

ON P3-LIKE FINSLER SPACE

By

B. N. Prasad
Department of Mathematics
St. Andrews College, Gorakhpur

T. N. Pandey
Department of Mathematics and Statistics
D.D.U. Gorakhpur University, Gorakhpur

and

Amitabh Mishra

ABSTRACT : There are three kinds of torsion tensor in Cartan's theory of Finsler spaces. Two of them are (h) hv-torsion tensor C_{ijk} and (v) hv-torsion tensor P_{ijk} , which are symmetric in all their indices and both are indicatory tensors. Mathematicians have studied various interesting special forms of these torsion tensors. For example C-reducible [2], semi C-reducible [6], C2-like [6] and C3-like [9] Finsler spaces are based on the special forms of C_{ijk} where as P-reducible [1] [5] and P-symmetric [5] Finsler spaces are based on the special forms of P_{ijk} . In the present paper we shall discuss another special form of P_{ijk} .

1. INTRODUCTION

DEFINITION : A Finsler space F^n ($n > 3$) is called P3-like, if there exist four scalars A, B, C, D and two linearly independent vector fields X_i, Y_i which are positively

homogeneous of degree 0 in "yⁱ" (briefly, (0)p-homogeneous) and satisfy

$$P_{ijk} = AX_i X_j X_k + BY_i Y_j Y_k + C\pi_{(ijk)}\{X_i X_j Y_k\} + D\pi_{(ijk)}\{X_i Y_j Y_k\} \quad (1.1)$$

where $\pi_{(ijk)}\{\dots\}$ denotes the cyclic interchange of i, j, k and summation. For instance

$$\pi_{(ijk)}\{A_i B_j C_k\} = A_i B_j C_k + A_j B_k C_i + A_k B_i C_j$$

and there exist no scalar γ and vector field Z_i satisfying $P_{ijk} = \gamma Z_i Z_j Z_k$.

Since P_{ijk} of every three dimensional Finsler space may be written in the form of (1.1) [see theorem (2.1)], that is why we say F^n ($n > 3$) as P3-like Finsler space whose P_{ijk} is of the form (1.1).

2. P3-LIKE FINSLER SPACE

We are concerned with P3-like Finsler spaces. First we prove

PROPOSITION 2.1 : The matrix $\begin{bmatrix} A & B \\ B & C \\ C & D \end{bmatrix}$ is of rank two.

PROOF : If the rank is one then there exist scalar λ such that $B = \lambda A$, $C = \lambda B$, $D = \lambda C$. By putting $U_i = X_i + \lambda Y_i$, (1.1) reduces to $P_{ijk} = AU_i U_j U_k$ which is contrary to a condition for the P3-like property.

We again consider the equation (1.1). Indicatrization of (1.1) leads us to

$$\begin{aligned} P_{ijk} h^i_a h^j_b h^k_c &= AX_a X_b X_c + BY_a Y_b Y_c + C\pi_{(abc)}\{X_a X_b Y_c\} \\ &\quad + D\pi_{(abc)}\{X_a Y_b Y_c\} \end{aligned} \quad (1.1)'$$

where $h^i_a = g^{ib} h_{ab}$, $h_{ab} = g_{ab} - l_a l_b$ and we put $X_a = X_i h^i_a$, $Y_a = Y_i h^i_a$. Then X_a and Y_a are linearly independent vectors such that $X_0 = Y_0 = 0$, where and in the following the subscript 0 indicates contraction by y^i . In fact if $Y_a = \mu X_a$ for some

scalar μ then (1.1)' is written in the form $P_{ijk} = (A + B\mu^3 + 3\mu C + 3D\mu^3)X_a X_b X_c$ which contradicts the definition of P3-like space. We thus may assume that X_i and Y_i are orthogonal to the supporting element y^i .

It is obvious that X_i and Y_i may be taken as unit vectors, by suitable modification of scalars A, B, C, D. Further it may be supposed that X_i is orthogonal to Y_i . If Y_i is not orthogonal to X_i , then we take the vector

$$W_i = Y_i - (X, Y)X_i, \quad (X, Y) = g^{ij}X_i Y_j \neq 0$$

It is clear that this is orthogonal to X_i and P_{ijk} is written in a similar form (1.1) in terms of X_i and W_i . Consequently this leads to

PROPOSITION 2.2 : In the equation (1.1) it may be assumed that

$$X_i y^i = Y_i y^i = 0, \quad g_{ij} X^i X^j = g_{ij} Y^i Y^j = 1, \quad g_{ij} X^i Y^j = 0.$$

Throughout the following we shall suppose that in the definition (1.1) of P3-like Finsler space X_i and Y_i satisfy the assumptions in proposition (2.2).

