

AFFINE CURVATURE INHERITANCE IN AN NP-F_n

By

S. K. Tiwari, D. D. S. Yadav & Sandeep Kumar Chaudhary

Department of Mathematics and Statistics

Dr. R.M.L. Avadh University, Faizabad (U.P.) India

ABSTRACT : The concept of on the curvature inheritance in Finsler space II has studies by Singh [4]. In the present paper, we study affine curvature inheritance in an NP-F_n. Some special cases are also considered at the end.

Key words : NP-F_n, RNP-F_n, Affine motion, Contra and concurrent field.

1. INTRODUCTION

K.Yano [2] defined a set of parameters

$$\Pi_{kh}^i = G_{kh}^i - \frac{x^i}{n+1} G_{khr}^r, \quad (1.1)$$

which forms a connection called the normal projective connection. The functions Π_{kh}^i , G_{kh}^i and G_{khr}^r are symmetric in their lower indices and are positively homogeneous of degree zero, zero and -1 respectively in their directional arguments. The functions G_{jk}^i are the Berwald's connection parameters. The derivatives

$$\Pi_{jkh}^i = \partial_j \Pi_{kh}^i = G_{jkh}^i - \frac{1}{n+1} (\delta_j^i G_{khr}^r + x^i G_{jkr}^r), \quad (1.2)$$

is symmetric in k and h only and is positively homogeneous of degree -1 in directional arguments. Therefore, the following relations which will be used in our discussion

follow from (1.1) and (1.2):

- a) $\Pi_{kh}^i \dot{x}^k = \Pi_{hk}^i \dot{x}^k = G_h^i$,
- b) $\Pi_{ki}^i = G_{ki}^i$,
- c) $\dot{x}^i \Pi_{jkh}^i = 0$
- d) $\Pi_{ikh}^i = \frac{2}{n+1} G_{ikh}^i$,
- e) $\Pi_{jki}^i = G_{jki}^i = \Pi_{jik}^i$.

(1.3)

The normal projective connection parameters define the projective covariant derivative :

$$\nabla_k X^i = \partial_k X^i - (\partial_j X^i) \Pi_{kh}^j \dot{x}^h + X^j \Pi_{jk}^i,$$

$$(\partial_k = \partial / \partial x^k, \dot{\partial}_k = \partial / \partial \dot{x}^k), \quad (1.4)$$

and preserve the vector character of X^i . In particular, this derivative vanishes for \dot{x}^i .

The corresponding curvature tensor $N_{jkh}^i(x, \dot{x})$ tensor so-called, by K. Yano, the normal projective curvature tensor, is given by

$$N_{jkh}^i = 2 \{ \partial_{[j} \Pi_{k]h}^i + \Pi_{ih[j}^i \Pi_{k]m}^l \dot{x}^m + \Pi_{[j}^i \Pi_{k]h}^l \}. \quad (1.5)$$

DEFINITION : The manifold F_n with normal projective connection parameters Π_{kh}^i and the normal projective curvature tensor N_{jkh}^i is called the normal projective Finsler manifold which is denoted by NP- F_n .

The normal projective curvature tensor is skew-symmetric in j, k indices and is a homogeneous function of degree 0 in directional arguments, so by definition we have

$$a) N_{jkh}^i = -N_{kjh}^i, \quad b) \partial_l N_{jkh}^i \dot{x}^l = 0. \quad (1.6)$$

The contraction of N_{jkh}^i with respect to $i, j ; i, k$ and i, h give

$$a) N_{ikh}^i = N_{kh}^i, \quad b) N_{jih}^i = -N_{ijh}^i = -N_{jhi}^i,$$

and c) $N_{jki}^i = 2N_{[k]j]}$ (1.7)

repectively, where $[k\ j]$ represents the skew-symmetric part.

