JT.S

Vol. 2 (2008), 7- 16
https://doi.org/10.56424/jts.v2i00.9955

Semi Invariant Submanifolds of a Para Kenmotsu Manifold with
Constant ¢ Holomorphic Sectional Curvature

S. Kumar and K. K. Dube

Department of Mathematics, Statistics and Computer Science
College of Basic Sciences and Humanities
G. B. Pant University of Agriculture and Technology
Pantnagar-263145, Uttarakhand, India
e-mail : dr.sanjeevsingh @yahoo.co.in, kkdube@yahoo.com
(Received : August 31, 2007)

Abstract

In this paper we have studied submanifolds para Kenmotsu manifold to be
semi-invariant submanifold. In particular case when it is a para Kenmotsu space
form of constant ¢ holomorphic sectional curvature.
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1. Introeduction

The semi-invariant submanifolds of Kenmotsu manifold have been intro-
duced and studied Kenmotsu and Kobayashi. Dube have defined para Kenmotsu
manifold and studied different curvature tensors on para Kenmotsu manifold. He
also studied semi-invariant submanifolds of an almost para r-contact manifold.
Bhatt and Dube have studied semi-invariant submanifolds of r-Kenmotsu and para
Kenmotsu manifold. Bhatt and others investigated non-invariant hypersurfaces of
Kenmotsu manifold and Dube on curvatures on para Kenmotsu manifold.

Let M be an (2m + 1) dimensional almost para contact metric manifold with
the almost para contact metric structure (9, &, 1, g), where a tensor ¢ of type (1, 1),
a vector field &, called structure vector field and 1, the dual 1-form of & satisfying
the following

P’ X=X-1X0¢, g(X, B =n(X) (1.1a)
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n® =1, $(€)=0 no¢=0 (1.1b)
g(9X, ¢Y) = g(X, Y) —n(X) n(Y) (12)
forany X, Y e TM, where TM denotes the tangent bundle of M.

An almost para contact metric structure (¢, €, n, g) on M is called para
Kenmotsu if and only if

(V) Y =—g ($X, V) E—n(Y) $X (1.3)
VE=X-nX)E (1.4)
Forall X, Y e TI\—/I, where V denotes Levi Civita connection on M.

Now, let M be a submanifold immersed in M and suppose that structure

vector field & of Mis tangent to M. We denote by TM and TIM, the tangent bundle
and normal bundle of M, then the submanifold M of M is called a semi invariant
submanifold if it is endowed with a pair of distribution (D, DJ') satisfying the
following condition : '

)] T™=D®D'® {€} where {£} denotes the distribution spanned.

(i)  The distribution D is invariant by ¢ that is §(D,) =D, for each x € M.

(i)  The distribution D is anti invariant by ¢ that is ¢ (D 1) < T, M, for each
XxXeM.

In this paper we discuss some results concerned with the maximal invariant
subspace DXJ‘ of T, M where M is the submanifold of para Kenmotsu manifold M.
We suppose that M is the submanifold of para Kenmotsu manifold M such that the

structure vector field € of M is tangent to M. We by H the orthogonal complemen-
tary distribution of {§} in M, that is TM =H, @ £, for each x € M. Now Gauss
and Weingarten formulas are given by

VY=V, Y+hX,Y) (1.5)
V,V=-A X+V1V (1.6)

for any X, YeTM and Ve TM, where V is the Riemannian connection deter-
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mined by induced metric g on M, V' the metric connection on the normal bundle
TM, h is the second fundamental form and A, is the Weingarten map associated
with V as

g(A, X, Y)=g(hX, Y), V). (1.7)

Let R (resp. R) be the curvature tensor of M (resp. M) then equations of
Gauss and Codazis are given by

R(X,Y,Z W) =R(X, Y, Z, W) — g (b(X, W), h(Y, Z)) + g(h(Y, W), h(X, Z)
(1.8)

RE, V)=V, h(Y, 2)~ (v,  h)X, 2) (1.9)

where Z, W are vector fields tangent to M the left hand side of (1.9) denotes the
normal component of (R(X, Y) Z) and

Vv, h(Y,Z) =V (Y, Z)-h(V, Y,Z)-h (Y, V,2)

2. Para Kenmotsu manifold with constant ¢ holomorphic sectional
curvature :

Let R be the curvature tensor of the connection V, then a para Kenmotsu
manifold M is of constant ¢ holomorphic sectional curvature, C if

R(X,Y)Z= (9—;—3-) [5(Y,2) X ~g (X, 2) Y]+ [C: 1) M) (@) Y

() n(Z) X+n(Y) gX, Z) £ - n(X) g(Y, Z) & + g(X, $2) Y
—g (Y, $2) X + 2g (X, $Y) ¢Z] (2.1)
where X, Y, Z € TM(C). Using Gauss equation as
gR (X, Y) Z, W) = g(R(X, Y) Z, W) + g (h(X, W), h(Y, Z)) — g(h(Y, W), h(X, Z))
From equation (2.1), we get