From $X_i y^i = Y_i y^i = 0$, taking v- covariant derivative of this equation with respect to $C\Gamma$ gives

$$X_i|_j y^i + X_j y^i = 0, \quad Y_i|_j y^i + Y_j y^i = 0. \quad (2.1)$$

If the vector fields X_i and Y_i are v-covariantly constant then from (2.1) it follows that $X_i = Y_i = 0$, which is a contradiction. Hence we have the following

PROPOSITION 2.3 : The vector field X_i and Y_i in P3-like Finsler space is not v-covariantly constant.

The concurrent vector field has been defined by Matsumoto [4] and Tachibana [12]. The semi parallel vector field, the semi parallel h-vector field and the concircular vector field have been defined by Singh and Prasad [10], Singh and Kumari [11] and Prasad et all [8] respectively. In all these works the vector fields are v- covariantly

constant. Hence we may state that

PROPOSITION 2.4 : The vector fields X_i and Y_i occurring in P3-like Finsler space is neither of any of the following:

- (a) a concurrent vector field,
- (b) a semi parallel vector field,
- (c) a semi parallel h-vector field,
- (d) a concircular vector field.

Next we consider the three-dimensional Finsler space F^3 in which the Moor's frame (l_i, m_i, n_i) play an important role. With respect to this frame, the metric tensor and (h) hv-torsion tensor are respectively given by $g_{ij} = l_i l_j + m_i m_j + n_i n_j$ and

$$LC_{ijk} = H m_i m_j m_k - J \pi_{(ijk)} \{m_i m_j n_k\} + I \pi_{(ijk)} \{m_i n_j n_k\} + J n_i n_j n_k. \quad (2.2)$$

where H, I, J are main scalars of three-dimensional Finsler space F^3 such that $H + I = L C$ [3]. Taking h-covariant derivative of (2.2) with respect to x^h and using $m_{ij} = n_i h_j, n_{ij} = -m_i h_j$ [3] then contracting the resulting equation with y^h , we have

$$\begin{aligned} P_{ijk} = C_{ijk|0} &= (H_1 + 3Jh_1)m_i m_j m_k + (J_1 + 3lh_1)n_i n_j n_k \\ &+ \{-J_1 + (H - 2I)h_1\} \pi_{(ijk)} \{m_i m_j n_k\} + (I_1 - 3Jh_1) \pi_{(ijk)} \{m_i n_j n_k\}, \end{aligned} \quad (2.3)$$

where $H_1 = L^{-1} H|_0$ and $h_1 = h_i l^i$. Equation (2.3) is of the same form as (1.1) with $A = H_1 + 3Jh_1, B = J_1 + 3lh_1, C = -J_1 + (H - 2I)h_1, D = I_1 - 3Jh_1$ and $X_i = m_i, Y_i = n_i$.

THEOREM 2.1 : Every three dimensional Finsler space is P3-like.

3. FOUR-DIMENSIONAL P3-LIKE FINSLER SPACE

Consider the four-dimensional Finsler space F^4 in which the Moor's frame (l_i, m_i, n_i, p_i) plays the important role. For this frame, the metric tensor and (h) hv-torsion tensor are respectively given by [7] $g_{ij} = l_i l_j + m_i m_j + n_i n_j + p_i p_j$ and

$$\begin{aligned}
 LC_{ijk} = & H m_i m_j m_k + J n_i n_j n_k + H' p_i p_j p_k + \pi_{(ijk)} \{ m_i n_j n_k \} + K \pi_{(ijk)} \{ m_i p_j p_k \} \\
 & - (J + J') \pi_{(ijk)} \{ m_i m_j n_k \} + l' \pi_{(ijk)} \{ n_i n_j p_k \} + J' \pi_{(ijk)} \{ n_i p_j p_k \} \\
 & - (H' + l') \pi_{(ijk)} \{ m_i m_j p_k \} + K' \pi_{(ijk)} \{ m_i (n_j p_k + n_k p_j) \}, \quad (3.1)
 \end{aligned}$$