The covariant derivative gives rise to the commutation formula

$$2\nabla_{ij}\nabla_{kj}X^i = N_{jkh}^i X^h - (\partial_i X^i) N_{jkh}^j \dot{x}^h \quad (1.8)$$

together with the normal projective curvature tensor N_{jkh}^i . In terms of the contracted tensor $N_{kh} = N_{jkh}^j$ there is defined a tensor

$$M_{kh} = -\frac{1}{n^2 - 1} (nN_{kh} + N_{hk}) \quad (1.9)$$

and the Weyl's projective curvature tensor W_{jkh}^i is given by K. Yano [2]

$$W_{jkh}^i = N_{jkh}^i + 2\{\delta_{ij}^i M_{kh} - M_{ijkl} \delta_{kh}^j\}. \quad (1.10)$$

The commutation formulae for any general tensor, involving the curvature tensor, are given as follows K. Yano [2]

$$2\nabla_{lk}\nabla_{hl}T_j^i = N_{khl}^i T_j^i - N_{khj}^i T_l^i - (\partial_l T_j^i) N_{khm}^l \dot{x}^m, \quad (1.11)$$

$$(\partial_j \nabla_k - \nabla_k \partial_j) T_h^i = \Pi_{jkl}^i T_h^l - \Pi_{jkh}^i T_l^i - \Pi_{jkm}^i \dot{x}^m (\partial_l T_h^i). \quad (1.12)$$

The Lie-derivative of a tensor T_j^i and the connection coefficients Π_{jkl}^i defined by an infinitesimal transformation

$$\bar{x}^i = x^i + \varepsilon v^i(x) \quad (1.13)$$

are characterized by K. Yano [2]

$$\mathcal{L} T_j^i = v^h (\nabla_h T_j^i) - T_j^h (\nabla_h v^i) + T_h^i (\nabla_j v^h) + (\partial_h T_j^i) (\nabla_s v^h) \dot{x}^s \quad (1.14)$$

and

$$\mathcal{L} \Pi_{jkl}^i = \nabla_j \nabla_k v^i - N_{hjk}^i v^h + \Pi_{hjk}^i (\nabla_l v^h) \dot{x}^l \quad (1.15)$$

respectively.

The commutation formulae with respect to Lie-derivative and other for any tensor T_{jkl}^i are given by

$$\begin{aligned} \mathfrak{L}(\nabla_i T_{jk}^i) - \nabla_i(\mathfrak{L} T_{jk}^i) &= (\mathfrak{L} \Pi_{ih}^i) T_{jk}^h - (\mathfrak{L} \Pi_{ij}^i) T_{jk}^i \\ &\quad - (\mathfrak{L} \Pi_{kl}^i) T_{jr}^i - (\mathfrak{L} \Pi_{im}^i) \dot{x}^m (\partial_r T_{jk}^i) \end{aligned} \quad (1.16)$$

and

$$\partial_i(\mathfrak{L} T_{jk}^i) - \mathfrak{L}(\partial_i T_{jk}^i) = 0. \quad (1.17)$$

The Lie-derivative of the normal projective curvature tensor N_{kjh}^i is expressed in the form

$$\nabla_k(\mathfrak{L} \Pi_{jh}^i) - \nabla_j(\mathfrak{L} \Pi_{kh}^i) = \mathfrak{L} N_{kjh}^i + (\mathfrak{L} \Pi_{km}^i) \dot{x}^m \Pi_{jh}^i - (\mathfrak{L} \Pi_{jm}^i) \dot{x}^m \Pi_{kh}^i. \quad (1.18)$$

The infinitesimal transformation (1.13) defines an affine motion, it satisfies the condition by Misra and Meher [5]

$$\mathfrak{L} \Pi_{jk}^i = 0 \quad (1.19)$$

2. AFFINE N-CURVATURE INHERITANCE

Singh [4] defined the R^* -curvature inheritance as an infinitesimal transformation with respect to which the Lie-derivative of Berwald's curvature tensor $R^*_{ijkh}^i$ is the relation of the form

$$\mathfrak{L} R^*_{ijkh}^i = \alpha^*(x) R^*_{ijkh}^i \quad (2.1)$$

where $\alpha^*(x)$ is non-zero scalar function.

