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Abstract

Semi-invariant submanifolds of a certain class of almost contact manifolds
have been studied by Kobayashi, Shahid and many other geometers. In the present
paper, submanifolds of the Kenmotsu manifold with generalized almost r-contact
structure have been defined and studied. Certain interesting results have been
obtained.
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1. Introduction

Let M be a (2n + r) dimensional Kenmotsu manifold with generalized
almost r-contact structure (¢, Cj,p, ue g ) where ¢ is a tensor of type (I, 1), E_,p are
r-vector fields, n, are « 1-forms and § the associated Riemannian metric on M,

satisfying
r

(@) ¢2=a21+p Zn,8%,
(b) n,E) =8,  PA=L2 .5 (LD)
© 45, =0,

(d) M, ($X)=0
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and
X4+ EC V) E n, GO, (1) =0, (12)
o
n, X)=gX,8), (1.3)
(VxHY=-Z 1, (NX-FX I &, (1.4)
p= p=
Vx8= X%, 008, - | (1.5)

whesze [ is the identity tensor field and X, Y are vector fields in M and V is the

covariant differentiation operator on M [6].

Now, let M be a Riemannian manifold isometrically immersed in M such
that E; are tangent to M . We denote by g the Riemannian metric on M and V the
mducec Levi-Civita connection on M with respect to g and VL the lincar

connection induced by V on the normal bundle T'M. Then the Gauss and
Weingarten formulae are given by

<ll

=V, Y +h(X, Y), (1.6)

<]t

XN=—ANX+VJ}EN, (1.7

respectively, where h and A are called the second fundamental tensors satisfying
g(hCX, Y), N) = g(A X, Y).
2.  Semi-invariamt Submanifold

A submanifold M of M is called semi-invariant if ?;p is tangent to M and
there exists a differentiable distribution

D:x e M—D cT, M (being the tangent space of M at x)

such that DD is invariant distribution on M, that is

1)
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¢D, =D, forall x e M. (2.1)

X

The orthogonal complementary distribution Dlof Dis anti-invariant, that is

¢(D;L<) < T}L( M, (2.2)

where T'}lz M is the normal space at x € M.

The distribution D (resp. D) can be defined by projection P(resp. Q} which
satisfies the conditions

pZ=p, Q*=Q, PQ=QP=0. (2.3)

The distribution D (resp. D‘L) is called the horizontal (resp. vertical) distribu-
tion. Also the pair (D, D‘L) is called &, -horizontal (resp. ?; -vertical) if (E;, ), €
D(resp. (& ), € D‘L) forall x in M.

It is clear that if M is § -horizontal (resp. § -vertlcal) then dim D = odd
(resp dim D1 = even).

" For a vector field X tangent to M, we put
X=PX+QX, (24)
where PX and QX belong to D and Dt respectively. “

Also, for a vector field Ninormal to M, we put

¢N =BN + CN, . 2.5)

where BN (resp. CN) denote the tangential (resp. normal) component of $N.

The horizontal distribution D is said to be parallel if
VyY eD forany X,Y eD.

A semi-invariant submanifold M of M. is said to be D-umbilic (resp. Dt -
umbilic) if

h(X, Y)=g(X, Y)L (2.6)
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holds for all X, Y in D(resp. X, Y in DJ'), where L is some normal vector field. M
is said to be D— totally geodesic (resp. Dt - totally geodesic) if

(X, Y)=0 for all X,YeD(resp. X, Y € DJ').

Theorem (2.1). Let M be a semi-invariant submanifold of a generalized Ken-

motsu manifold M. Then we have

I r
PV ¢PY —PA ¢QYX =PV, Y +g(¢X, V)P X ﬁp -z My (YY) $PX, 2.7)
) . p=1 p=1
QV49PY — QA ¢QYX =Bh(X,Y)+g(¢pX,Y)Q £ ép -z My ) ¢QX, (2.8)
p=1 p=1
h(X, ¢PY) + V;L( 0QY = $QV Y + Ch(X, Y). 2.9
Proof. We know that
~ r r
(V4 ) Y =28($X,Y) aép - §lnp (Y) ¢ X.
Using (2.4), we get ’ ’
(Vi)Y =g@X, V)(PZ & +Q3 &)~ T 1 () (9 PX+$QX). 2.10)
1

