J. T. S Vol. 2 (2008), 75 - 81 https://doi.org/10.56424/jts.v2i00.9961

Absolute Nevanlinna Summability of a Series associated with the Derived Fourier Series

Satish Chandra and Suresh Babu

Department of Methematics
S. M. Post-Graduate College, Chandausi-202412, U.P., India
(Received: September 22, 2008)

Abstract

In this paper we have proved a theorem on absolute Nevanlinna of a series associated with the derived Fourier series, which generalizes various known result. However, our theorem in as follows:

Theorem: Let $\alpha \ge 0$, $1 , <math>\alpha > \frac{1}{p}$, and let the function q_{α} satisfy the conditions

$$\int_{0}^{1} q_{\delta}(t) dt = 1 \quad \text{and} \quad \psi_{\alpha}(t) = 0$$

$$\text{where } Q_{\delta}(t) = \int_{1-t}^{1} q_{\delta}^{(p)}\left(x\right) \mathrm{d}x \text{ and } \int_{0}^{\pi} t^{-\alpha-1} \left| \mathrm{d}\psi_{\alpha}\left(t\right) \right| < \infty.$$

Then at t = x the derived series of a Fourier series of f is summable by the method $|N(q_n)|$.

Keywords and phrases: Absolute Nevanlinna Summability, Derived Fourier Series. **2000 Mathematics Subject Classification:** 40D025, 40E05, 40F05, 40G05, 42C05 and 42C10.

1. Definitions and Notations

Given a series Σu_n , let

$$F(w) = \sum_{n < w} u_n.$$

- 1

Let $q_{\delta} = q_{\delta}(t)$ be defined for $0 \le t < 1$. The $N(q_{\delta})$ transform $N(F, q_{\delta})$ of F is defined by

$$N(F, q_{\delta})(w) = \int_{0}^{1} q_{\delta}(t) F(wt) dt.$$

The series Σu_n is said to be summable by the method $N(q_8)$ to the sum s if

$$\lim_{w \to \infty} N(F, q_{\delta}) (w) = s.$$

It is said to be absolutely summable by the method $N(\boldsymbol{q}_{\delta})$ and we shall write

$$\Sigma\, u_n \in |N(q_\delta)|$$

if

$$N(F, q_8)(\omega) \in BV(A, \infty)$$
.

For some $A \ge 0$, which is indeed equivalent to

$$\int_{A}^{\infty} \left| \sum_{n < \omega} q_{\delta} \left(\frac{n}{\omega} \right) n u_{n} \right| \frac{d\omega}{\omega^{2}} < \infty$$

for the regularity, we need

$$\int_0^1 q_{\delta}(t) dt = 1.$$

The parameter δ will be a non-negative real number. We have further two sets of restriction on q_{δ} . One for $0 \le \delta \le 1$ and the other for $\delta \ge 1$.

In the case $0 \le \delta < 1$, $q_{\delta}(t)$ is increasing for 0 < t < 1.

In the case $\delta \ge 1$, q_{δ} satisfies following: $q_{\delta}(t)$ is decreasing for 0 < t < 1 with $p = [\delta]$, the integral part of δ ,

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)^{p-1}q_{\delta}\left(t\right)\in\mathsf{A}\subset\left[0,1\right]$$

$$\left[\left(\frac{d}{dt} \right)^{k} q_{\delta}(t) \right]_{t=1} = 0, \quad k = 0, 1,, (p-1)$$

$$(-1)^p \left(\frac{d}{dt}\right)^p q_{\delta}(t) \ge 0$$
 and is increasing.

Also, for $\delta \ge 0$, $p = [\delta]$, we assume

$$\frac{Q_{\delta}\left(t\right)}{t^{\delta-p+1}}\in L(0,1)$$

where

$$Q_{\delta}(t) = \int_{1-t}^{1} q_{\delta}^{(p)}(x) dx.$$

2. Let f(t) be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$ and let

$$f(t) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$
 (2.1)

the first differentiated series of (2.1) at t = x is

$$\sum_{n=1}^{\infty} n \left(b_n \cos nx - a_n \sin nx \right) = \sum_{n=1}^{\infty} B_n(x).$$
 (2.2)

The series
$$\sum \frac{s_n(x)}{n}$$
 (2.3)

will be called the associated derived Fourier series, where $s_n(x)$ denotes the n^{th} partial sum of the series (2.2).

