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Abstract

The purpose of the present paper is to study spaces with a quartic metric
from the standpoint of Finsler geometry. The paper deals with Berwald and
Landsbergs spaces among quartic Finsler spaces. A Finsler connectionis defined in
a quartic Finsler space from the standpoint of the generalized metric space.
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0. Introduction

The so-called quartic metric on a differentiable manifold with the local
co-ordinates x' is defined by

LA, ) = a0 ¥ ¥ yEY", (7 =x) 0.1)

where aijkh(x) are components of a symmetric tensor field of (0, 4)-type, depending
on the position x alone, and a Finsler space with a quartic metric is called quartic
Finsler space.

We have had few papers studying cubic Finsler spaces ([1], [5], [6], [71, [8],
[9]) although there are various papers on the geometry of spaces with a cubic
metric as a generalization of Euclidean or Riemannian geometry. The purpose of
the present paper is to study spaces with a quartic metric from the standpoint of
Finsler geometry.

Section 1 is devoted to developing a fundamental treatment of quartic Finsler
spaces and a characterization of such spaces is given in terms of well-known
tensors in Finsler geometry. Section 2 is devoted to finding Berwald space and
landsberg spaces among quartic Finsler spaces. In Section 3, a characteristic
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Finsler connection is defined in a quartic Finsler space from the standpoint of the
generalized metric space due to A. Moor [4]. In Section 4 some distinctive quartic
Finsler space are treated they are decomposable in a sense.

1.  Characterization of Quartic Metric

We consider an n-dimensional Finsler space F" with a quartic L4(x, y)
defined by (0.1). Putting

L3 a x,y)= aijkh yj yk yh, L2 aij x,y)= aijkh yk yh: Laijk x,y)= aijkh yh’ (1.1}

The normalized supporting element /, = 3i L, the angular metric tensor hij =

L3 éaj L and the fundamental tensor g = ) 3j L2 = by + 4 [ are respectively

given by the equations,

(a) lL=a, (b) hij =3 (aij -a aj), (c) 8= 3aij —2a, a, (1.2)

i j

The problem appearing first in treating special Finsler metric of an interest-
ing cocrete form is to find the inverse matrix (gV) of the matrix g; (see, for
instance, § 30 of [2]). In case of quartic the problem is easy as follows :

Definition : A quartic Finsler space or some domain of the space is called regular
if the intrinsic metric tensor 2 (X, ¥) has non-vanishing determinant.

Then by inverse matrix (aij) of 3y the contravariant component gij of the
fundamental tensor are written as

gl =@l +2al a3 (1.3)

i_ i i, _ i h, _
wherea =a a,a ai—l,li—y/L, aij ay = a.

It is easy to show that

c'Bj a=3 (aij —a, aj)/L, O 8 = 2 (aijk — a )/L.

Therefore it follows from (1.2)(c) that the covariant components Cijk =

akgijIZ of the (h) hv-torsion tensor of the Cartan connection CI” are written as,

Lcijk =3 (aijk —a A A A A, +2a, 3 ak). (1.4)
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It is well-known that a Finsler space is Riemannian, iff C = 0. This

characterization of Riemannian metric is nothing but the equation 6 6 6 L2=0.

Similarly a quartic metric L4, y) is characterized by the equation 6h ai Qj ak L=
0. By direct computation we get generally,

s s s 4
8,6,8,8,8, L =8 Ty | o+ 1 T+ 1 Ty + i Tigem + & Thitm

ijkm
2
+ lk Thij mt L Ahijkm + L Bhijk ot Chijkm] (1.5)
where
A H p 1
Ahijkm C (C?th St C).iu cr o+ C?Lku hi By C (C Cij + Ch.u Chj
A p
A.Jp h1 ) + C (Clhp. + C?Lju Chk + C?..kp Chj )
A H B H
+ C (CML C.k + C’bjp Cik + kap Cij ).

A A 7\. A A A
Bhijkm-c Mkm-{-c Tmm-i-C kIm+C TJqu*C ;,ujk+CijT“1
A A A A

+C TMuk"'Cki Txhjm"'c TMHJ+C TMuk
Chijkm th C_;km + h ChlJ + 2h C + 2h Chl mt h Cth + h Chlk

+ 2y Cpo o+ 2y chkm +hy G+ 20y, G

In terms of well-known T-tensor Thijk (828.20, [2]) given in [3]. The
equation (1.5) is rewritten in the form, if we put,

T +I T

U hikm ~ "k “hijm

L Ty m + 10 T

huk+l T, ZT

hijkm ~ ukm hjkm + l
is

+12A

U hijkm

hijkm +LB +C

hijkm + Chijicm = O- (1.5)

Theorem 1. A Finsler space is one with a quartic metric, iff the equation (1.5)'
holds identically,

Cerollary. [3]. A two dimensional Finsler space with a quartic metric is
characterized by the equation 1. 00+ 10 II + 41 (3I2 +4) =0, where I is the main

scalarandI =Lm! 6 IandI —Lm 6 I
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Let us specialize the characterization theorem of three-dimensional case,
similarly to corollary. In a strongly non-Riemannian Finsler space P ([101, [11],
[12], § 29 of [2]), we can refer to the Moor frame (7, mi, n') and the main scalars H,
I, J appear.