where H, I, J, K, H', l', J' are main scalars of four-dimensional Finsler space F^4 such that $H + I + K = L$. Differentiating (3.1) h -covariantly with respect to x^h , using [7] $m_{ij} = n_i h_j + p_i j_j, n_{ij} = -m_i h_j + p_i k_j, p_{ij} = -m_i j_j - n_i k_j$, then contracting with y^h and putting $h_0 = h_i y^i = L h_1, H_{,0} = H_i y^i = L H_1$ etc, we have

$$\begin{aligned}
 P_{ijk} = C_{ijk0} = & [H_{,1} + 3(J + J')h_1 + 3(H' + l')j_1] m_i m_j m_k \\
 & + [J_{,1} + 3lh_1 - 3l'k_1] n_i n_j n_k + [H'_{,1} + 3Kj_1 + 3J'k_1] p_i p_j p_k \\
 & + [-(J + J')_{,1} + (H - 2l)h_1 - 2K'j_1 + (H' + l')k_1] \pi_{(ijk)} \{ m_i m_j n_k \} \\
 & + [l_{,1} - (3J + 2J')h_1 - l'j_1 - 2K'k_1] \pi_{(ijk)} \{ m_i n_j n_k \} \\
 & + [K_{,1} - J'h_1 - (3H' + 2l')j_1 + 2K'k_1] \pi_{(ijk)} \{ m_i p_j p_k \} \\
 & + [J'_{,1} + Kh_1 + 2K'j_1 - (H' - 2l')k_1] \pi_{(ijk)} \{ n_i p_j p_k \} \\
 & + [l'_{,1} + 2K'h_1 + l'j_1 + (J - 2J')k_1] \pi_{(ijk)} \{ n_i n_j p_k \} \\
 & + [-(H' + l')_{,1} - 2K'h_1 + (H - 2K)j_1 - (J + J')k_1] \pi_{(ijk)} \{ m_i m_j p_k \} \\
 & + [K'_{,1} - (H' + 2l')h_1 - (J + 2J')j_1 \\
 & + (l - K)k_1] \pi_{(ijk)} \{ m_i n_j p_k + m_i p_j n_k \} \quad (3.2)
 \end{aligned}$$

Let X_α and Y_α ($\alpha = 1, 2, 3, 4$) are scalar components of X_i and Y_i respectively with respect to Moor's frame (l_i, m_i, n_i, p_i) i.e.

$$X_i = X_1 l_i + X_2 m_i + X_3 n_i + X_4 p_i, \quad Y_i = Y_1 l_i + Y_2 m_i + Y_3 n_i + Y_4 p_i. \quad (3.3)$$

Then $X_i y^i = Y_i y^i = 0$ implies that $X_1 = Y_1 = 0$ and $g^{ii} X_i X_i = g^{ii} Y_i Y_i = 1$, $g^{ii} X_i Y_i = 0$ implies that

$$\begin{aligned} X_2^2 + X_3^2 + X_4^2 &= 1, \quad Y_2^2 + Y_3^2 + Y_4^2 = 1, \\ X_2 Y_2 + X_3 Y_3 + X_4 Y_4 &= 0. \end{aligned} \quad (3.4)$$

