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In this paper we have obtained the condition for a submanifold of a KH-
structure manifold to be KH-structure. A few relations are found in the second
fundamental tensors H and K. Using these results we have also find out the flatness
of H-projective curvature tensor in KH-structure submanifold.

1. INTRODUCTION

Let us consider a 2n-dimensional differentiable manifold M")" of class C”.

Let there exist in M> a vector valued linear function F such that
FPX=a’X, . (1.1)
for an arbitrary vector field X in M?, where a is any complex number, not equal to

zero. Then F gives to M?® a GF-structure and the manifold is called a GF-structure
manifold [1].
if the GF-structure is endowed with metric tensor G, such that

G(FX.FY)=-a*G(X,Y). (1.2)
then M? is called an H-structure manifold.

(1.1) AGREEMENT .
In this paper the equations containing X, Y, Z, U will hold for arbitrary vector
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field X, Y, Z, Uin M*™2.
Let us put

Exv) E aiExy), 1.3)

then ‘F is skew symmatric.

Let M*" be given with H-structure, such that

(ExFIY=0. (1.4)
is satisfied. Where Ey is the Riemannian Connexion in M®", then M* is said to
have a KH-structure and the manifold is called KH-structure manifold [3].

Let M?™2 be a submanifold of M®" with b atp

b - MZn-2 -5 M?I"I'

be the inclusion map such that peM*? = bp e M*" is called the Jacobian map,
then ; i

G(BX, BY)ob = g(X, Y). (1.5)
Since G is real valued positive, definite, bilinear and symmetric function in
M, g is also real valued positive, definite, bilinear and symmetric function in M2,
then g is called the first fundamental magnitudes in M?™2 _If B is the induced

Riemannian connection in M?2, we have the following equation

EaxBY =BDy Y+H(IX.YIM+K(X YN , (1.6)
where M and N be the unit normal vectors to the submanifold M**2 and H and K
are Geometric bilinear functions in M2 .

Weingarten equations in the submanifold M?"2 are given by [1].

EgxM==B'H(X)+'L(XIN , (1.7)a

EgxN=-B"K(X)}+'L(X)M, (1.7)b
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where

f
gl'H(X), Y) d=e HIX, Y), (1.8)a
def
gk, Y) = KX, y) (1.8)b
and ‘L(K) is the third fundamental tensor.

Let"*K and *K are the curvature tensor in the manifold M?" and submanifold
M?2 _ Ric and Ric are corresponding Ricci tensor.

Then from the Gauss and Mainardi-Codazzi equation [2]

“*K(BX, BY, BZ, BU)ob = *K({X, Y, Z, U) - HIX, U) HY, 2) + H(Y, U) HIX, 2)

= KX, U} K(Y, 2) + K(Y, U) K(X, 2), (1.9)
we have

"Ric (BY, BZ) = Ric (Y, 2) - (C}"H) H(Y, 2) + HCH(Y), 2)
-(CY'K KLY, 2) + K(K(Y), 2, (1.10)

1 (BY) =Br(Y) -{C:'HTB'HIZ} + 'H{'H{Y)}-{C}'K} ‘BKIY) + 'KUK(Y).  (1.11)

where C, is the contraction operator.

f +
‘Ric (BY, BZ) 9——-2' G('r (BY), B2), (1.12)a

def
Ric (Y, 2) = gir(Y), 2). (1.12b
The nacessary and sufficient condition that M>™2 be an H-structure

submanifold with the structure (f, g) in the H-structure manifold M®', we have [4].

