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ABSTRACT : The flow of a viscous fluid induced in a porous medium due to a
uniform motion of a plate parallel to its surface has been discussed when there is a
transverse sinusoidal injection of the fluid at the moving plate. The fluid fills the
space between the plate and the porous medium which is fully saturated with the
fluid. Due to this type of the injection velocity the figw in the clear fluid becomes
three-dimensonal. It is assumed that the flow in the clear fluid region is governed by
Navier-Stokes equation and that in the porous medium by the Brinkman eguation
near the interface and by Darcy law far away from the interface. It is found that with
the increase of the permeability of the porous medium the magnitude of velocity
component increases in both the regions. In the porous region the velocity component
parallel to the motion of the plate is maximum at the interface and then decreases
exponentially forming a boundary layer at the interface. Also the velocity component
parallel to the motion of the plate decreases with the increase of injection Reynolds
number RE and the magnitude of other velocity components increases with the
increase of RE.
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1: INTRODUCTION

Considerable work has been done when a viscous fluid flows over a porous
surface because of its importance in many engineering problems such as flow of
liguid in the porous bearing (Joseph and Tao [5]) and porous roliers, and its natural
occurrence in the flow of rivers through porous banks and beds. The production of
petroleum and natural gases and well drilling require many predictions based on the
results to fluid flow thrugh a porous medium. The flow of blood through lungs and
arteries (Tang and Fung[15]) are also examples of flow through porous medium. In
all these cases the fluid flows through two regions, viz. zone | where there is no
porous medium and clear fluid flows freely and zone I where the fluid flows through
the pores of a permeable solid. Navier-Stokes is taken as the equation governing the
flow in the free flow region.

In region |1, there is a boundary layer formation near the interface and the
following equation proposed by Brinkman [2] is used near the interface

Vp:pVQV*%V. “ (1.1)

where V is velocity vector, p is the coefficient of viscosity of the fluid, k is the
permeability of the porous medium and p is the pressure. Far away from the interface
or for the case when the diameter of the porous particles is vanishingly small,
following Darcy law [3] is used :

Pzt (1.2)
k
Singh [10] has analyzed the couette flow between two horizontal parallel flat
plates with transverse sinusoidal injection of the fluid at the stationary plate and its
corresponding removal by constant suction through the plate in uniform motion. In
this paper we have discussed the above problem analyzed by Singh [10] when
transverse sinusoidal injection is at the moving plate and the stationary disk is replaced
by a porous medium. The fluid-fills the space between the plate and the porous
medium which is also fully saturated with the given fluid. It is assumed that the flow
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in the clear fluid is governed by Navier-Stokrs equation and that in the porous region
by Brinkman equation [2] near the interface and by Darcy law [3] away from it. This
" type of flow analysis in the porous medium has been taken by Rudraiah et al. [7] in
discussing the Hartmann flow over a permeable bed and by Rudraiah and
Veerbhadraiah [8] in discussing the buoyancy effects on the plane couette fiow past
a permeable bed. Such types of coupled boundary value problems in the porous
medium have been discussed by many workers [11-14].

2. FORMULATION OF THE PROBLEM

Consider the flow of a viscous incompressible fluid between a porous medium
+ y* = 0and a flat plate y* = d moving with a constant velocity U parallet to itself. The
porous medium is also fully saturated with the fiuid. The direction of U is taken as
x*-axis and perpendicular to x* and y* is taken as axis of Z*. We assume that there
is a transverse sinusoidal injection velocity distribution of the form

xz®

V*(z*)=V,(1+ecos ) (2.1)

at the moving plate (see fig. 1). All the physical quantities are taken as independent
of x*. The following non-dimensional quantities are defined :
y* u* v¥ w* " p* Vv, d

y=-— z—E-: Us—, V=—, W=——, P= o=k R =2C
d; d: U# Vo: Vol PVD: p! e )

where u, v, w are velocity components inthe direction of x, y, zrespectively, p is the
density, v is the kinematics coefficient of viscosity and R_ is the suction Reynolds
number. Let the superscript in the bracket of an entity x°i = 1, 2, denote the zone to
which the entity belongs. Denating the velocity components u™, vi, wilin the x, v,
2 direction repectively, the flow of the clear fluid is governed by Navier-Stokes equation
which gives t'he following non-dimensional equations :

(1) (1}
DY 8V g (2.2)
ay oz
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’ / o au'® " au® ) 22y i 52y .
E'l\ oy 0z ay? r

R ( v av" Lt av'™ . QE_,_ &* v +62_Ym (2.4)
L oy 0z ® oy oyt 8 |

" ’ o P ol aw™ _p 0, 2w . 52w ' -
L dy 0z . oy? 0z2°

In zone li where the fluid flows through the pores of the porous material and
near the interface the flow is governed by the Brinkman equation (1.1) which gives
the following differential equation for the velocity u?:

a2_t.|‘:’+6211(;' L5t - (2.6)
oy 0z
The boundary conditions of the problem are
u"=0, V"=%ecosnz, w"=0, aty=1 (2.7)
U2 =0, v?=0, w'?=0 as y>—o (2.8)