If F^4 is P3-like Finsler space, then from (1.1) and (3.3), we get

$$\begin{aligned} P_{ijk} = & [AX_2^3 + BY_2^3 + 3CX_2^2 Y_2 + 3DX_2 Y_2^2]m_i m_j m_k \\ & + [AX_3^3 + BY_3^3 + 3CX_3^2 Y_3 + 3DX_3 Y_3^2]n_i n_j n_k \\ & + [AX_4^3 + BY_4^3 + 3CX_4^2 Y_4 + 3DX_4 Y_4^2]p_i p_j p_k \\ & + [AX_2^2 X_3 + BY_2^2 Y_3 + C(X_2^2 Y_3 + 2X_2 X_3 Y_2) \\ & \quad + D(Y_2^2 X_3 + 2X_2 Y_2 Y_3)]\pi_{(ijk)}\{m_i m_j n_k\} \\ & + [AX_2 X_3^2 + BY_2 Y_3^2 + C(Y_2 X_3^2 + 2X_2 X_3 Y_2) \\ & \quad + D(X_2 Y_3^2 + 2Y_2 X_3 Y_3)]\pi_{(ijk)}\{m_i n_j n_k\} \\ & + [AX_2 X_4^2 + BY_2 Y_4^2 + C(Y_2 X_4^2 + 2X_2 X_4 Y_4) \\ & \quad + D(X_2 Y_4^2 + 2Y_2 X_4 Y_4)]\pi_{(ijk)}\{m_i p_j p_k\} \\ & + [AX_3 X_4^2 + BY_3 Y_4^2 + C(Y_3 X_4^2 + 2X_3 X_4 Y_4) \\ & \quad + D(X_3 Y_4^2 + 2Y_3 X_4 Y_4)]\pi_{(ijk)}\{n_i p_j p_k\} \\ & + [AX_3^2 X_4 + BY_3^2 Y_4 + C(X_3^2 Y_4 + 2Y_3 X_3 Y_4) \\ & \quad + D(Y_3^2 X_4 + 2Y_3 X_3 Y_4)]\pi_{(ijk)}\{n_i n_j p_k\} \\ & + [AX_2^2 X_4 + BY_2^2 Y_4 + C(X_2^2 Y_4 + 2Y_2 X_2 Y_4) \\ & \quad + D(Y_2^2 X_4 + 2Y_2 X_2 Y_4)]\pi_{(ijk)}\{m_i m_j p_k\} \\ & + [AX_2 X_3 X_4 + BY_2 Y_3 Y_4 + C(X_2 X_3 Y_4 + Y_2 X_3 X_4 + X_2 Y_2 X_4) \\ & \quad + D(X_2 Y_3 Y_4 + Y_2 X_3 Y_4 + Y_2 Y_3 X_4)]\pi_{(ijk)}\{m_i m_j n_k\} \end{aligned} \quad (3.5)$$

Comparing (3.2) and (3.5), we have

$$AX_2^3 + BY_2^3 + 3CX_2^2Y_2 + 3DX_2Y_2^2 = H_1 + 3(J+J')h_1 + 3(H'+I')j_1. \quad (3.6)a$$

$$AX_3^3 + BY_3^3 + 3CX_3^2Y_3 + 3DX_3Y_3^2 = J_1 + 3lh_1 - 3l'k_1. \quad (3.6)b$$

$$AX_4^3 + BY_4^3 + 3CX_4^2Y_4 + 3DX_4Y_4^2 = H'_1 + 3Kj_1 + 3J'k_1. \quad (3.6)c$$

$$AX_2^2X_3 + BY_2^2Y_3 + C(X_2^2Y_3 + 2X_2X_3Y_2) + D(Y_2^2X_3 + 2X_2Y_2Y_3) = -(J+J')_1 + (H-2l)h_1 - 2K'j_1 + (H'+I')k_1 \quad (3.6)d$$

$$AX_2X_3^2 + BY_2Y_3^2 + C(Y_2X_3^2 + 2X_2X_3Y_3) + D(X_2Y_3^2 + 2Y_2X_3Y_3) = I_1 - (3J+2J')h_1 + I'j_1 - 2K'k_1 \quad (3.6)e$$

$$AX_2X_4^2 + BY_2Y_4^2 + C(Y_2X_4^2 + 2X_2X_4Y_4) + D(X_2Y_4^2 + 2Y_2X_4Y_4) = K_1 - J'h_1 - (3H'+2I')j_1 + 2K'k_1 \quad (3.6)f$$

$$AX_3X_4^2 + BY_3Y_4^2 + C(Y_3X_4^2 + 2X_3X_4Y_4) + D(X_3Y_4^2 + 2Y_3X_4Y_4) = J'_1 + Kh_1 + 2K'j_1 - (H'-2I')k_1 \quad (3.6)g$$

$$AX_3^2X_4 + BY_3^2Y_4 + C(X_3^2Y_4 + 2Y_3X_3X_4) + D(Y_3^2X_4 + 2Y_3X_3Y_4) = I'_1 + 2K'h_1 + Ij_1 + (J-2J')k_1 \quad (3.6)h$$

$$AX_2^2X_4 + BY_2^2Y_4 + C(X_2^2Y_4 + 2Y_2X_2Y_4) + D(Y_2^2X_4 + 2Y_2X_2Y_4) = -(H'+I')_1 - 2K'h_1 + (H-2K)j_1 - (J+J')k_1 \quad (3.6)i$$

$$AX_2X_3X_4 + BY_2Y_3Y_4 + C(X_2X_3Y_4 + Y_2X_3X_4 + X_2Y_2X_4) + D(X_2Y_3Y_4 + Y_2X_3Y_4 + Y_2Y_3X_4) = K'_1 - (H'+2I')h_1 - (J+2J')j_1 + (I-K)k_1 \quad (3.6)j$$

