On a Special (α, β) -Metric and its Hypersurface

R. K. Pandey

Northern India Engineering College,
Dr. Akhilesh Das Nagar, Chinhut, Lucknow, U.P., India
e-mail: drrkpandey65@rediffmail.com
(Received: August 9, 2007, Revised: July 30, 2008)

1. Introduction

A Finsler metric L(x, y) is called an (α, β) metric if it is positively homogeneous function of degree one in Riemannian metric $\alpha = (a_{ij}(x) y^i y^j)^{1/2}$ and 1-form $\beta = b_i(x) y^i$, [1], [2]. Some of the well known (α, β) -metrics are Randers metric, Kropina metric, Generalized Kropina metric and motsumoto metric. In 1995, Hong-Suh Park and Eun Seo Choi [4] introduced a special (α, β) -metric given by

$$L^{2} = c_{1} \alpha^{2} + 2c_{2} \alpha \beta + c_{3} \beta^{2}$$
 (1.1)

where c_1 , c_2 and c_3 are constants.

In the present paper, I introduce another special (α, β) -metric given by

$$L^{3} = c_{1}\alpha^{3} + 3c_{2}\alpha^{2}\beta + 3c_{3}\alpha\beta^{2} + c_{4}b^{3}$$
 (1.2)

In 1995, M. Matsumoto [3] had discussed the properties of special hypersurface of Rander space with $b_i(x) = (\partial_i b)$ being the gradient of a scalar function b(x). He had considered a hypersurface which is given by b(x) = constant.

In this paper I have considered the hypersurface given by the equation b(x) = constant of the Finsler space with special (α, β) -metric given by (1.2).

2. The Finsler Space with Metric (1.2)

Let $F^n = (M^n, L)$ be an n-dimensional Finsler space with (α, β) metric given by equation (1.2), where $\alpha = (a_{ij}(x) y^i y^j)^{1/2}$ is a Riemannian metric in M^n and $\beta = b_i(x) y^i$ is a 1-form in M^n . The derivatives of $L(\alpha, \beta)$ with respect to α and β are

given by

$$L_{\alpha} = L^{-2}(c_1 \alpha^2 + 2c_2 \alpha \beta + c_3 \beta^2)$$
 (2.1)

$$L_{\beta} = L^{-2}(c_2 \alpha^2 + 2c_3 \alpha \beta + c_4 \beta^2)$$
 (2.2)

$$L_{\alpha\alpha} = 2L^{-2}(c_1 \alpha + c_2 \beta - LL_{\alpha}^2)$$
 (2.3)

$$L_{\beta\beta} = 2L^{-2} (c_3 \alpha + c_4 \beta - LL_{\beta}^2)$$
 (2.4)

$$L_{\alpha\beta} = 2L^{-2} (c_2 \alpha + c_3 \beta - LL_{\alpha} L_{\beta})$$
 (2.5)

where $L_{\alpha} = \partial L/\partial \alpha$, $L_{\beta} = \partial L/\partial \beta$, $L_{\alpha\alpha} = \partial L_{\alpha}/\partial \alpha$ and $L_{\beta\beta} = \partial L_{\beta}/\partial \beta$.

The normalized element of support $l_i = \partial L/\partial y^i$, is given by

$$l_{i} = \alpha^{-1} L_{\alpha} y_{i} + L_{\beta} b_{i}$$
 (2.6)

where $y_i = a_{ij} y^j$. The angular metric tensor $h_{ij} = L = (\partial^2 L/\partial y_i \partial y_j)$ is given by

$$h_{ij} = p a_{ij} + q_0 b_i b_j + q_1 (b_i y_j + b_j y_i) + q_2 y_i y_j,$$
 (2.7)

where

$$p = \alpha^{-1}LL_{\alpha} = \alpha^{-1} L^{-1} (c_1 \alpha^2 + 2c_2 \alpha \beta + c_3 \beta^2)$$

$$q_0 = LL_{\beta\beta} = 2L^{-1} (c_3 \alpha + c_4 \beta - LL_{\beta}^2)$$
 (2.8)

$$q_1 = \alpha^{-1} L L_{\alpha \beta} = 2\alpha^{-1} L^{-1} (c_2 \alpha + c_3 \beta - L L_{\alpha} L_{\beta})$$

and

$$q_2 = \alpha^{-2} L(L_{\alpha\alpha} - \alpha^{-1} L_{\alpha}) = \alpha^{-3} L^{-1}(c_1 \alpha^2 - 2 \alpha LL_{\alpha}^2 - c_3 \beta^2)$$

