ON A VECTOR FIELD ANALOGOUS TO CONCURRENT VECTOR FIELD IN A FINSLER SPACE

By

S. C. Rastogi

Department of Mathematics

Sri Ramswaroop Memorial College of Engineering and Management,

Tewariganj, Faizabad Road, Lucknow - 227105.

E-mail: sureshrastogi@rediffmail.com

SUMMARY: Concurrent vector fields in a Finsler space were first of all defined and studied by Tachibana [6], followed by Matsumoto [2] and others. Recently in 2004, Rastogi and Dwivedi [4] studied the existence of concurrent vector fields in a Finsler space of n-dimensions and showed that the definition in its present form is unsuitable. Further they gave a modified definition of a concurrent vector field in a Finsler space of n-dimensions as follows:

DEFINITION 1 : A vector field $X^i(x)$ in a Finsler space c is said to be concurrent vector field in F^n if it satisfies i) $X^i A_{ijk} = \alpha h_{jk}$ and ii) $X^i|_{ji} = -\delta^i_{ji}$, where α is an arbitrary non-zero scalar function of x and y.

In this paper an attempt has been made to study, vector fields X^i in F^2 , whose v - covariant derivative satisfies a relation of type $X^i|_j = \rho(x,y)\,h^i{}_j$. It is interesting to note that such vector fields do exist in F^2 . We have called such vector fields neo-concurrent vector fields as these vector fields seem to be analogous to concurrent vector fields in a Finsler space. In this paper we have proved that a Finsler space with neo-concurrent vector field is a P^* - Finsler space Izumi [1].

INTRODUCTION

Let F^n be an n-dimensional Finsler sapce with metric function L(x,y), metric tensor $g_{ij}(x,y)$, angular metric tensor h_{ij} and torsion tensor C_{ijk} . The h- and v-covariant derivatives of a vector field X^i are defined as Rund [5].

$$X_{i|k}^{i} = \delta_{k} X_{i}^{i} + X_{i}^{m} F_{mk}^{i} - X_{m}^{i} F_{jk}^{m}$$
(1.1)

and

$$X_{i|k}^{i} = \Delta_{k} X_{i}^{i} + X_{i}^{m} C_{mk}^{i} - X_{m}^{i} C_{jk}^{m},$$
(1.2)

where $\delta_k = \partial_k - N_k^{\ m} \Delta_m$, ∂_j and Δ_j respectively denote partial differentiation with respect to x^i and y^i .

The two torsion tensors Aiik and Piik are defined as

$$A_{ijk} = LC_{ijk}, 2C_{ijk} = \Delta_k g_{ij}, P_{ijk} = A_{ijk|0} = A_{ijk|r} 1^r, 1^i = y^i / L$$
(1.3)

The second and third curvature tensors are given as

$$P_{ijkh} = \varsigma_{(i,j)} \{ A_{ikhh} + A_{ikr} P_{jh}^{r} \}$$
 (1.4)

and

$$S_{ijkh} = \varsigma_{(h,k)} \{A_{ihr} A^{r}_{jk}\}$$
 (1.5)

where $\varsigma_{(j,k)}$ means interchange of indices j and k and subtraction.

2. TWO DIMENSIONAL FINSLER SPACE

In a two dimensional Finsler space F^2 , it is known that [3] $g_{ij} = l_i l_j + m_i m_j$, $h_{ij} = m_i m_j$, $l_{i|j} = 0$, $m_{i|j} = 0$, $l_{j|j} = L^{-1} m_i m_j$. Let $X^i(x)$ be a vector field in F^2 , which is a function of x alone, then, we can easily write

$$X^{i}|_{j} = X^{r} C^{i}_{rj}. \tag{2.1}$$

S.C. Rastogi [17

Substituting the value of $C_{rj}^{i} = C_{rj}^{i} m_{r} m_{j}^{i}$ in (2.1) we get

$$X^{i}|_{i} = \rho(x, y)h^{i}_{j}, \tag{2.2}$$

where $\rho(x,y) = X^r C_r$.