Adding (a), (e) and (f) of equation (3.6), we have $(A+D)X_2 + (B+C)Y_2 = (LC)_1$

Adding (b), (d) and (g) of equation (3.6), we have $(A+D)X_3 + (B+C)Y_3 = (LC)h_1$

Adding (c), (h) and (i) of equation (3.6), we have $(A+D)X_4 + (B+C)Y_4 = (LC)j_1$

Solving above, we have the following:

THEOREM 3.1 : In a four-dimensional P3-like Finsler space the scalars A+B and B+C are given in terms of scalar components of X_i and Y_i as

$$A+D = \frac{Y_3(LC)_{,1} - Y_2 h_1 LC}{X_2 Y_3 - X_3 Y_2}, \quad B+C = \frac{X_2 h_{,1} LC - Y_3(LC)_{,1}}{X_2 Y_3 - X_3 Y_2}.$$

The equation (3.6) is more complicated to discuss any other geometrical results, so we consider the particular cases of four-dimensional P3-like Finsler space.

Let X_i is along m_i and Y_i is along n_i then $X_2 = 1, X_3 = 0, X_4 = 0, Y_2 = 0, Y_3 = 1, Y_4 = 0$. Therefore (3.6) reduces to

$$\begin{aligned} A &= H_{,1} + 3(J+J')h_1, & B &= J_{,1} + 3lh_1 - 3l'k_1, \\ C &= -(J+J')_{,1} + (H-2l)h_1 - (H'+l')k_1, & D &= l_{,1} - (3J+2J')h_1 - 2K'k_1, \end{aligned} \quad (3.7)$$

and $j_1 = 0$. Therefore we have

THEOREM 3.2 : If in a four-dimensional P3-like Finsler space the vector fields X_i and Y_i are along m_i and n_i respectively of the Moor's frame (l_i, m_i, n_i, p_i) , then $j_i = 0$ and the scalars A, B, C and D are given by (3.7).

If X_i and Y_i are along m_i and p_i respectively, the $X_2 = Y_4 = 1, X_3 = X_4 = Y_2 = Y_3 = 0$. Therefore we have

THEOREM 3.3 : If in a four-dimensional P3-like Finsler space the vector fields X_i and Y_i are along m_i and p_i respectively of the Moor's frame (l_i, m_i, n_i, p_i) , then $h_i = 0$ and

$$\begin{aligned} A &= H_{,1} + 3(J+J')h_1 + 3(H'+l')j_1, & B &= H'_{,1} + 3Kj_1 + 3J'k_1, \\ C &= -(H'+l')_{,1} + (H-2K)j_1 - (J+J')k_1, & D &= K_{,1} - (3H'+2l')j_1 + 2K'k_1. \end{aligned}$$

Let X_i and Y_i are along n_i and p_i respectively, the $X_3 = Y_4 = 1, X_2 = X_4 = Y_2 = Y_3 = 0$. Therefore we have

THEOREM 3.4 : If in a four-dimensional P3-like Finsler space the vector fields X_i and Y_i are along n_i and p_i respectively of the Moor's frame (l_i, m_i, n_i, p_i) , then $(LC)_{ij} = 0$ and

$$A = J_{,1} + 3lh_{,1} - 3l'k_{,1}, \quad B = H'_{,1} + 3Kj_{,1} + 3J'k_{,1}, \\ C = l'_{,1} + 2K'h_{,1} + lj_{,1} + (J - 2J')k_{,1}, \quad D = J'_{,1} + Kh_{,1} + 2K'j_{,1} - (H' - 2l')k_{,1}.$$

4. P3-LIKE N-DIMENSIONAL SPECIAL FINSLER SPACES

A Finsler space of dimension n ($n \geq 3$) is called C-reducible, [2] if C_{ijk} is written in the form $C_{ijk} = \frac{1}{n+1}(h_{ij}C_k + h_{jk}C_i + h_{ki}C_j)$ where $C_i = g^{ik}C_{ijk}$.

