ON RECURRENCE TENSOR FIELD

By

S. B. Pandey
Department of Mathematics
Kumaun University,
S. S. J. Campus, Almora-263601. (Uttarakhand) India.

and

Lata Bisht
Department of Mathematics,
Kumaun Engineering College, Dwarahat(Almora)
(Uttarakhand) India.

ABSTRACT: In this paper, some properties of recurrence parameters in birecurrent GF - Manifold have been studied.

1. INTRODUCTION:

Consider a diffrentiable manifold Mn of differtiability class C^∞ . Let there be in Mn, a vector valued linear function F of class C^∞ satisfying the algebraic equation

$$\overline{X} = a^2 X,$$
 (1.1)a

for arbitrary vector field X and complex number a, where

$$\overline{X} = FX$$
. (1.1)b

Then {F} is said to give to Mn a general differentiable structure briefly known as GF-structure defined by equations (1.1) and the manifold Mn is called GF-manifold.

If the GF-structure is endowed with Hermite metric tensor g, such that

$$g(\overline{X}, \overline{Y}) + a^2 g(X, Y) = 0$$
 (1.1)c

Then {F,g} gives to Mn, a Hermite structure or H-structure subordinate to GF-structure.

AGREEMENT 1.1: In what follows and above, the equations containing X, Y, Z,, etc. hold for arbitrary vectors X, Y, Z,, etc. in Mn.

Let K denote the curvature tensor in Mn. Then the following equations hold (6):

$$K(X,Y,\overline{Z}) = \overline{K(X,Y,Z)}$$
 (1.2)a

$$\overline{K(X,Y,\overline{Z})} = a^2 K(X,Y,Z)$$
 (1.2)b

$$Ric(Y,Z) = g(r(y),Z), Ric(Y,Z) = (C_1^1K)(Y,Z)$$
 (1.2)c

$$\operatorname{Ric}(\overline{X}, \overline{Y}) = -a^2 \operatorname{Ric}(X, Y), (C_1^1 r) = R$$
 (1.2)d

$$Ric(\overline{X}, Y) = -Ric(X, \overline{Y}),$$
 (1.2)e

where r is the self-adjoint Ricci map and C_1^1 is the contraction with respect to first slot.

The manifold Ma is said to be recurrent2, if

$$(\nabla K)(X,Y,Z,U) = A_1(U)K(X,Y,Z),$$
 (1.3)a

it is said to be Ricci-recurrent, if

$$(\nabla Ric)(Y,Z,U) = A_1(U)Ric(Y,Z), \tag{1.3}b$$

where A_1 is a non-vanishing C^{∞} 1-form.

The manifols is said to be birecurrent⁵, if

$$(\nabla \nabla K)(X, Y, Z, T_1, T_2) = A_2(T_1, T_2)K(X, Y, Z),$$
 (1.4)a

it is said to be Ricci-birecurrent, if

$$(\nabla \nabla \text{Ric})(Y, Z, T_1, T_2) = A_2(T_1, T_2) \text{Ric}(Y, Z),$$
 (1.4)b

where A₂ is a non-vanishing C∞ 2-form, such that

$$A_2(T_1, T_2) = (\nabla A_1)(T_1, T_2) + A_1(T_1)A_2(T_2). \tag{1.4}c$$

The curvature tensor K satisfies the following Ricci-identities:

$$(\nabla \nabla K)(X,Y,Z,T,V) - (\nabla \nabla K)(X,Y,Z,V,T) = K(V,T,K(X,Y,Z,))$$

$$-K(K(V,T,X),Y,Z)-K(X,K(V,T,Y),Z)-K(X,YK(V,T,Z)).$$
 (1.5)

LetQ, a vector - valued trilinear function, be any one of the curvature tensors K, W, C, L or V.

A GF-manifold is said to be (1)-recurrent in Q3, if

$$a^{2}((\nabla Q)(X,Y,Z,T)) + Q(\nabla F(\overline{X},T),Y,Z) = a^{2} A_{1}(T)Q(X,Y,Z),$$
 (1.6)

where $A_1(T)$ is a non-vanishing C^{∞} function.