2R (X, )2, W) = (%J 5 (Y, ) X-g (X, D) Y] + [Cj 1] OO (@) Y

()2 X+n(Y) gX, D) E-nX) g(Y, Z) & + g(X, ¢Z) oY
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—g (Y, ¢Z) X +2g (X, 0Y) ¢Z] + g (h(X, W), h(Y, 7))

—gh{Y, W), h(X, 7)) (2.2)
where X, Y,Z, W € TM.
The sectional curvature of para Kenmotsu space form C is

R- X, Y)=- R (X,Y,X,Y) whereX,Y are the orthonormal vectors

=[C;3J [C““ 1] (%) +0%(Y) - 3g (¥, 401

+g(h(X, X), h(Y, Y)) - Ih(X, Y)I? (2.3)
and the holomorphic sectional curvature H of para Kenmotsu manifold

H(X) =Ry; (X, $X)

=[C;3J [C“J[?n 30 -3-31*0 ]

+ g(h(X, X), h(¢X, ¢X)) - h(X, $X) 2. 24)

From (1.3), we have
(V) (Y, Z)=— g (Vd) Y, Z) =R(X, Y, Z, &)

and hence
RX, Y,Z, & =1 RX, Y, 2) =X, Z2) n(Y) - &Y, Z) n(X). 2.5)

This gives
RX YV)E=mX) Y -n(V) X.

On contracting (1.9), we get Ricci tensor as

Ric (Y, 2) = {M%‘iu} g6Y. 62)~ (0 - 1) (¥, 2)

and r=[“4;1J [(C+1)(n+1)—4n]

replacing Y by & in (2.5), we get
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R(X, & Z, &) =g (X, Z) 1) - g 2) n(X) = gX, &) - n(X) n(2).

Corollory 2.1 : A para Kenmotsu manifold M of constant ¢ holomorphic
curvature can not be flat.

Proof. The corollary is obvious.
3. Submanifolds of Para Kenmotsu Manifold

Let M be a submanifold of a para Kenmotsu manifold. Since & is tangent to
M then we have from Gauss formula

V, E=V E+h(X, &)
this due to (1.4) gives

V E=X-nX)E
and h(X, &) =0.

Lemma 3.1 : Let M be a submanifold tangent to & of a para Kenmotsu manifold
M and Dy the maximal invariant subspace of H,. Suppose Dim Dy = constant.
Then the invariant distribution D is integrable.

Proof. Now we have
g(X, YL, & =g(Vy Y -V, X, &)
=g(X, Vy &) -g (Y, Vi )
=gXY-1NE-Y, X-1 X))

= 1(X) 1Y) = (Y) n(X)

=0 3.1
forany X, Y € D.

If we take unit vector X € D and Y = ¢X, then from (3.1), we get

X, Y, =0

hence invariant distribution is integrable.
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Theorem 3.1 : Let M be a submanifold tangent to E-isometrically immersed in a
para Kenmotsu manifold M and Dy the maximal invariant subspace of Hy.
Suppose Dim Dy = constant. Then the distribution D @ {£} is completely
integrable if and only if the second fundamental form h of M satisfies

h(X, $Y) =h(¢X,Y) for X, Y & D.
Proof. ForX,Y e D, we have
$(IX, YD = $(Vy Y - Vi X)
= (VY - h(X, ¥) -V, Y - h(X, Y))
=V Y +1(Y) 6X + g(X, $Y) & —h(X, 4Y) +$h(X, Y)
~VybX = n(X) 9Y - g(Y, 9X) £+ h (9X, Y) - $h (Y, Z)

=h($X, Y) —h(X, $¥) + ¢h (X, ¥) — $h(Y, X)
=h($X, Y) - h(X, $Y)

where ¢ [X, Y] shows the component of VY from the orthogonal complementary
distribution of D @ {£} in M. Since h is symmetrical morphism of vector bundles
and hence from above we have

h(¢X, Y) - h(X, $Y) = ¢ (IX, Y])
thus, we get [X, Y] € D @ {&} if and only if $([X, Y]) =0, that is
h($X, Y) =h(X, $Y)

conversely using (1.2), (1.3), (1.4) along with Gauss and Weingarten equations, we
get [X, Y] e D® {&} foreach X € D, which proves our assertions.

