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Abstract

In this paper, the peristaltic transport of a Newtonian bio-fluid through
a tube of an elliptic cross-section is studied by considering the longitudinal
motion of the wall. It is shown that the transport of the bio-fluid increases as
the eccentricity of the tube decreases or the amplitude of the wave increases.
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1. Introduction

The peristaltic transport of bio-fluids in different geometries has many ap-
plications in Mathematics, Biology and Engineering. Peristaltic action i.e. peri-
stalsis is the mechanism by which a bio-fluid is transported through a distensible
tube when contraction or expansion wave propagate along its length. Peristalsis
appears to be the mechanism for fluid transport in many physiological situa-
tions such as : transport of urine through ureter, swallowing of food through
oesophagus, chyme movement through small intestine, the colonic transport in
the large intestine, etc. The study of peristaltic transport of bio-fluid is based
on the principles of fluid mechanics involving interaction of fluid motion in tubes
with flexible boundaries. In such investigations, an approximate model of the
physiological system is maid by keeping in view the nature of the physiological
fluid (i.e. its Newtonian or non-Newtonian character, its viscosity, its behaviour
as a two-phase mixture, etc.), the nature of the tube and other processes in-
volved. The initial mathematical models of peristalsis obtained by a train of
sinusoidal waves in an infinitely long symmetric channel or tube have been in-
vestigated by Shapiro et al. [1] and Fung and Yih [2]. After these studies,
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many investigations were done to understand the peristaltic action for Newto-
nian and non-Newtonian fluids in different situations. The importance of the
study of peristaltic transport in an asymmetric channel has been brought out
by Eytan and Elad [3] with an application in intra-uterine-fluid flow in a non-
pregnant uterus. After this study, some investigations were done to understand
the mechanism of peristalsis in asymmetric channels. Mishra and Rao [4] have
investigated the flow in an asymmetric channel generated by peristaltic wave
propagating on the walls with different amplitudes and phases. Rao and Mishra
[5] discussed the non-linearity and curvature effects on the peristaltic flow of a
viscous fluid in asymmetric channel when the ratio of the channel width to the
wavelength is small. Pioneering work in this area has been also done by sev-
eral investigators including Shukla and Gupta [6], Misra and Pandey [7], Subba
Reddy et al. [8], Lykoudis and Roos [9], Barton and Raynor [10].

In real situations, when sinusoidal waves are taken into account, the lumen
of the tube, in general, does not remain circular but it becomes elliptic due to
heterogeneous structure of its wall. (Lykoudis and Roos [9]).

Therefore, in this paper, the peristaltic transport of a Newtonian fluid in
an elliptic tube has been investigated by taking into account the longitudinal
motion of the wall which may be related to electrophysiological activity of the
organ. The expression for volumetric flow rate i.e. flux of the fluid is calculated
and studied.

2. Mathematical Formulation

Consider the axi-symmetric flow of a Newtonian fluid in an elliptic tube
with a sinusoidal wave propagating along its wall as shown in Fig. 1.

Fig. 1. Peristaltic Transport in Elliptic Tubes
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The equations of momentum and continuity governing the motion of fluid
under long wavelength approximation and neglecting inertia terms in stationary
frame of reference are written as:
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1
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(1)
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The boundary conditions are taken as:

∂W

∂X
= 0,

∂W

∂Y
= 0 at X = 0, Y = 0, (3)
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2π

λ
(Z − Ct), at

X2

a2
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Y 2

b2
= 1, (4)

where W0 sin
2π

λ
(Z − Ct) is the longitudinal wave velocity.

3. Method of Solution

To study the problem in what follows, we transform the stationary co-
ordinates (X, Y, Z) to moving co-ordinates (x, y, z) with U, V, W and u, v, w as
respective fluid velocity components in these co-ordinates which move with the
wave velocity C in the positive Z direction, as follows:

X = x, Y = y, Z = z + Ct, U = u, V = v, W = w + C. (5)

Thus, the partial differential equations (1)-(2) and the boundary conditions (3)-
(4) in the moving co-ordinates in non-dimensional form can be written as:
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where

a = 1 + εa sin 2πz and b = b0 + εb sin 2πz (10)
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Solving (6) and using boundary conditions (8) and (9), w is obtained as
(dropping the bars for convenience):

w = w0 sin 2πz − 1− 1
2µ

dP

dz

(
a2b2

a2 + b2

)(
1− x2

a2
− y2

b2

)
. (12)

Now, the dimensionless flux (q) is given by q = q/πa2
0C, where q is the flux in

the moving co-ordinate system, which is given by

q = 4
∫ 1

0

∫ b(1−x2/a2)1/2

0
w dx dy (13)

which on integration and using (12) yields

q = ab(w0 sin 2πz − 1)− 1
4µ

dP
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(
a3b3
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)
. (14)

Since, the pressure drop (4P = P0−P1) across one wavelength (λ) is same
in each case whether measured in stationary system or in moving co-ordinate
system, therefore, it can be calculated as follows:

4P = −
∫ 1

0

dP

dz
dz (15)

Then, from (14) and (15), we have

q =
4P
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(16)

where
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0
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and
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For b = αa, α ≤ 1, the flux can be calculated and is given by

q =
α3(1− ε2a)
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2
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The flux q is related to the flux Q of the stationary co-ordinate system as follows:

Q = 4
∫ a

0

∫ b(1−x2/a2)1/2

0
(w + 1) dx dy = q + ab. (20)

The time averaged flux Q for a complete time period T = λ/C is given as

Q =
1
T

∫ T

0
Qdt. (21)

The final expression of Q can be obtained as follows:

Q =
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+

α(16− ε2a) ε2a
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2 εaw0

(2 + 3 ε2a)
. (22)

Again, when α = 1 and therefore, b = a, then from (22), the result of circular
case model can be obtained. In this case, for4P = 0, and w0 = 0, the expression
for Q corresponds to Barton and Raynor [10] model.

4. Results and Discussion

From equation (22), it is noted that for 4P > 0 and w0 < 0, Q increases
as α increases for a fixed value of εa, which implies that the flux is maximum,
when the tube is circular for the same set of parameters. From thios equation,
it is also seen that Q varies linearly with 4P and w0. We further note that
Q always increases as εa increases. These results are also observed by plotting
equation (22) in the Fig. 2 and Fig. 3 for typical set of parameters. The study

Fig. 2. Variation of Q with εα Fig. 3. Variation of Q with εα

for different α for different w0
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presented here, suggests one of the reasons of why in physiological system, tubes
are generally circular.
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