In the present paper, we consider the infinitesimal transformation (1.13) which admits an affine motion in a $NP-F_n$. Now we define and study the infinitesimal transformation (1.13) which is an affine motion in a $NP-F_n$.

DEFINITION 2.1: In an $NP-F_n$, if the normal projective curvature tensor field N_{jk}^i satisfies the relation

$$\mathfrak{L} N_{jk}^i = \alpha(x) N_{jk}^i \quad (2.2)$$

where $\alpha(x)$ is non-zero scalar function and \mathfrak{L} denotes Lie-derivative defined by the

infinitesimal transformation (1.13), then the transformation (1.13) is called an affine N-curvature inheritance.

Contracting with respect to the indices i, j in (2.2), we get

$$\mathcal{L}N_{kh} = \alpha N_{kh}. \quad (2.3)$$

is called an affine Ricci-like N-curvature inheritance.

Applying Lie operator to both sides of (1.9) and using (2.3) and (1.9), we obtain

$$\mathcal{L}M_{kh} = \alpha(x)M_{kh} \quad (2.4)$$

Applying Lie operator to both sides of (1.10), using (2.2), (2.4) and (1.10), we get

$$\mathcal{L}W_{ijkh}^i = \alpha(x)W_{ijkh}^i. \quad (2.5)$$

By virtue of (2.2) and (1.19), the equation (1.8) reduces to

$$\alpha(x)N_{jkh}^i = 0 \quad (2.6)$$

by using (1.6)a.

Since $\alpha(x)$ is a non-zero scalar function, we have

$$N_{jkh}^i = 0 \quad (2.7)$$

Accordingly, we have

THEOREM 2.1 : In an $NP-F_n$, which admits an affine N-curvature inheritance, if the space is flat.

Contracting with respect to i, j in (2.6) and using (1.7)a), we obtain

$$\alpha(x)N_{kh} = 0. \quad (2.8)$$

Since $\alpha(x)$ is a non-zero scalar function, we get

$$N_{kh} = 0. \quad (2.9)$$

Thus, we state:

COROLLARY 2.1 : In an $NP-F_n$, which admits an affine Ricci-like N-curvature inheritance, if the space is flat.

Employing Lie operator to both sides of (1.10) and using (2.4), (2.5),

Theorem (2.1) and corollary (2.1), we obtain

$$\alpha(x)W_{jkh}^i = 0. \quad (2.6)$$

Since $\alpha(x)$ is a non-zero scalar function, we get

$$W_{jkh}^i = 0. \quad (2.10)$$

Thus, we state:

THEOREM 2.2 : In an NP- F_n , which admits an affine N-curvature inheritance, if the space is projectively flat.

Applying the commutation formula (1.16) for N_{jkh}^i , using the equations (2.2) and (1.19), we get

$$\mathcal{L}(\nabla_i N_{jkh}^i) - \nabla_i(\alpha(x)N_{jkh}^i) = 0. \quad (2.11)$$

The equation (2.11) assumes the form

$$\mathcal{L}(\nabla_i N_{jkh}^i) = \alpha(x)\nabla_i N_{jkh}^i. \quad (2.12)$$

If the gradient vector field $\nabla_i \alpha = \alpha_i$ is zero.

Hence, we state :

LEMMA 2.1 : When an affine N-curvature inheritance admitted in NP- F_n , the derivative of the normal projective curvature tensor N_{jkh}^i satisfies the inheritance property (2.12) provided the gradient vector field α_i is zero.

3. SPECIAL CASES

In this section, we discuss the following important cases :

(a) **CONTRA FIELD** : In an NP- F_n , if the vector field $v^i(x)$ satisfies the relation by Mishra and Yadav [6]

$$\nabla_j v^i = 0, \quad (3.1)$$

then the vector field $v^i(x)$ spans a contra field.