Theorem 3.2 : Let M be a submanifold tangent to & of a para Kenmotsu
manifold M and D the maximal anti-invariant subspace of Hy,. Suppose Dim
Dx“L = constant. Then the anti-invariant distribution D' is always mtegrable

Proof. ForZ W e Dl, we have
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=V 6W = (V) W= 0h(Z, W) — (VyydZ) ~ (Vy$) Z - $h(W, 2)
=— Ay W+ VW (W) Z + g(Z, §W) & — 6h (Z, W)
= (AywZ— Az W+ VW -Vt 6z

Since A¢WZ - A¢Z W is tangential to M and VZJ‘ oW — VW‘L ¢Z is normal to M
then it follows that [Z, W] € D‘L, if and only if

AywZ=Ay W foranyZ, W e Dt (32)
and g([Z, W], £) =0. (3.3)
conversely using (1.2), (1.3}, (1.4) and (1.6), we have
g(Ayz W, X) = g (W, X), §Z) = g(V W, $2)
=~ g($VxW, 2) = - g(VyW, Z)
= (A X, 2) = (A gy W, X)

Z holds.

foranyZ,WeD'LandXeTM.ThatisA oW

¢ZW=A

Hence D" is always integrable.

Finally using (1.4) and taking account that D' is anti-invariant distribution, we
have

&([Z. W1 &) = g(V, W - Vi Z, E)
=g(Z V& ~gW, V, 8
= g(¢Z, ¢W) — g(¢W, ¢Z)
=0, for any Z,We DL,
Therefore (3.2) and (3.3) holds. This completes the proof of the theorem.

4.  Semi-invariant Submanifolds of a Kenmotsu Manifold with con-
stant ¢ Holomorphic Sectional Curvature C

Here we consider a semi-invariant submanifold as the particular case when
para Kenmotsu manifold is a para Kenmotsu space form M(C) of constant ¢ holo-
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morphic sectional curvature C.

Theorem 4.1 : Let M be a submanifold tangent to § of para Kenmotsu space
form I_V.[-(C) with C # — 1 then M is a semi-invariant if and only if the maximal
invariant subspaces Dy = HX N ¢(Hx), X € M define a non-trivial differentiable
distribution D on M such that

RD,D: DY, D)=0 . @D

where D denotes the orthogonal complementary distribution to D @ {£} in M and
R denotes the curvature tensor of Kenmotsu space form M(C)

Proof.  The curvature tensor of a para Kenmotsu space form M(C) is given by
(2.1) for any vector field X, Y, Z tangent to ﬁ(C). If M is a semi-invariant
submanifold of M(C) from (2.1), we get R(X, Y, Z, W) = g (R(X, Y) Z, W) = 0 for
any X, Y € Dand Z, W & D" hence (4.1) holds.

Conversely suppose that the maximal invariant subspace D of H defines a
non-trivial differentiable distribution such that (4.1) holds, then using (2.1) and
(4.1) we get

E(X,¢X,Z,“’)=—Mg(X X) g(¢Z, W) =0, forallXeDandZWeDJ‘

since C#-1, we get g(¢Z, W)=0forallZ, W e D So, we have
¢D 1Dt : (4.2)
Since D is an invariant distribution, using (1.2), we have
8(X, $Z) =—g($X,Z) =0 forany X e Dand Z € D*.
We get ¢D 1D, 4.3)

Fmally g€, $Z) = 0 for any Z € D' and taking account of (4.2) and (4.3) we get
¢D — TML. That is D* is an anti-invariant distribution. Thus M is a sgml-mvan-
ant submanifold. Hence the theorem is proved.

Theorem 4.2 : Let M be a submanifold tangent to & of para Kenmotsu space
form ﬁ(C) with C # 0 then M is a semi-invariant if and only if the maximal
anti-invariant subspaces DX'LC H,, x € M define a non-trivial differentiable
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distribution D on M such that
R(D, ¢D; p,D)=0 (4.4)

where D denotes the orthogonal complementary distribution to D @ {£} in M and

p denotes the distribution for which MKy is orthogonal complement of ¢D‘J‘
T M.

Proof. Let M be a semi-invariant submanifold of M(C) then using the definition
and (1.2) we obtain from (2.1) R(X, $Y; L, Z)=0forany X, Y,Z e DandL e p,
that is (4.4) is satisfied.

Conversely, if the maximal anti-invariant subspaces D c H X € M define a
non-trivial differentiable distribution D' on M such that (4 4) holds then using (1.2)
and (2.1), we get

R(X, ¢Y; L, Z) = Cg(X, X) g(#X, L) =0 (4.5)

forany X e DandL e p.
Since X ¢ D then from (4.5) it follows
¢D Lp (4.6)
also using (1.2) and considering D is an anti-invariant distrib'hﬁon, we get
$DLE and $D-L¢Dn @7
Since by hypothesis, we have D L. {€} and from (1.1) and (1.2), we have
¢DL{E} (4.8)

then (4.6), (4.7) and (4.8) shows that ¢$D = TM and ¢D = D, that is D is a invariant
distribution and M is semi-invariant submanifold. This proves our assertions.
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