With the help of equations (2.1) and (2.2) we define following:

DEFINITION 2.1: A vector field $X^i(x)$, in F^2 , satisfying (2.2) shall be called neo-concurrent vector field.

In F^2 , $I_i\,m^i=0$, implies $I_i\,m^i\big|_i=-L^{-1}m_i$. Similarly $m_i\,m^i\big|_i=-Cm_j$. Thus we can express

$$m^{i}|_{j} = -L^{-1}l^{i}m_{j} - Cm^{i}m_{j} \text{ or } m_{i}|_{j} = -L^{-1}l_{i}m_{j} + Cm_{i}m_{j}$$
 (2.3)

and

$$\Delta_{i} m_{i} = -L^{-1} I_{i} m_{i} + 2C m_{i} m_{i}, \qquad (2.4)$$

Let us assume that we take

$$X^{i} = \alpha(x, y)i^{i} + \beta(x, y)m^{i}, \qquad (2.5)$$

where $\alpha(x,y)$ and $\beta(x,y)$ are scalar functions to be determined.

Multiplying (2.5) by m_r and using $X^r C_r = \rho(x,y)$, we get $C\beta(x,y) = \rho(x,y)$ and $\alpha^2 = |X|^2 - (\rho/C)^2$. Differentiating equation (2.5) we get

$$X^{i}|_{j} = \alpha L^{-1} h^{i}_{j} + \alpha |_{j} l^{i} + \beta |_{j} m^{i} + \beta (-L^{-1} l^{i} m_{j} - C m^{i} m_{j}),$$
 (2.6)

which by virtue of (2.3) leads to

$$\alpha_{ij}^{\dagger} = \beta L^{-1} m_{ij}, \beta_{ij}^{\dagger} = (2\beta C - \alpha L^{-1}) m_{ij}.$$
 (2.7)

From equation (2.7), we can easily obtain $\alpha\alpha|_j+\beta\beta|_j=2C\beta^2m_j$, which implies

$$(\alpha^2 + \beta^2)|_{i} = 4C\beta^2 m_{i}$$
 (2.8)

Hence we have:

THEOREM 2.1 : In a two-dimensional Finsler space F^2 , if a noe-concurrent vector field X^i is expressed as (2.5), its coefficients α and β satisfy (2.8).

Remark: Here we shall not be taking the case of a unit vector X^i as it will lead to a situation where either $X^i = 1^i$, which is against the hypothesis or the space is Riemannian.

3. THREE DIMENSIONAL FINSLER SPACE

In a three dimensional Finsler space F^3 , it is known that [3] $g_{ij} = I_i I_j + m_i m_j + n_i n_j, \quad h_{ij} = m_i m_j + n_i n_j, \quad I_{i|j} = 0, \quad m_{i|j} = n_i h_j, \quad n_{i|j} = -m_i h_j,$ $I_i \Big|_j = L^{-1} \big(m_i m_j + n_i n_j \big). \text{ Let } X^i \text{ be a vector field in } F^3, \text{ which is a function of } x \text{ alone,}$ then we can again get (2.1). Since we know that [3]

$$C_{ijk} = C_{(1)} m_i m_j m_k - C_{(2)} (m_i m_j n_k + m_j m_k n_i + m_k m_i n_j - n_i n_j n_k)$$

$$+ C_{(3)} (m_i n_i n_k + m_i n_k n_i + m_k n_i n_i),$$
(3.1)

therefore, with the help of (2.1) and (3.1) we get

$$\begin{split} X^{i}\Big|_{j} &= (2\rho C^{-1}C_{(1)} - \phi C_{(2)})m^{i}m_{j} + (2\rho C^{-1}C_{(3)} + \phi C_{(2)})n^{i}n_{j} \\ &- (2\rho C^{-1}C_{(2)} - \phi C_{(3)})(m^{i}n_{j} + n^{i}m_{j}), \end{split} \tag{3.2}$$

where $\boldsymbol{X}^{r}\,\boldsymbol{C}_{r}=2\,\boldsymbol{\rho}$ and $\boldsymbol{X}^{r}\,\boldsymbol{n}_{r}=\boldsymbol{\phi}$.