Theorem 2. A strongly non-Riemannian Finsler space of three dimensions is a
quartic Finsler space, iff the following equations hold good :

L Cypny #1208 + 1) + 10(HC 55, — ICyp.0) + 16 H=0

2. Cypppg = 12 (HA +J13) + (6HC 5 5 — 61C,). o 41C, 0.5 + #HCqp. ) —120 =0

3. Cyppgp— (12H3 + 617 + 3% - 352D) + {2H(2C,, 2% Cppd) = 25(2C50.
+2Cy0 + Cypp.5) + 41C3,,} -9 =0,

4. Cyppgy+OVH+ 6P + 35 - 3121 + 3HD) + {3H(2C,,, 2~ JB3Cyy33 +5C,0.0)
+ I(5C322;3 + C222;3 + C323;2)} +H+6I=0

5. Cpyppg *+ (10F°H + 2HT - 811+ 4P%) + {3HC,y, - J(5C,35.5 + 3Cy33.5)
+1(6Cy35.5 + Cpp. )} +2H+41=0

6. Cyyzpz + 411+ 10121 — 8HI - 20%) + {HCp33 5~ J(3Cy5.5 + Cy3.9)
+1(4C335.3+ 2C535.9 + 2Cp3.0 + Cppp )t =21 =0 .

7. Cyzgg + OFT + 6171 — 6HII = 31%) + {HC, 53 1~ J(2C, 3., + Cy35.3+ Coy 5)
+1(5C533.5 +3C 30 + Cp3,5 )} =57 =0

8. Cpygag+ QLUZ 4+ 312H) + (I(4Cy3,5 + 4Cp5.5 42530} + 2Cy3,)} 491 =0

9. Cyzpg+OFT 1% — 6HU) + (HC, 535 = J(2Cy5, + Cya33+ Cpzng)

+1(3Cy3p.9 +5C3335 + Cy3p,9)} =51 =0

2 2
10. C333;2;3 + (21007 + 3I°H) + {H{4C + 2C222;3) -J (4C323::2 + 4C222;2

232;2
+#2Cy93) +4ICy5, )} +91=0
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2
1. C333;3;2 +24J°1 +{I(6C233;2 + 4C333;3) +1J (6C333;2 - 4C233;3 )} +121=0

3_12 =
12. C333;3;3 +12(°-I*)+ 10 IC233;3 +10J C333;3 +16I=0

3 2 2
13. C223;2;2 + (31 - 12HT-9I°]) + {H(4C232;2 + 2C222;3) —J(4Cy90.9

+ 4Ca309 + 2Cqp) +4Cap 1 —9T =0

2 2, 12 3
14. Cypy 5y + B = 617 + J2H + 61) + {3HC 5.3 ~ J(5C .5 + 3C399)

+H (5C35p4 + C222;2 + C332;2)} +H+6I=0

2 3 2 2 .
15. Cpp330 ¥ (10HJ* + 41° — 8J°1 + 2H"T) + {H(2C232;3 + C233;2) +1(4C353.9

+ Comp ¥ 2C300,3) = H3C 30 + 2Chp3+ 2333
+ C333;2)} -2H+41=0

2 3
16. Cpp3 + (1012 = 8HILY — 6°) + (HC 555 = (6C 30 — 3C3p3 + Cazp)

+1(6C355.,+ 3C222;3)} -2I=0.

. That is v-scalar derivatives C222;2;2 ......... s C223;3;3 of main scalars H, I, J are
functions of main scalars.

Remark. It is known (§29 of [2]) that the first v-covariant derivatives vanish
identically and in this case second v-covariant derivatives also vanishes identically.

2.  Certain important tensors of quartic Finsler spaces

The h-and v-covariant derivatives Xilj’ Xi ! i of a covariant vector field Xi
w.r.t. CT are defined by

¥ . e e e
Xy =8, X~ (6, X) N{ - X Fy, Xilj-Bin X, Cj.-

where (F}k , N} (th), CJi.k) are connection coefficients of CT and suffix 0 means the

contraction by the supporting element yi.

