is a conformal vector field on (M, F') with the conformal
factor ¢(x) if and only if V is a conformal vector field on (M, F) with the same
conformal factor c(x), which is regarded as the geometric meaning of the equation
(12) (see Lemma 3.1).
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