F(BX)=BX (1.13)a
where

X =F(X) (1.13)b
Aiso when M*™? is an H-structure submanifold in the H-structure manifold

M?" we have [1].
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F(M) = N, (1.14)a
FIN) = M, (1.14)b
An H-structure submanifold M?™2 in a KH-structure manifold M*" is KH-
structure manifold. H and K of KH-structure submanifold M2 immersed in KH-
structure manifold M?" are related by [3].
HIX,Y)=H(X,Y) {1.15)a
K(X,Y)=K(X,Y) (1.16)b

2. SUBMANIFOLD

THEOHEM 2.1 : Let MZ"‘Z be a KH-structure submanifold in a KH-structure
MZI‘IHZ

manifold M®" of constant helomorphic sectional curvature 'K, then in we
have 3
*K X Y, Z, U) = HIX, U} H(Y, Z) - H(Y, U} H(X, 2} + K(X, U) K(Y, Z)
1
-KlY, U) KX, 2) + ZK [giX, U) glY, Z) - glY, U) g(X, 2)
+“f(X, U) (Y, 2 - f(Y, U) “fIX, 2) - 2'f(Z, U) “fX, V)1, (2.1)a
where 'f(X, Y) = hifX, Y) = -'f(Y, X).
Ric (Y, Z) = %’—'ng, 2)-2H(HM), 7 , (2.1)b
R =mim- 1)'K-2C}{'H('H), (2.1c

where R is the scalar curvature.
PROOF : Let us consider that the enveloping manifold M?" is of constant

holomorphic sectional curvature ‘K, then the curvature tensor of M is given by

"*K(BX, BY, BZ, BU)ob = %'K[{G{BX, BU)(SbHG(BY. BZ)ob)
- (G(BX, BZ)ob}{(G(BY, BU)ob) + (G(F(BX), BU)ob){G(F(BY), BZ)ob)
- (G(F(BX), BZ)ob)(G(F(BY), BU)ob) - 2(G(F(BX), BY)ob)(G(F(BZ), BU)ob)].
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By using (1.5), (1.9) and (1.13), we have (2.1)a on contracting (2.1)a, using
H(H(Y), 2) = KU'K(Y), 2) and (C:'H} = IC}‘K) = 0, we get (2.1)b, (2.1)c follows
from (2.)b.

THEOREM 2.2 : Let M™? be a KH-structure submanifold in a KH-structure
manifold M?" of constant holomorphic sectional curvature ‘K, then for H - projectively
flat submanifold M*™2, we have
Ci(HCH)

ey
AR = 1

g(X)Y). (2.2)a

PROOF : The H - projectively curvature tensor ‘P in M2 as given by [4]

"PIX.Y,ZU)=*K(X,Y,Z,U)- %‘-IQ(X,U)Ric{Y,Z) -g(Y,U)Ric(X,Z)

+F(X,U)Ric(Y,Z)-"f(Y,U)Ric(X,2) -2 f(ZU)Ric(X,Y)]  (2.2b

Hence making use of the equation (2.1) and (2.2)b, the H - projectively
curvature tensor ‘P in submanifold M*™2 becomes

‘PIX, Y, Z, U) = HIX, U) H{Y, 2) - H(Y, U) H(X, 2) + KIX, U) K{Y, Z)
1
- KLY, U) KX, Z) + r—n“{g{X, U) HC'H(Y), Z) - g(Y, U) HI'HIX), 2)

+ ‘f(X, U) KUHI(Y, 2)) - *fY, U) K('H(X), Z) - 2'f(Z, U) K(H(X), Y)I. (2.2)c
Let 'PIX. Y, Z U =0,
then from (2.2)c, we have
HIX, U) “HIY) - "HIX) H(Y, U) + KIX, U) ‘K[Y) - K(Y, U) "K(X)

1
- 'i[g{)(. U) ‘HI'HY)) - glY, U) "HIHIX) + (X, U) "KI'HIY)

-'flY, U) ‘KI'HX)) + 2UKIHX), V)] =0, (2.2)d
contracting (2.2)d, we get '
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HCH(Y), U) - CHCH) HIY, U) + K(K(U), U) - CHEK) KLY, U)
1
+ —IgUHIH(Y), U)-g(Y, U) CI'HUH) + 'f'KCHY), U))

-'fY, U) CI'KCH) + 2K(H(U), Y =0. (2.2)e
Making (2.2)e, we have
2(m = 1) HUH(Y), U) = C}I‘H('H}l gy, U) (2.2)f
from (2.2)f, we get
C("HU'H)

H(H(Y),U) =
(HNU) =2

g(Y.u)

THEOREM 2.3 : Let M*™? be a KH-structure submanifold in a KH-structure
manifold M? of constant holomorphic sectional curvature ‘K then for a totally

geodesic manifold M?2  we have

Itis H - projectively flat. (2.3)a
Itis an Einstein manifold. (2.3)b
Hence the manifold M2™2 is of canstant holomorphié sectional curvature,
I
m(m-1)

PROOF : Let M*™?2 be totally geodesic then
HX,Y) =0 or ‘HX) =0.