Therefore

$$P_{ijk} = C_{ijk|0} = \frac{1}{n+1}(h_{ij}C_{k|0} + h_{jk}C_{i|0} + h_{ki}C_{j|0}). \quad (4.1)$$

Comparing (4.1) with (1.1) and then contracting with g^{ik} , we get

$$A + D = C_{i|0}X^i, \quad B + C = C_{i|0}Y^i. \quad (4.2)$$

A Finsler space of dimension more than two is called semi C-reducible space of constant scalar [6], if C_{ijk} is written in the form

$$C_{ijk} = \frac{p}{n+1}(h_{ij}C_k + h_{jk}C_i + h_{ki}C_j) + \frac{q}{C^2}C_iC_jC_k$$

where p and q are constant such that $p + q = 1$ and $C^2 = g^{ik}C_iC_j$. Therefore

$$P_{ijk} = \frac{p}{n+1}(h_{ij}C_{k|0} + h_{jk}C_{i|0} + h_{ki}C_{j|0}) + \frac{q}{C^2}(C_{i|0}C_jC_k + C_iC_{j|0}C_k \\ + C_iC_jC_{k|0}) - \frac{2q}{C^3}C_{i|0}C_jC_k. \quad (4.3)$$

Comparing (4.3) with (1.1) and then contracting with g^{ik} , we get (4.2).

A Finsler space of dimension n ($n > 2$) is called C2-like [6], if C_{ijk} is written in the form $C_{ijk} = \frac{1}{C^2} C_i C_j C_k$. Therefore

$$P_{ijk} = \frac{1}{C^2} (C_{i|0} C_j C_k + C_i C_{j|0} C_k + C_i C_j C_{k|0}) - \frac{2}{C^3} C_{|0} C_i C_j C_k. \quad (4.4)$$

Comparing (4.4) with (1.1) and then contracting with g^{ik} , we get (4.2).

THEOREM 4.1 : If P3-like Finsler space is a C-reducible or P-reducible or Semi C-reducible with constant coefficients or C2-like the scalars A + D and B + C are given by $A + D = C_{i|0} X^i$, $B + C = C_{i|0} Y^i$.

REFERENCES

1. Hombu, H. : Konforme Inveriaten in Finslerchen Raume. J. Fac. Sci. Hokkaido Univ. 12 (1934), 157-168.
2. Matsumoto, M. : On C-reducible Finsler spaces. Tensor, N.S. 24 (1972), 29-37.
3. Matsumoto, M. : Foundations of Finsler geometry and special Finsler spaces. Kaiseisha Press. Saikawa Otsu 520 Japan 1986.
4. Matsumoto, M. and Uguchi, K. : Finsler spaces admitting a concurrent vector field. Tensor, N.S. 28 (1974), 239-249.
5. Matsumoto, M. and Shimada, H. : On Finsler spaces with the curvature tensor P_{hijk} and S_{hijk} satisfying special conditions. Rep. On Math. Phys. 12 (1877), 77-87.
6. Matsumoto, M. and Numata, S. : On semi C-reducible Finsler spaces with constant coefficients and C2-like Finsler spaces. Tensor, N.S. 34 (1980), 218-222.
7. Pandey, T.N. and Diwedi, D.K. : A theory of four dimensional Finsler spaces

in terms of scalars. *J. Nat. Acad. Math.* 11 (1997), 176-190.

- 8. **Prasad, B.N., Singh, V.P. and Singh, Y.P.** : On concircular vector fields in Finsler space. *Indian J. Pure Appl. Math.* 17 (1986), 998-1007.
- 9. **Prasad, B.N. and Singh, J.N.** : On C3-like Finsler spaces. *Ind. J. Pure Appl. Math.* 19 (5) (1998), 423-428.
- 10. **Singh, U.P. and Prasad, B.N.** : Modification of a Finsler space by a normalized semi-parallel vector field. *Periodica Mathematica Hungarica.* 14 No. 1 (1983), 31-41.
- 11. **Singh, U.P. and Kumari, Bindu** : Normalized semi-parallel h-vector feilds in special Finsler spaces. *J. Nat. Acad. Math.* 11 (1997), 142-151.
- 12. **Tachibana, S.** : On Finsler spaces which admit a concurrent vector fiekd. *Tensor, N.S.* 1 (1950), 1-5.