We shall use the following notations:

$$\psi(t) = \frac{1}{2} \left\{ f(x+t) - f(x-t) \right\}$$

$$g(t) = \frac{\psi(t)}{t}$$

$$S(w, t, p, r) = \sum_{n < w} (w - n)^{r} n^{p} \cos(nt + \theta),$$

θ independent of n.

$$g(n, t) = \int_{t}^{\pi} (y - t)^{h - \alpha} \cos \left(ny - \frac{h \pi}{2} \right) dy,$$

where $h = [\alpha]$, the integral part of α

$$H^{\alpha}(n, t, \alpha) = \frac{1}{\gamma (\alpha + 1)} \int_{t}^{\pi} \frac{d}{dv} g(n, v) dv$$

and

$$H(n, t) = H*(n, t, 0).$$

3. Generalizing the theorem's of Bosanquet [1], [2], Samal [9] has proved the following theorem.

Theorem A. Let 1 > c > 0. Let the function q_c satisfy the conditions $\int_0^1 q_\delta(t) dt$ = 1 and $0 \le \delta < 1$, $q_\delta(t)$ is increasing for 0 < t < 1 and let $Q_c(t)/t^{c+1} \in L(0, 1)$. Then $\int_0^{\pi} t^{-c} |d\phi(t)| < \infty = \Sigma |N(q_c)|.$

In 2000 Dikshit [4] extended the above result for a absolute Nevanlinna summability of Fourier series as follows:

Theorem B. Let $\alpha \ge 0$ and let the functions q_{α} satisfy the conditions

$$\int_0^1 q_{\delta}(t) dt = 1$$

for $\delta \ge 0$, $p = [\delta]$, we assume

$$\frac{Q_{\delta}(t)}{t^{\delta-p+1}} \in L(0,1)$$

where

$$Q_{\delta}(t) = \int_{1-t}^{1} q_{\delta}^{(p)}(x) dx$$

with $\delta = \alpha$. If $\Phi_{\alpha}(t) \in BV(0, \pi)$, then t = x, the Fourier series of f is summable by the method $|N(q_{\alpha})|$.

Main Theorem. We shall prove the following theorem.

Theorem. Let $\alpha \ge 0$, $1 , <math>\alpha > 1/P'$ and let the function q_{α} satisfy the conditions

$$\int_0^1 q_{\delta}(t) dt = 1 \quad \text{and} \quad \psi_{\alpha}(t) = 0$$
 (4.1)

where $Q_{\delta}(t) = \int_{1-t}^{1} q_{\delta}^{(p)}(x) \, dx$ and $\int_{0}^{\pi} t^{-\alpha-1} \, |d\psi_{\alpha}(t)| < \infty$ then at t=x the derived series of a Fourier series of f is summable by the method $|N(q_{\alpha})|$.

5. Proof of the theorem

Let $J_n^{\mu}(x)$ denote the sum of the first n terms of the series (2.2) at the point t = x, then we have

$$J_{n}^{\mu}(x) = -\frac{1}{2\pi} \int_{0}^{\pi} \frac{d}{dt} \left\{ \frac{\sin\left(n + \frac{1}{2}\right)(x - u)}{\sin\frac{1}{2}t} \right\} Q_{\delta}(t) N (F, q_{\delta}) (\omega) dt$$

where $N(F, q_8)$ (ω) is the Nevanlinna mean of the sequence $\{\sin nt\}$. Now, on integration by parts, we obtain

$$\begin{split} J_n^{\mu}\left(x\right) &= \frac{1}{2\pi} \int_0^{\tau} \left\{ \frac{\sin\left(n + \frac{1}{2}\right)t}{\sin\frac{1}{2}t} \right\} N\left(F, q_{\delta}\right) \left(\omega\right) \frac{d}{dt} \left\{Q_{\delta}(t)\right\} dt \\ &= \left[\sum_{\rho = 1}^{h} (-1)^{\rho - 1} Q_{\delta}\left(t\right) \left(\frac{d}{dt}\right)^{\rho} N(F, q_{\delta}) \left(\omega\right) \right]_0^{\pi} \\ &+ (-1)^{h + 1} \int_0^{\tau} Q_{\delta}(t) \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \\ &= 0(n^{\alpha - \beta}) + (-1)^{h + 1} M_n \end{split}$$
 where
$$M_n = \int_0^{\tau} Q_{\delta}(t) \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt$$