When the flow inthe porous medium is governed by Brinkman equation (1.1),
Ochoa-Tapia and Whitaker [6] have proposed the conditions at the porous / clear
fluid interface by applying volume average technique and have shown that the
eguation requires continuity inthe velocity components and the normal stresses and
discontinuity inthe shearing stresses. In present notaion their matching conditions
can be written as

' =u? aty=o. (2.9)
{1 (.2}

ou U _ sau't (2.10)

oy oy

where @ is the dimensionless constant depending onthe surface of the porous
material which is determined by experiments. The pressure and the normal velocity
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viZ and w? will continue to the same as in zone | but far away from the interface they
are governed by the Darcy law (1.2). Hence at the interface, the velocity v@ and w?
-and will satisfy Beavers and Josephl 1] conditions modified by Saffman [9] and Jones
(4] as:

(2)
v kv : 2.11)
.o dy
(2)
w - Yk dw 2.12)
a dy

3. SOLUTION OF THE PROBLEM

Since the amplitude of the injection vedocity e (< 1) is very small, we now
assume the solution of the following form

fly.2) =yl efily, 2 €7 fy.2)+..., (3.1)

where f stands for any of u™, v, wi,y®, v w@ and p. When , the problem is
reduced to two-dimensional flow with constant injection. Substituting (3.1) into (2.3)
and (2.6) and using the boundary conditions (2.7), (2.8) and matching conditions (2.9)
and (2.10), we obtain the following solution:

U:3"=1+ oll+a) - {en“y_en'}' . (3.2)
Ry —oc(l+a)(1-e™)
Utoz} _ Re « e, (3.3)
R, —o(l1+a)(1-e™)
ul = -1-[Le"" g P, Paoilia] .
A R, —o(1+a)(1-€e™)
' {A1 e{ﬁ,ﬂ,)y +A2 e(ﬂe«,!y _ Az etR,u}v +A4 e(FlrnW } (3.4)
U2 =N VT @)

where
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Ay=nlp-callr-calin-rle " +nlp-calntoa)(n+r,)e"
-2nn(n+oa)(n-ca)e? —(n+oa)lr, —oo)(n+n)e™™=™ (3.6)
A, =2nrn(r+oa)ln-cale” —n{n-r)n-callr-ca)e™
—alrn+nlin+oalln-co)e” (3.7)
A; =nln+oalln-ca)ln+n)e" —nln-ocaln, -5, —co)e™
~R(n+oalln~ca)ln+r)e” (3.8)
Ay =nln-oa)ln-ca)ln-r)e" +nln-ocalin - ~ca)e”
L {r-nHrn-callh-ca)e® (3.9)
A =2alr, -1, o0 (f -oa) + T+ 35 -ca)n-oa)n-r,)e"™
+m-p)n+oa)n -ca)ln+r)e™ -2n(n+oa)in-ca)
(r, -)e™ ~(n-n)n~ca)in-ca)(n+n)e™
~(m+r)ntoa)ln—calln-r,)e™" ‘ (3.10)

Rooo(1+a)

A(R, —c(1+a)(1-8% )} (6% (r, oo ~V1? + 62 )—e" (r, ~so~yn? + 62 ))

r N
“(Ga+'\{-n2+62] i-:-—J’!i\-—zw--&+~£i e”
[ 2 2, ®™ =™

.=

] Ai(Rg +n) 5 AR +1)  As(Ry+m) A, (R —m) oh
2n 2r, T T

+e™ (r, —go - +02-)[-'5—‘e“ i Dagn Asgn A ” (3.11)

2r 2r, T n
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Ryoa(1+a)

M=
AR, —o(1+a)(1-e™)He'(r, ~ca—Vn? +0? )-e% [, —ca —Vr? +02 )}

[lcu+‘#u2+cz )[%+&—A—3—ﬁJer‘
1

v

2r, 2r, T m

+ef(r, ~ca-yn?+a l(ﬁe“ + ﬁz_erz —ﬁle" ‘Bie_l H (3.12)

2r 2r, n n

and N is given by

i Reo(1+a) ﬁ_[ﬁ+ﬁg_-5.3__&J (3.13)
AR, -c(1+a)(1-e~ )2 2, =® =

Subtituting (3.1) into (2.4) and (2.5), and conparing the coefficients of identical
powers of ¢, &', neglecting those of ¢?, &%, etc. we get the following solutions
[see, Singh[10l]

vi? =1, wi? =0, p}’ = constant (3.14)

v = -;-\-( Ae" +A,e" -Ase" + A 7Y Jcosnz, (3.15)

wil = —-LA(A1 ne'Y+A,re? —nA;e" —nAe " )sinnz, (3.16)
T

e =—£\-{4ﬂx:1 ey -A,e")cosnz (3.17)