As to a Finsler space with a quartic (0.1) it follows first from (1.2)(a}..(c).
That,
By = 0 A= 0. 2.1

1
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Because /=0 and g ik = 0. These are remarkable identities as it will be
seen in the fol]owmg Then the h-covariant differentiation of (1.4) leads us the
simple equation

1C 3a

ijklh - 2.2)

ijklh =
Therefore the (v) hv-torsion tensor Pijk glvexi by (§ 17.22 of [2]) written as,

=3a.

LP Hklo®

=LC (2.3)

ijk ijkio =

As a consequence of these equations, the equation (§ 17.23 of [2]) expressing
the hv-curvatare tensor Phijk yields

% o Yeagha A _
2L P = 6L Qg — Bpgp) 3@ A0 ~ Ay Aiag) 305 i ~ Ay Byje) (24)

Definition (§ (25) of [2]). 1. A Finsler space is called a Berwald space (or affinely
connected space), if the tensor Ci‘klh vanishes identically.

2. A Finsler space is called a Landsberg space, if the (v) hv-torsion tensor P
vanishes identically.

It is noted that the condition P, = 0 is cqu;valent to Py ik = 0 (§ Theorem
25.3 of [2]). From (2.2) and (2.3), we have

Theorem 3. A quartic Finsler space is a Berwald space (resp. Landsberg space),
iff the tensor a,, iikih (resp. a, jklO) vanishes identically, where the h-covariant differen-
tiation is the one with respect to the Cartan connection.

3. A characteristic Finsler connection in a quartic Finsler space

First of all we remember equation (1.2)(c) giving the fundamental tensor 8ij
of a quartic Finsler space F". The tensor is different from the intrinsic metric tensor

a,; in a regular F". Nevertheless we have

L2, y) =gy (6 9) ¥ Y =ay (5 1) y' ¥, @3.1)

This is very interesting equation, F" is regarded as a generalized metric
space of line-element in Moor’s sense [4], because there is generally no such a

function M(x, y) that a.. is given by a., = 0, 8. M%/2. A. Moor has developed various
ij ij i]

interesting results on the geometry of generalized metric space of line-element.
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In viewpoint of (3.1} it seems natural to us to consider the problem
determining a Finsler connection based on the intrinsic metric tensor 2 (x, v).

Theorem 4. In a regular quartic Finsler space Fn a Finsler connection *CI" =
(*F;k \ *N; . *C}k) is uniquely determined from the intrinsic metric tensor a; (X, y)

by the following five axioms :
1. Itis h-metrical : ik = 0
2. Ttis v-metrical : aij Ik =0

3. Itis h-symmetric : *T}k = *F;k - *F{{j =0

>

fe v ic -+ *si ol _xol =
It is v-symmetric : Sjk‘ Cjk ij-O

5. Its deflection tensor vanishes : yilj = *N; - *sz =0,

where | and | denote respectively the h- and v-covariant differentiations with

respect to *CI'. Then the connection coefficients *F;k and *N} , coincide with F;k
! i #Cl =l 4 =-h 1 = (F! T Ly i

and Nj respectively and Cjk C ik + a7 hch I, where CT (F]k s Nj s CJk) is the

Cartan connection.

Remark. In theorem 4 a Finsler connection is the concept given in (§ 9 of [2]). It
is noteworthy that the above system of axioms is similar to the one for CI'
(Definition 17.2 of [2]). It is, however, remarked that in case of CI” the identities

(31( 8y y' = (31( g ¥ =0, 31( &= éj g, are full used, but for the intrinsic metric
tensor a, such identities do not hold except (ék aij) yk = 0. We shall show another
proof in the following.

Proof. The axioms (2) and (4) lead us immediately to,

*C}k =a" (ak & + 6] ay ar ajk)IZ. 3.2)
That is the coefficients *C§k of v-covariant differentiation are Christoffel

symbols constructed from 3 (x, y) with respect to yi. Differentiation of (1.4) by ),rk
yields
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) h.l +h, 7
ak Elij [Cl_]k + 2L, ] (3.3)

Thus (3.2), (3.3) and (1.3) give the relation

i i 2 i i
*Cje=Ci* 3 M (3.4)

Secondiy, we consider the difference D}k = *F}k - F}k, since deflection
vanishes so, *Fjik = F}k . Then the axiom (3) means D}k = D}(j and (5) does D}, =

#Ni _ Nl * i= i
Nj Nk.Then Nj Nj'

4.  Decomposable quartic metrics
Theorem 5. LetF" be a quartic Finsler space with the metric L* = o? o?

o= ot yi yj and o = Eij yi yJ are non degenerate. The space F" is Berwald space

where

if there exists a covariant vector fields ¥, (x) such as e = %5 Ty and Ol =~
¥\ holds good, conversely, it is Berwald space, if

Oy = O Yy Gy = 0 Yy and (B, a )y, =0 holds good.