A GF-structure manifold is said to be (1)-birecurrent in Q4, if

$$a^2(\nabla\nabla Q)(X,Y,Z,T,S)+(\nabla Q)((\nabla F)(\overline{X},T),Y,Z,S)+(\nabla Q)((\nabla F)(\overline{X},S),Y,Z,T)$$

$$+Q((\nabla \nabla F)(\overline{X}, T, S), Y, Z) = a^2 A_2(T, S)Q(X, Y, Z),$$
 (1.7)

where $A_2(T,S)$ is a non-vanishing C^{∞} function.

2. RECURRENCE TENSOR FIELD

THEOREM 2.1: In a (1)-birecurrent GF-manifold the recurrence tensor field A₂(T,S) is non-symmetric.

PROOF: Interchanging T and S in equation (1.7) and then subtracting the resulting equation from equation (1.7), we get

$$a^{2}[(\nabla \nabla K)(X,Y,Z,T,S) - (\nabla \nabla K)(X,Y,Z,S,T)] + K[(\nabla \nabla F)(\overline{X},T,S) - (\nabla \nabla F)(\overline{X},S,T),Y,Z] = a^{2}[A_{2}(T,S) - A_{2}(S,T)]K(X,Y,Z).$$
 (2.1)

Using Ricci-identities for K(X,Y,Z) in equation (2.1) and then using equation (1.1)a in the resulting equation, we get

$$a^{2}K(S,T,K(X,Y,Z)) - a^{2}K(X,K(S,T,Y),Z) - a^{2}K(X,Y,K(S,T,Z))$$

$$-K(\overline{K(S,T,\overline{X}})Y,Z) = a^{2}[A_{2}(T,S) - A_{2}(S,T)]K(X,Y,Z).$$
 (2.2)

The equation (2.2) proves the statement.

NOTE 2.1: Theorems of type (2.1) can also be proved taking (2), (3), (12), (13), (23)

and (123)-birecurrent GF-manifold instead of (1)-birecurrent GF-manifold.

THEOREM 2.2: In a (1)-birecurrent GF-manifold, the recurrence tensor field A₂(T,S) satisfies the relation

$$a^{2}A_{1}(U)(A_{2}(T,S)-A_{2}(S,T))K(X,Y,Z)-K((\nabla F)K(S,T,\overline{X}),U),Y,Z)$$

$$-K(\overline{K(S,T,(\nabla F)(X,U)},Y,Z)=a^{2}((\nabla A_{2})(T,S,U)$$

$$-(\nabla A_{2})(S,T,U))K(X,Y,Z). \tag{2.3}$$

PROOF: Differentiating equation (2.2) covariantly and then using equations (1.3) and (2.2) in the resulting equation, we get the equation (2.3).

THEOREM 2.3: If the GF-manifold is birecurrent and (1)-birecurrent for the same recurrence parameter, then we have

$$a^{2}A_{1}(U)(A_{2}(T,S)-A_{2}(S,T))=a^{2}((\nabla A_{2}(T,S,U)-(\nabla A_{2})(S,T,U)). \tag{2.4}$$

PROOF: Interchanging T and S in equation (1.4)a and then subtracting the resulting equation from equation (1.4)a, we get

$$(\nabla \nabla K)(X,Y,Z,T,S) - (\nabla \nabla K)(X,Y,Z,S,T)$$

$$= (A_2(T,S) - A_2(S,T))K(X,Y,Z). \tag{2.5}$$

Using Ricci-identities in equation (2.5) and then comparing the resulting equation with the equation (2.2), we get

$$K(\overline{K(S,T,X)})Y,Z) = a^{2}K(K(S,T,X),Y,Z).$$
(2.6)