Using (2.3)a in (2.2)c, we have
PIX. Y, Z, iJ) =0.

Using (2.3)a and the theorem (2.1]?. we get

mt

Ric (Y, Z) = 2

KglY. 2),
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and in the theorem (2.1)c, we get
!K = H
mi{m-1)

Hence the proof follows.
THEOREM 2.4 : Let M®™? be a KH-structure submanifold of H - projectively flat

KH-structure manifold M?" then for H - projectively flat manifold M*2 we have

Cl'H('H)

HU'H(X),Y) = 21

g(xX.y) .

" PROOF : The H - projectively curvature tensor ‘*P in M? is given by [4].

*P(BX, BY, BZ, BU) ob = “*K(BX. BY, BZ, BU) ob

+*om+1 [G(BX, BU) ob 'Ric(BY, BZ) - G(BY, BU) ob Ric(BX, BZ)
* +'F(BZ, BU) 'Ric(F(BY), BZ) - 'F(BY, BU) 'Ric(F(BX), 82)
- 2'F(BZ, BU) 'Ric('F(BX), BY)], (2.4)a

Let '*P(BX, BY, BZ, BU)ob =0,
then the manifold

Ri‘
Ric(BY,BZ) =—G(BY,BZ)ob
ic ) er ( ) (2.4)b

By using (1.10) and (1,11} in (2.4)b, we get

1
Ric (Y, Z) + 2H{'H(Y), &) = o R+ ZC}{'H{'H)H olY, 2). (2.4)c
contracting (2.4)c, we get
R+2C](H(H) =0 (2.4)d

hence, we have

Ric (Y, Z) + 2H{'H(Y), 2) =0, (2.4)e
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from (2.4)e and making use of {1.10), we get

‘Ric (BY, BZ) = 0, (2.4)f
*KIX, Y. Z, U) = H(X, U) HIY, U) - HIY, U) HIX, 2)
+ KX, U) K(Y, 2) - K(Y, U) KiX, Z) : (2.4)g

Now from (2.4)e, (2.4)g and (2.2)b the H - projective curvature tensor ‘P in H
- projectively flat KH-structure manifold M* becomes (2.2)c. By the same method
as in them (2.2)f, we get the result.

THEOREM 2.5 : Let M™" 2 be a KH-structur_e submanifold in a H - projectively flat
KH-structure manifold M2 then for the totally geodesic submanifold M2 we
have

(a) It is H - projectively flat -
{b) It is flat manifold M*".

THEOREM 2.6 : Let M*™? be a KH-structure submanifold in a H - projectively flat

KH-structure manifold M™ then for H- projectively flat submanifold M>™2 itis an
Einstein manifold.

PROOF : From (2.4)e, we have
{a) Ric (Y, Z) = -2H('H(Y), 2)
By using (2.2)a and putting X = Y & Y = Z,

1 r
(b)  Ric(Y, Z}M
(m-1)

which proves the statement.

gl. ),

THEGREM 2.7 : Let M®™? be a KH-structure submanifold in a KH-structure
manifold M®" of constant holomorphic sectional curvature ‘K, then for H- projectively

flat KH-structure submanifold M?™2 is an Einstein manifold.
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PROOF : Let us consider {2.1}b, we have

Rie (Y, 2) = —?'KQIY. 2) - 2HHIY), 2)

By using (2.2)a in the above equation, we get

, R
Ric (Y, 2) 2mim—1 glY. 2

THEOREM 2.8 : Let M™? be & KH-structure submanifold in a KH-structure
manifold M of constant holomorphic sectional curvature ‘K, then for H- projectively
flat submanifold M®™? is of constant holomorphic sectional curvature ‘K and it is an

* totally geodesic.
PROOF : The proof follows from the above them.
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