Proof. The symmetric coefficients ai.k(x) of L* are given by

_ 242 o2 2 =2
6aukm ocuoakm+akm O + Oy Oy + Oy 0L1k+(xmoakj+01kJ . 4.1)

The sufficiency is obvious from (4.1), Theorem (3) and (3m aijk)lh = 0. Next,
we obtain from L* = o & and L,=0.

alol+ofal =0. 42

If the space F® is a Berwald space, then the connection coefficients E of
P P ik

CT are function of position x alone (§ Proposition (25.1) of [2]), hence & and o

2

(0512i and 3(12 ) are polynomials of the second degree in yi. Since a” is assumed to be

non- degenerate (4.2) implies that there exists a vector fields v, such as Qi = O3 Ty

and o, == 0 i T from which the equations stated in Theorem 5 are concludcd

l_]lk
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Theorem 6. Let F" be a quartic Finsler space with the metric L* = o BP where
of = O yi yj is non-degenerate, p = yi and E = E yi The space F" is a Berwald
space 1f there exists a covariant vector fields v, (x) such as o, ilic = % i and B,. =

- B Y /2, Blh

Yie Bﬂj - B, v/2 and ﬁl'] ~ P, vy/2 and (3 ) =0 holds good.

il —
B 73!2 holds good, conversely, it is Berwald space if o, itk = O

Proof. The symmetric coefficients By (x) of L* are given by
122 0 = 0 By By + 0 By By + o By By o+ on By B+ o B By

+ Oy By B+ 0ty By By + 0ty By By oy By By + 0 B By

o B B, + o By B, _ (4.3)
The sufficiency is obvious from (4.3), Theorem (3) and (am auk)!h = 0. Next,

we obtain from L* = o BB and LIi =0
o BB +o? By, B+oBp, =0. @4

If the space F” is a Berwald space, then the connection coefficients F}k of CT°

are function of position x alone (§ Proposition (25.1) of [2]), hence o and alzi

(resp. B and B[h, B and Elh) are polynomials of the second (resp. first) degree in yi.
Since o is assumed to be non-degenerate, (4.4) implies that there exists a vector
fields y,(x) such as & = o ¥, B = ~ Py/2, B; = — By/2 and, from which the

equations stated in Theorem 6 are concluded.

Theorem 7. Let F° be three-dimensional Finsler space with 1-form metric L4 =

al a2 a3 2% F is a Berwald space if there exist four covariant vector field y x)=

(a=1,2,3,4) such as }' +y +y3 +7 =0, alIJ —a. 7. (not sum in ¢), where

we put a% = a {x) y (e =1, 2,3, 4), conversely, it is Berwald space if alI i = a?

Y_] b 'Yi + 'Y12 + 713 + ’Yi =0 and (am aijk)ﬂ'l =0 holds gOOd.

Proof. This L is a quartic metric with the symmetric coefficients,
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_.1.2. 3 4 1,2.3,.4,.1.2. 3 4 ,1.2.3 4,12 3 4
24aijkm"ai aj aa +a aj a_ a, +aj a‘a a +aj a a, a +a a a aj +

1,2, 3,4,.1.23 4. 1 234, 123 4 1,2.3 4
+akamaj ai+amakai a.--!'-.‘.imﬂ,ki'l:i ai+ajakai am+ajakamai+

[,

1,2,.3 4 1,2

3 .4 1 3.4 1 4 3.4
ta A dp g aia a

2 2.3 G
+a; amaj a +a amakaj +a a aj a +

1,234, 1234, 123 4, 1.234.123 . 4
+amaiakaj+akaiajam+akaiamaj+aiakajam+aiakamaj+

1,234, 1,2 3.4 1 23 4, .1.2.3.4
+a.j a a :elk+aj amakal.‘+amaj a ak+amajakai. 4.5

Therefore the sufficiency of the condition is obvious from (4.5) and Theorem

(3)and (8 8 ), = 0. Next we obtain from L* = ' a2 2% a*

alli a2ad 2t + alalzi a®at+ al a? a|3i at+ ala?a’ afi =0 {4.6)

In the similar way to the proof of theorem 5 it follows from (4.6) and linear

independence that there exist v* (x) satisfying af;. =a% 'yJ“ Then (4.6) implies yil +

yiz +yi3 +y‘i4 =0.
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