p=1 p=1 p=

We know that

(V9 Y=Vy oY -V, Y.
Using (1.6) and (2.4), the above equation takes the form

(Vx 9 Y = Vy ¢PY + V, $QY — ¢ VY — $h(X, Y).
By using the Gauss and Weingarten formulae and (2.5), we get
(Vx §) Y =V 6PY + (X, ¢PY) - A ¢QYX + V‘J‘X $6QY — PV, Y
- ¢ QVY -Bh(X, Y) - Ch(X, Y).

=PVy §PY +QVy $PY +h(X, §PY) ~ PA ot X — QA, 0y X

7]



[ ]
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+ vix QY = ¢PV, Y —¢ QV, Y ~Bh(X, Y) - Ch(X, Y).  (2.11)

Comparing equations (2.10) and (2.11) and equating the horizontal, vertical and
normal components, we get (2.7), (2.8) and (2.9) respectively.

Theorem (2.2). Let M be a semi-invariant submanifold of a generalized Ken-

motsu manifold M. If M is & p-horizontal, then the distribution D is integrable if
and only if

h(X, $Y)=h(dX,Y) forallX,Y e D (2.12)

and if M is ?;p-vertical, then the distribution D" is integrable if and only if

r r r
A¢x Y _A¢Y X :pi: Inp X) oY ——pillnp (Y) oX + 2g(X, Y?)E l?;p . (2.13)
Proof. LetM be E',p-horizontal, then (2.9) reduces to
h(X, $Y)=¢QV, Y + Ch(X, Y)

and hence, we have
h(X, $Y) - h($X, Y) = $Q[X, Y].

Thus if M is & p~horizontal, then [X, Y] € Die. Q[X, Y] =0 if and only if
h(¥X, $Y)=h($pX, Y).
Let M be %’;p-vertical, then (2.9) reduces to

Vi 0Y = 90QVy Y + Ch (X, Y) for all X, Ye Dt (2.14)
Using (1.4) and (2.4), we get
o~ r I
Ve Y =X, V)X £~ () §X + §PV,Y
p=1" p=1
+6QV,Y +Bh(X, Y) + Ch(X, ). (2.15)

Since M is E;,p—vertical, then by Wiengarten formula, we have

Vi Y =V, PY + Ay X.
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Using (2.15), we have
Vi 0Y = 5($X, Y)zg ~T n, (V) § X +9PVyY
p=1" p=i

+¢QV, Y +Bh(X, Y} + Ch(X, Y) + A e X. (2.16)
From (2.14) and (2.16), we have

I T
(I)PVXY = Z np Y)oX-g¢X, Y} £ é‘,p - Bh(X, Y) - A¢Y X.
p=1 p=1
Similarly
r 3
(bPVYX: z N, KoY —gdY, X)X E;, — Bh(Y, X) — A Y
p=1 p=1
Therefore, we have
T
@PV Y — q)PV X =2 r| (Y) o X —g(dX, Y)Z E_, - Bh(X, Y) - A X
p= p=1

- z n, COPY +g@y, X)E g +Bh(Y, X) + A Y,
p=1 p=

OP[X, Y}—En ()X - zn (X)dY - 28(0X, Y)zg A Y - Ay X,
=1 p= p=

Thus if M is c“,p—verticai, we see that [X, Y] € D if and only if the equation (2.13)
holds.
3. Parallel horizontal distributions

A non-zero normal vector field N is said to be D-parallel normal section if

V§N=O forecach XinD. 3.1

Definition. M is said to be totally r-contact umbilical if there exists a normal
vector H on M such that
r

h(X, Y)=g(¢X, $Y)H+ X lnp )WY, &)+ 2 M MhX.E) G2
p= p=

HY)
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for all vector fields X, Y tangent to M [4].

If H =0, that is the fundamental form is given by

r T
h(X, Y)= z]np (X)h(Y, &)+ 21np (VAKX &) (3.3)
p= p=

Then M is totally r-contact geodesic.