In zone 1l, far away from the interface, the flow is governed by Darcy's law
(1.2) which gives the velocity components in the porous medium as
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R §
V‘“:_E?: e(Aze" +Ae "")cosn; (3.18)
o A ¥
2 = ’:Re (Ase™Y —A,e™Y)sinmz ‘ (3.19)

c A

Since v?, w'? as y — -0, hence solutions (3.18) and (3.#9) will hold only if
A, = 0. This gives the following condition

o’a? {r1 (m—ry)e" +xlr, —r)e" - r(m—rn)e" }ucm{q{n—r2 J(m+r,)e"

+7(r, ~n)(n +r)e” ~p(r-n)r+n)e” }+:n:{r,r2(1t-r2}er'
+7n(ry +5)e" —n 1 (n+r)e” }z 0 (3.20}

This equation (3.20) has been solved by taking R, = 0.50, 1.0, 1.5, 2.0, 2.5,
3.0 which gives two values of oo for every R.. The values of constants A, A,, A, A,
L, M and N are gi{ren in table -1 for these different values of R, by taking a = 0.45.

4. DISCUSSIONS AND CONCLUSIONS

The graph of the main flow velocity against the distance from the interface
has been plotted in Figure - 2 for above merftioned differert vplues of injection
Reynolds number R_ by taking a = 0.45. The graph shows that the main flow velocity
decreases with the increase of R_ and decreasgs with the decrease of o (for fixed
o) i.e. with the increase of the permeability k. Also, the velocity in the perous medium
is maximum at the interface and then decreases sharply to zéto within a short
distance indicating the boundary layer formation near the interfagg.

The magnitude of v, w? is given by

ny

Q= enAyR,

> e
o A
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The values of magnitude of cross velocities at the interface Q is given in
table- 2 for different values of injection parameter R, and o by taking o = 0.45. Table
shows that the magnitude of cross velocities Q increases with the increase of R,
and decreases with the increase of & .

Now after determining the velocity field we calculate the skin friction
components 1, in the main flow direction and t, in the transverse direction on the
moving plate and at the interface as

(1 (1)
(). = {EE!LJ re [QLL] cos nz, 4.1)
y=1

dy dy ).
12) (2)
(1'5(2’)?:9 = {d—;ﬁ-—J +€ {%} cos Tz, (4.2)
y=0 y=0
. (1}
(ﬂz")\f=1 = [%—J sinmz, (4.3)
y=1
dw'? . ' "
(t{zﬂ)wc =e( \g; ) sinmz. . (4.4)
y=0

Substituting the velocity components into equations (4.1) - (4.4) we have
given the values of the skin friction T, and 1, in the main flow and transverse direction
at the moving plate and at the interface in table - 2 by taking = 0.50 anf z= 0.50.
Table shows that the skinfriction in the main flow direction increases with the increase
of R, at the plate and decreases with the increase of R, at the interface. The
component of the skin friction in the transverse direction increases with the increase

~of R, at the plate as well as at the interface.
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Table-1

The values of constants A,, A, A, A, L, M and N for different values of R_by taking
a = 0.45,

R sa - A, -A, | -A A -L M N

&

0.50 | 7.3730 | 1877.71 | 7357.36| 2649.32| 4473.09 461.90 | -898.30 10.58

1.00 | 5.5836 | 2411.95 [11303.01| 4846.98| 15873.40 880.80 | -985.98 7.35

1.60 | 4.6289 | 2656.25 |12829.35| 7768.94| 36886.60 1387.96 | -652.13 -60.10

2.00 | 4.1052 | 2B46.69 |14582.20|12340.97| 76277.03 2075.60 | -235.65 | -221.37

2.50 | 3.7830 | 3004.99 |16574.16§19617.10[143849.56 2910.21 | 249.61 -506.12

3.00 | 2.567356 | 3140.03 }18801.24|31316.91|264603.67| 3967.62 | 787.30 | -945.94

Table-2

The values of Qand (€%}, (%), (&) B¥).o for z= 0.50and &= -0.50.

R, ga Q (‘L‘:’l_, (T:cz1 ):.»:o (12“ )y=1 (T{zz})\ho
0.50 7.3730 0017 1.2312 0.5176 1.7910 0.0054
" 100 5.5836 .0031 1.5337 0.5078 1.9226 0.0098
1.50 4.6289 .0047 1.8792 0.2956 | 2.0848 0.0147
2.00 4.1052 0062 2.2634 0.2183 2.2204 0.0194
2.50 3.7830 0076 2.6793 0.1585 2.3733 0.0238
3.00 3.5735 0088 3.1198 0.1131 2.5296 0.0278
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Figure 1 - Schematic of the problem.
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Figure 2 - The graph of main flow velocity against y by taking z = 0, e = 0.50.