The fundamental tensor $g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial y^i \partial y^j}$ is given by

$$g_{ij} = p a_{ij} + p_0 b_i b_j + p_1 (b_i y_j + b_j y_i) + p_2 y_i y_j,$$
 (2.9)

where

$$p_{0} = q_{0} + L_{\beta}^{2} = 2L^{-1} \{c_{3} \alpha + c_{4} \beta - \frac{1}{2} LL_{\beta}^{2}\}$$

$$p_{1} = q_{1} + L^{-1}pL_{\beta} = 2\alpha^{-1}L^{-1} (c_{2} \alpha + c_{3} \beta - \frac{1}{2} LL_{\alpha}L_{\beta})$$
(2.10)

and
$$p_2 = q_2 + \alpha^{-2} L_{\alpha}^2 = \alpha^{-3} L^{-1} (c_1 \alpha^2 - \alpha L L_{\alpha}^2 - c_3 \beta^2).$$

The reciprocal tensor g^{ij} of g_{ij} is given by

$$g^{ij} = p^{-1} a^{ij} - s_0 b^i b^j - s_1 (b^i y^j + b^j y^i) - s_2 y^i y^j, \qquad (2.11)$$

where

$$b^{i} = a^{ij} b_{j},$$

$$\begin{split} &J=p\;(p+p_0\;b^2-2p_1\beta+p_2\;\alpha^2)+(p_0\;p_2-p_1^2\;)(\alpha^2\;b^2-\beta^2)\\ &s_0=\frac{1}{JP}\;\{pp_0+(p_0\;p_2-p_1^2\;)\;\alpha^2\}\\ &s_1=\frac{1}{JP}\;\{pp_1+(p_0\;p_2-p_1^2\;)\;\beta\}\\ &s_2=\frac{1}{JP}\;\{pp_2+(p_0\;p_2-p_1^2\;)\;b^2\},\qquad b^2=a_{ij}\;b^i\;b^j. \end{split} \label{eq:continuous}$$

3. The Hypersurfaces $F^{n-1}(c)$

In this section, I consider a special (α, β) metric (1.2) with a gradient $b_i(x) = \partial_i$ b for a scalar function b(x) and also consider a hypersurface F^{n-1} given by the equation b(x) = c (constant).

Since the parametric equation of $F^{n-1}(c)$ is $x^i = x^i (u^\alpha)$, hence $(\partial / \partial u^\alpha)$ $b(x(u)) = 0 = b_i(x) X_\alpha^i$, where $b_i(x)$ are considered as covariant components of a normal vector field of $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$, we have

$$b_i X_{\alpha}^i = 0, \qquad b_i y^i = 0.$$
 (3.1)

In general, the induced metric $\underline{L}(u, v)$ from the metric (1.2) is given by

$$L^{3} = c_{1} \{a_{\alpha\beta}(u) v^{\alpha} v^{\beta}\}^{3/2}, \text{ where } a_{\alpha\beta} = a_{ij}(x(u)) X_{\alpha}^{i} X_{\beta}^{j}$$
 (3.2)

which is a Riemannian metric at the point of $F^{n-1}(c)$. From (2.8), (2.10) and (2.12), we have