$$= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \int_0^t \left(t - u\right)^{h - \alpha} Q_{\delta}\left(u\right) du dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \int_0^t \left(t - u\right)^{h - \alpha} Q_{\delta}\left(u\right) du dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \int_0^t \left(t - u\right)^{h - \alpha} Q_{\delta}\left(u\right) du dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \int_0^t \left(t - u\right)^{h - \alpha} Q_{\delta}\left(u\right) du dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \int_0^{\tau} \left(t - u\right)^{h - \alpha} Q_{\delta}\left(u\right) du dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt \\ &= \frac{1}{\Gamma(h + 1 - \alpha)} \int_0^{\tau} \left(\frac{d}{dt}\right)^{h + 1} N\left(F, q_{\delta}\right) \left(\omega\right) dt$$

$$= \frac{1}{\Gamma(h+1-\alpha)} \int_0^t Q_{\delta}(u) du \int_0^{\pi} (t-u)^{h-\alpha} \left(\frac{d}{dt}\right)^{h+1} N(F, q_{\delta})(\omega) dt.$$

Thus to complete the proof of the theorem it is sufficient to show that

$$\Sigma \frac{|J_n^{\mu}(x)|}{n} < \infty. \tag{5.1}$$

To prove the above it is enough to show that

$$\int_{0}^{\pi} \sum \frac{|g(n, u)|}{n} Q_{\delta}(u) du < \infty$$
 (5.2)

when
$$g(n, u) = \frac{1}{\Gamma(h+1-\alpha)} \int_0^{\pi} (t-u)^{h-\alpha} \left(\frac{d}{dt}\right)^{h+1} N(F, q_{\delta})(\omega) dt$$
.

Again (5.1) holds provided that

$$\sum \frac{|g(n, u)|}{n} = O(u^{-\alpha - 1}). \tag{5.3}$$

We now proceed to prove (5.3) writing

$$g(n, u) = \int_{u}^{u+\frac{1}{n}} + \int_{u+\frac{1}{n}}^{\pi}$$

$$\sum \frac{|g(n, u)|}{n} = \sum_{n \le \frac{1}{u}} + \sum_{n > \frac{1}{u}}$$

$$= \sum_{n \le \frac{1}{u}} O(n^{\alpha}) + \sum_{n \ge \frac{1}{u}} O(n^{\alpha-\beta-1}u^{-\beta-1})$$

$$= \sum_{n \le \frac{1}{u}} O(n^{\alpha}) + \sum_{n \ge \frac{1}{u}} O(n^{\alpha-\beta-1}u^{-\beta-1})$$

 $= O(u^{-\alpha-1}).$

This completes the proof of (5.3). Thus the theorem follows from (5.2), (5.3) and the hypothesis.

Then

References

- 1. Bosanquet, L. S.: Notes on the absolute summability (C) of a Fourier series, Jour. of London Math. Soc., 11 (1936), 11-15.
- Bosanquet, L. S. : The absolute Cesáro summability of a Fourier series, Proc. London Math. Soc., 41 (2) (1936), 517-528.
- 3. Chandra, P.: Absolute summability by Riesz means, Bull. Calcutta Math. Soc., 70 (1978), 203-214.
- 4. Dikshit, G. D. : Absolute Nevanlinna summability and Fourier series, Journal of Mathematical Analysis, 248 (2000), 482-508.
- 5. Hardy, G. H.: Divergent series, Oxford University Press, Oxford (1949).
- 6. Nevanlinna, F.: Über die summation der Fourier's chen Reihen and integrale, Oversikt Finska Vetenskapps-Societetens Forhandlinger A 64, No. 3 (1921-1922).
- 7. Ray, B. K. and Sahoo, A. K.: On the absolute Nevanlinna summability factors of Fourier series and Conjugate series, J. Indian Math. Soc., 61 (1995), 161-168.
- 8. Ray, B. K. and Samal. M. : Applications of the absolute Nq-Method to some series and integrals, Jour. Indian Math. Soc., 44 (1980), 217-236.
- 9. Samal, M.: On the absolute Nq-summability of some series associated with Fourier series, Jour. London Math. Soc., 50 (1986), 191-209.
- Zygmund, A.: Trigonometric series, Vol. I & II, Cambridge University Press, Cambridge (1959).

		·	,
	·		
•			,