Here we consider a special infinitesimal transformation

$$\bar{x}^i = x^i + \varepsilon v^i(x), \quad \nabla_j v^i = 0, \quad (3.2)$$

which admits an affine motion in $NP-F_n$. It is assumed that the relation (2.2) is also satisfied in $NP-F_n$, then the transformation (3.2) defines an affine N-curvature inheritance.

Employing the equations (1.19) in (1.15), we obtain

$$0 = \nabla_j \nabla_k v^i - N_{hjk}^i v^h + \Pi_{hjk}^i (\nabla_l v^h) \dot{x}^l.$$

If $v^i(x)$ spans a contra field, it reduces to

$$N_{hjk}^i v^h = 0. \quad (3.3)$$

In addition the integrability condition of affine motion gives

$$\delta N_{jkh}^i v^h = \nabla_l N_{jkh}^i v^h = 0. \quad (3.4)$$

In view of (2.2), the equation (3.2) implies that the space is flat.

Hence, we state :

THEOREM 3.1 : In an $NP-F_n$, which admits an affine N-curvature inheritance of the following conditions:

(i) the $NP-F_n$ is flat

(ii) $N_{hjk}^i v^h = 0$

(iii) $\nabla_l N_{hjk}^i v^h = 0$

holds good.

(b) CONCURRENT FIELD : In an $NP-F_n$, if the vector field $v^i(x)$ satisfies the relation

$$\nabla_j v^i = c \delta_j^i, \quad (3.5)$$

where c is a non-zero constant then the vector field $v^i(x)$ determines a concurrent field.

In this section, we consider the infinitesimal transformation

$$\bar{x}^i = x^i + \varepsilon v^i(x), \quad \nabla_j v^i = c \delta_j^i, \quad (3.6)$$

which admits an affine motion and defines an affine N-curvature inheritance in NP - F_n .

The covariant derivative of (3.3) with respect to x^i and using (3.5), we get

$$\nabla_i N_{hjk}^i v^h + c N_{ijk}^i = 0$$

Applying Lie operator in above equation, using (2.12) and (2.2), we obtain

$$\alpha(x) \nabla_i N_{hjk}^i v^h + \alpha(x) c N_{ijk}^i = 0 \quad (3.7)$$

Since $\alpha(x)$ is a non-zero scalar function, we have

$$\nabla_i N_{hjk}^i v^h = c N_{ijk}^i \quad (3.8)$$

in view of the equation (1.6)a.

Hence, we state:

THEOREM 3.2 : In an NP - F_n , which admits an affine N-curvature inheritance, if the vector field $v^i(x)$ determines a cocompact field, the relation (3.8) necessarily hold.

Let us assume that the space under consideration is a RNP- F_n and the transformation (3.6) defines an affine N-curvature inheritance in it. In this case the relation (3.8) assumes the form

$$\lambda_i N_{hjk}^i v^h = c N_{ijk}^i. \quad (3.9)$$

Accordingly, we state :

THEOREM 3.3 : In an RNP- F_n , which admits an affine N-curvature inheritance, if the vector field $v^i(x)$ determines a concurrent field, the relation (3.9) necessarily hold.

REFERENCES

1. H. Rund : The differential geometry of Finsler spaces, Springer-Verlag, 1959.
2. K. Yano. : The theory of lie-derivatives and its applications, North Holland, 1955.

3. P. N. Pandey : On an NPF-Finsler manifold, *Ann. Fac. Sci. Kinshasha*, 6(1980), 51-63.
4. S. P. Singh : On the curvature inheritance in Finsler space II, *Tensor, N.S.* 65(2004), 179-185.
5. R. B. Mishra ; F. M. Meher : Projective motion in an RNP-Finsler space, *Tensor, N.S.* 22(1971), 117-120.
6. C. K. Mishra ; D. D. S. Yadav : Normal and Recurrent normal projective Finsler spaces with special vector fields, *Vik. Mathe. jou.* 25(2005).
7. U. P. Singh ; A. K. Singh : On the N-curvature collineation in Finsler Space, *Annales Soc. Sci. Bryssel*, 95(1981), 69-77.