$$\begin{split} \mathbf{p} &= \mathbf{c}_1^{2/3} \;, \qquad \mathbf{q}_0 = 2 \; \mathbf{c}_1^{-4/3} (\mathbf{c}_1 \; \mathbf{c}_3 - \mathbf{c}_2^2), \qquad \mathbf{q}_1 = 0, \qquad \mathbf{q}_2 = - \, \alpha^{-2} \; \mathbf{c}_1^{2/3}, \\ \mathbf{p}_0 &= \mathbf{c}_1^{-4/3} (2 \; \mathbf{c}_1 \; \mathbf{c}_3 - \mathbf{c}_2^2), \qquad \mathbf{p}_1 = \alpha^{-1} \mathbf{c}_1^{-1/3} \; \mathbf{c}_2 \;, \qquad \mathbf{p}_2 = 0, \\ \mathbf{J} &= \mathbf{c}_1^{4/3} + 2 \; \mathbf{c}_1^{-2/3} (\mathbf{c}_1 \; \mathbf{c}_3 - \mathbf{c}_2^2) \; \mathbf{b}^2, \end{split}$$

$$\begin{aligned} s_0 &= 2 \, c_1^{-2/3} (c_1 \, c_3 - c_2^2) \, / \{ c_1^2 + 2 (c_1 \, c_3 - c_2^2) \, b^2 \}, \\ s_1 &= \alpha^{-1} \, c_1^{1/3} \, c_2 \, / \{ c_1^2 + 2 (c_1 \, c_3 - c_2^2) \, b^2 \}, \end{aligned}$$
 and
$$s_2 &= -\alpha^{-2} \, c_1^{-2/3} \, c_2^2 \, b^2 \, / \{ c_1^2 + 2 (c_1 \, c_3 - c_2^2) \, b^2 \}.$$

Therefore from the equation (2.11), we get

$$\begin{split} g^{ij} &= c_1^{-2/3} \, a^{ij} - \left[2 \, (c_1 \, c_3 - c_2^2) / c_1^{2/3} \, \{ c_1^2 + 2 (c_1 \, c_3 - c_2^2) \, b^2 \} \right] b^i \, b^j \\ &\quad + \left[c_1^{1/3} \, c_2 / \alpha \{ c_1^2 + 2 (c_1 \, c_3 - c_2^2) \, b^2 \} \right] (b^i \, y^j + b^j \, y^i) \\ &\quad + \left[c_2^2 \, b^2 / c_1^{2/3} \, \alpha^2 \{ c_1^2 + 2 (c_1 \, c_3 - c_2^2) \, b^2 \} \right] y^i \, y^j. \end{split} \tag{3.4}$$

By using equation (3.1) and (3.4), we have

$$g^{ij}b_ib_j = b^2c_1^{4/3}/\{c_1^2 + 2(c_1c_3 - c_2^2)b^2\}.$$

Hence, we get

$$b_i(x) = [b^2 c_1^{4/3} / \{c_1^2 + 2(c_1 c_3 - c_2^2) b^2\}]^{1/2} N_i, \text{ where } b^2 = a^{ij} b_i b_j. \quad (3.5)$$

Hence from (3.4) and (3.5), we can write

$$b^i = a^{ij} b_i = [(b^2 c_1^{-4/3}) \{c_1^2 + 2(c_1 c_3 - c_2^2)b^2\}]^{1/2} N^i + (c_2 b^2/\alpha c_1) y^i.$$

Hence, we have the following:

Theorem (3.1). Let F^n be a Finsler space with (α, β) metric (1.2) and $b_i(x) = \partial_i b(x)$ and $F^{n-1}(c)$ be a hypersurface of F^n given by b(x) = c (constant). If the Riemannian metric $a_{ij}(x)$ d x^i d x^j be positive definite and b_i is a non-zero field, then the induced metric of $F^{n-1}(c)$ is a Riemannian metric given by (3.2) and relations (3.5) and (3.6) hold.

References

 Hashiguchi, S. Hojo and . Matsumoto, M. : On Landsberg spaces of two dimensions with (α, β) metric, J. Korean Math. Soc., 10 (1973), 17-26.

- 2. Matsumoto, M.: On C-reducible Finsler spaces, Tensor, N. S., 24 (1972), 29-37.
- 3. Matsumoto, M.: The induced and intrinsic Finsler connection of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107-144.
- 4. Park, Hong Sun and Choi, Eun Soo : On a Finsler space with a special (α, β) metric.