Comparing (2.2) and (3.1), we get

$$2\rho C^{-1}C_{(1)} - \phi C_{(2)} = \rho, \quad 2\rho C^{-1}C_{(3)} + \phi C_{(2)} = \rho, \quad 2\rho C^{-1}C_{(2)} - \phi C_{(3)} = 0$$
 (3.3) which easily yields

$$C_{(1)} = C(2\rho^2 + C^2\phi^2)/(4\rho^2 + C^2\phi^2), C_{(2)} = C\phi C_{(3)}/2\rho,$$

$$C_{(3)} = 2\rho^2 C/(4\rho^2 + C^2\phi^2). \tag{3.4}$$

Hence we have:

THEOREM 3.1 : In a three dimensional Finsler space F^3 , having a neo-concurrent vector field satisfying (2.2), $C_{(1)}$, $C_{(2)}$ and $C_{(3)}$ are given by (3.4).

Let us assume that Xi is a vector field which is expressible as

$$X^{i} = \alpha(x,y)^{i} + \beta(x,y)m^{i} + \gamma(x,y)n^{i}, \qquad (3.5)$$

where $\alpha(x,y)$, $\beta(x,y)$ and $\gamma(x,y)$ are to be determined.

Differentiating equation (3.5), using (2.1), (3.1) and (3.2) we obtain

$$\beta(x,y) = (4\rho C^{-1} - \phi)/2 + C_{(2)}(C_{(3)} - C_{(2)})\phi/2C_{(3)}^{2},$$

$$y(x,y) = (C_{(2)}^{2} + C_{(3)}^{2})\phi/2C_{(2)}C_{(3)}$$
(3.6)

such that

$$(C_{(2)}^2 - C_{(3)}^2)(C_{(3)}^2 + C_{(1)}C_{(2)}) + C_{(1)}C_{(2)}^2C_{(3)} = 0.$$
(3.7)

Furthermore, the value of $\alpha(x,y)$ is obtained from $\left|X^2\right|=\alpha^2+\beta^2+\gamma^2$, where X is the magnitude of the vector X^i . Hence we have:

THEOREM 3.2: In a three dimensional Finsler space F^3 , having a neo-concurrent vector field satisfying (2.2) and (3.1), $C_{(1)}$, $C_{(2)}$ and $C_{(3)}$ satisfy equation (3.7), while $\beta(x,y)$ and $\gamma(x,y)$ are given by (3.6).

NEO-CONCURRENT VECTOR FIELDS IN F[®]

DEFINITION 4.1 : A vector field $X^i(x)$ shall be called neo-concurrent vector field in a Finsler space of n-dimensions F^n , if it satisfies

$$X^{i}|_{j} = \rho(x, y)h^{i}_{j}, \tag{4.1}$$

where $\rho(x,y)$ is an arbitrary non-zero scalar function of x and y.

From equations (1.2) and (4.1), we can obtain (2.1) which implies

$$\rho(x,y) = (n-1)^{-1} X^{r} C_{r}. \tag{4.2}$$

From (4.1) and (4.2) we can obtain

$$X^{i}|_{i} = (n-1)^{-1} X^{r} C_{r} h^{i}_{j}.$$
 (4.3)

Similarly from (1.1), we can obtain

$$X^{i}_{j} = \partial_{i} X^{i} + X^{m} F^{i}_{mj}. \tag{4.4}$$

Hence we have:

THEOREM 4.1 : The v- and h-covariant derivatives of a neo-concurrent vector field X^i are respectively given by (4.3) and (4.4).