Using equation (2.6) in equation (2.2), we get

$$a^{2}K(S,T,K(X,Y,Z)) - a^{2}K(K(S,T,X),Y,Z) - a^{2}K(X,K(S,T,Y),Z)$$
$$-a^{2}K(X,Y,K(S,T,Z)) = a^{2}(A_{2}(T,S) - A_{2}(S,T))K(X,Y,Z).$$
(2.7)

Differentiating equation (2.7) covariantly and using equations (1.3) and (2.7) in the resulting equation, we have

$$a^{2} A_{1}(U)(A_{2}(T,S) - A_{2}(S,T))K(X,Y,Z)$$

$$= a^{2}((\nabla A_{2})(T,S,U) - (\nabla A_{2})(S,T,U))K(X,Y,Z),$$

which gives the equation (2.4).

THEOREM 2.4: If the GF-manifold is birecurrent and (1)-birecurrent for the same recurrence parameter, then

$$a^{2}(A_{2}(K(U,V,S),T) + A_{2}(S,K(U,V,T) - A_{2}(K(U,V,T),S) - A_{2}(T,K(U,V,S))$$

$$= a^{2}(A_{2}(T,S) - A_{2}(S,T))((\nabla A_{1})(U,V) - (\nabla A_{1})(V,U)). \tag{2.8}$$

PROOF: Differentiating equation (2.4) covariantly and using equation (2.4), we get

$$a^{2}(\nabla \nabla A_{2})(T,S,U,V) - a^{2}(\nabla \nabla A_{2})(S,T,U,V) = a^{2}(A_{2}(T,S) - A_{2}(S,T))(\nabla A_{1})(U,V) + a^{2}(A_{2}(T,S) - A_{2}(S,T))A_{1}(U)A_{1}(V).$$
 (2.9)

Interchanging U and V in equation (2.9) and then subtracting the resulting equation obtained from equation (2.9), we get

$$a^{2}(\nabla \nabla A_{2})(T,S,U,V) - a^{2}(\nabla \nabla A_{2})(S,T,U,V) = a^{2}(A_{2}(T,S)$$

$$-A_{2}(S,T))\{(\nabla A_{1})(U,V) - (\nabla A_{1})(V,U)\}$$

$$+a^{2}(\nabla \nabla A_{2})(T,S,V,U) - a^{2}(\nabla \nabla A_{2})(S,T,V,U). \tag{2.10}$$

Also, from Ricci-identities for A₂(T,S), we have

$$(\nabla \nabla A_2)(T, S, U, V) - (\nabla \nabla A_2)(T, S, V, U)$$

= $-A_2(K(U, V, T), S) - A_2(T, K(U, V, S)).$ (2.11)

 Interchanging T and S in equation (2.11) and then subtracting the resulting equation obtained from equation (2.11), we get

$$(\nabla \nabla A_{2})(T,S,U,V) - (\nabla \nabla A_{2})(S,T,U,V) = -A_{2}(K(U,V,T),S)$$

$$-A_{2}(T,K(U,V,S)) + A_{2}(K(U,V,S),T) + A_{2}(S,K(U,V,T))$$

$$+(\nabla \nabla A_{2})(T,S,V,U) - (\nabla \nabla A_{2})(S,T,V,U). \tag{2.12}$$

From the equations (2.10) and (2.12), we get the equation (2.8).

NOTE 2.2: Theorems of type (2.2), (2.3) and (2.4) can also be proved taking (2) or (3)-birecurrent GF-manifold instead of (1)-birecurrent GF-manifold.

REFERENCES

- Duggal K. L.: On differentiable structures defined by algebraic equations I, Nijenhuis tensor Tensor, N. S., 22 (1971), 238-242.
- Mishra R. S.: A course in tensors with applications to Riemannian Geometry, Pothishala Private Limited, Allahabad, India (1965).
- Panday S. B. and Dasila Lata: On General Differentiable Manifold, U. Scientist of Phyl. Science Vol. 7. No. 2, 147-152 (1995).
- 4. Takano K.: On space with birecurrent curvature Tensor, N.S. 22, 329-32.
- Yano K.: Differential Geometry on Complex and almost complex spaces, Pergamon Press, New York, (1965).