Differentiating equation (2.2) partially with respect to y^k , using X^r as a function of x, $C^i_{r\,j}$ as homogeneous function of degree -1 in y and h^i_j as homogeneous function of degree zero in y, we get $\rho(x,y)$ to be homogeneous function of degree - 1 in y. Hence we have:

THOREM 4.2 : For a neo-concurrent vector field X^i satisfying (2.2), the scalar $\rho(x,y)$ is homogeneous function of degree -1 in y.

From equations (4.1) and (4.4) on contraction for i and j we can obtain

$$X_{j}^{i} = (n-1)\rho(x,y) = X^{r}C_{r}.$$
 (4.5)

Since $\rho(x,y) \neq 0$, therefore from equation (4.5) we can easily obtain COROLLARY 1: The divergence of a neo-concurrent vector field will not be zero.

CURVATURE TENSORS

From equation (4.4), we can further obtain by virtue of (2.1) and (2.2)

$$\varsigma_{(j,k)}\{X^i|_{j|_k} - h^i_{j}(\Delta_k \rho + \rho L^{-1}|_k)\} = 0.$$
 (5.1)

Substituting the value of

$$\varsigma_{(j,k)}\{X^i |_j |_k - X^m \Delta_k C^i_{mj}\} = X^m L^{-2} S^i_{mkj},$$
 (5.2)

from [5] in equation (5.1), we obtain on simplification

$$\varsigma_{(i,k)}\{h_j^i(\Delta_k \rho + \rho L^{-1}I_k) - X^m \Delta_k C_{mj}^i\} = X^m L^{-2} S_{mkj}^i.$$
 (5.3)

Hence we have:

THEOREM 5.1: The third curvature tensor of a neo-concurrent vector field in a Finsler space Fⁿ satisfies (5.3).

If in equation (5.3), $\Delta_k \rho + \rho L^{-1} I_k = 0$, we can obtain

$$\varsigma_{(j,k)}\{X^m(\Delta_j C^i_{mk} + L^{-2} S^i_{jmk})\} = 0.$$
 (5.4)

Conversely, if equation (5.4) is satisfied, $(n-2)(\Delta_k \rho + \rho I_k L^{-1}) = 0$, i.e., either n=2 or $\Delta_k \rho + \rho L^{-1}I_k = 0$. Hence we have:

THEOREM 5.2: In a Finsler space F^n (n > 2), the necessary and sufficient condition for equation (5.4) to be satisfied is given by $\Delta_k \rho + \rho I_k L^{-1} = 0$.

Using equations (1.1) and (1.2), we obtain on simplification

$$X^{i}|_{i|k} - X^{i}|_{k}|_{j} = X^{r} (C^{i}_{rj|k} + F^{i}_{rm} C^{m}_{jk} - \Delta_{j} F^{i}_{kr}) + (\partial_{r} X^{i}) C^{r}_{jk}.$$
 (5.5)

Since we know from Ricci identity [3]

$$X^{i}|_{j|k} - X^{i}|_{k}|_{j} = X^{i}|_{h} C^{h}_{kj} + X^{i}|_{h} P^{h}_{kj} - X^{h} P^{i}_{hkj},$$
 (5.6)

therefore, comparing equations (5.5) and (5.6) and using (2.2) we obtain

$$X^{r}(P_{rkj}^{i} + C_{rj|k}^{i} - \Delta_{i}F_{kr}^{i}) = \rho(x, y)P_{kj}^{i}.$$
(5.7)

Hence we have:

THEOREM 5.3 : A neo-concurrent vector field X^i , in a Finsler space F^n satisfies equation (5.7).

Similarly from Ricci identity [3]

$$X_{|k|j}^{i} - X_{|j|k}^{i} = X_{hkj}^{h} - X_{hkj}^{i} - X_{hkj}^{h},$$
 (5.8)

therefore, we can obtain by virtue of (4.1) and (2.2) the following relation

$$X^{i}_{|k|j} - X^{i}_{|j|k} = X^{h} R^{i}_{hkj} - \rho(x,y) (R^{i}_{kj} - l^{i}l_{h} R^{h}_{kj}), \tag{5.9}$$

which leads to

THEOREM 5.4: The necessary and sufficient condition for a neo-concurrent vector field X to satisfy $X^i_{|k|j} = X^i_{|j|k}$ is that the curvature tensor R^i_{hkj} is satisfying $X^h R^i_{hkj} = \rho(x,y)(R^i_{kj} - l^i l_h R^h_{kj})$.

Since we know that $X^r C^i_{rj} = \rho h^i_j$, therefore taking h-covariant derivative of this equation we can obtain

$$X^{r} C_{rj|k}^{i} + X_{jk}^{r} C_{rj}^{i} = \rho_{jk} h_{j}^{i}.$$
 (5.10)

Multiplying equation (5.10) by y^k and using equation (1.3) and theorem 4.2, we get

$$X^{r}P_{rj}^{i} + X_{0}^{r}C_{rj}^{i} = \rho_{0}h_{j}^{i}.$$
 (5.11)

Let F^n be a P^* -Finsler space Izumi [1] satisfying $P^i_{rj} = \theta C^i_{rj}$, for some suitable θ , then for $\phi = \rho_{|0} - \rho \theta$, equation (5.11) on simplification gives

$$X_{[0]}^{r}C_{r,j}^{i} = \phi h_{j}^{i}$$
. (5.12)

Conversely, if equation (5.12) is satisfied, then equation (5.11) gives $X^r(P^i_{rj}-\theta C^i_{rj})=0$. Hence we have:

THEOREM 5.5: If X^r is a neo-concurrent vector field in F^n , its covariant derivative $X^r|_0$ is neo-concurrent vector field in a P^* -Finsler space. Conversely, if both X^r and $X^r|_0$ are neo-concurrent in F^n , X^r satisfies $X^r(P^i_{rj}-\theta C^i_{rj})=0$.

In case of a Berwald space [3], $C_{jh|k}^i=0$ which on application in equation (5.10) gives

$$X_{|k}^{r}C_{rj}^{i} = \rho_{|k}h_{j}^{i}$$
 (5.13)

From equation (5.13), we can easily obtain

$$X^{r}_{|0} C^{i}_{rj} = \rho_{|0} h^{i}_{j},$$
 (5.14)

which when substituted in (5.11) leads to $X^r P_{ri}^i = 0$. Hence we have:

THEOREM 5.6: In an n-dimensional Berwald space, a neo-concurrent vector field X^i satisfies $X^r P^i_{r,i} = 0$.

In case of a Landsberg space [3], $P_{ijkh} = 0$, therefore equation (5.7) reduces to

$$X^{k}(C_{rjk}^{i} - \Delta_{i}F_{kr}^{i}) = 0. (5.15)$$

Hence we have:

THEOREM 5.7: An n-dimensional Landsberg space, having neo-concurrent vector field Xⁱ, satisfies (5.15).

REFERENCES

- Izumi, H.: On P* -Finsler space I., Memo, Defence Academy., 16(1976), 133-138.
- Matsumoto, M.: Finsler spaces admitting concurrent vector field, Tensor, N.S., 28(1974), 239-249.
- Matsumoto, M.: Foundations of Finsler Geometry and special Finsler spaces, Kaiseisha Press, Otsu, Japan, 1986.
- 4. Rastogi, S.C. and Dwivedi, A.K.: On the existence of concurrent vector fields in a Finsler space, Tensor, N.S., 65(2004), 48-54.
- 5. Rund, H.: The differential geometry of Finsler spaces, Springer-Verlag, 1959.
- Tachibana, S.: On Finsler spaces which admit concurrent vector field, Tensor, N.S., 1(1950), 1-5.