Theorem (3.1). IfM is totally r-contact umbilical semi-invariant submanifold of

a generalized Kenmotsu manifold M with parallel horizontal distribution, then M
is totally r-contact geodesic.

Proof, Since M is semi-invariant submanifold of a generalized Kenmotsu manifold
M . From (2.7) and (2.8), we have

r r
PVLOPY —PA 0y X = 0PV, Y + g($X, ) pr lgp -pf " (Y) $PX,

QVydPY — QA 4y X = Bh(X, ¥) + g(¢X, Y) Qp E lip —p E lnp (Y) 6QX.

Adding the above equations, we have

PV, 0PY +QV, ¢PY — (PA, o X + QA, 1. X)

oQY $QY

T r
=¢PV, Y +Bh(X, Y) +g(¢X,Y) Z §p -z n, (Y) ¢X.
p=1" p=lI
Using (2.4), we have

r r
VoPY — Ad)QYX =PV, Y + Bh(X, Y) + g(dX, Y)p E l‘c:,p —p E ]np (Y) oX.
(34)
Interchanging X and Y in (3.4), we have

. T T
ViPX = Ao Y = ¢PV X +Bh(Y, X) + g(9Y, X)p E lgp -p>=: , (X) $Y.
(3.5)
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Adding (3.4) and (3.5), we get

VOPY + VodPX — Ay oy X — Aoy Y =0PV,Y + PV X

QY
r r

+2Bh(X, V) - = m (V)X - 2 1, (0 ¢Y.
p=1 p=1

Operating ‘g’ on both sides of the above equation, we get

8(VdPY + VydPX — Ao X~ Aoy Y, Z) = @RV Y + 9PV X

+2B(X V), 2)= T, (1) 86X, 2) - E 7, (X) 8, 2)
p= p=

Splitting the above equation and using (3.2), we get

g(VX(bPY: Z)+ g(vy¢PX= Z)- g(Ad)QYX’ Z)- g(A:bQXY’ Z)

= 8PPV Y, 2) + g(§PV X, Z) + g [2B{g($X, ¢Y) H+ Z m (X)h(Y, &) +
p=1

r

2 1y (D BEGE)Z] = E my (84X, D)= 2 m, (0 8(#%,2)
= p= = . .

P p

gV 0PY, Z) + g(Vy0PX, Z) — g(b(X, Z), $QY) — g(h(Y¥, Z), $QX)
= g(PVy Y, Z) + g(§PVy X, Z) + 2g(dX, $Y) g(BH, Z)

+ 22, (X) gB(Y, £ ), Z) -+ 2 z ]np (Y) g(Bh(X, &), Z)
p=1 p=

- 2, (V) g§X, 2)= T 1, 0 2. 2)
p= p=
= g(9PVy Y, Z) + g(PPV X, Z)—- 2a2g(X, Y) g(BH, Z)

r r

-2 Elnp X, (V) gBH, 2)+2X ;np X) g(h(Y, E), 92)
p= p=
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r r

T
t22 ]np (V) gth(X, &), ¢2) - % lnp (Y) 89X, Z) ~ Z n, (X) g(9Y, Z).
p= p= p=1
Replacing Y by BH and Z by X and using (3.2), we get

g(VyoPBH, X) + g(V,0PX, X) - g(X, X) g(H, $QBH) ~ g(BH, X) g(H, $QX)

= g(0PVyBH, X) + g(¢PV}y, X, X) - 22°g(X, BH) g(BH, X)

r r
-2Z lTlp (X)n, (BH) g(BH, X) +2 Z]np (X) g(h(BH, £ ), $X)
p= p=
I3 T

+2 Elnp (BH) g(h(X;, &), 6X) — Z m, (BH) g(¢X, X)
p= p=1

- ]np (X) g(¢BH, X). (3.6)
p =

For X in D, we have
g(X, BH) = g(¢X, BH) =0.

Differentiating above covariantly along X, we find
8(Vx ¢X, BH) + g(¢X, V,BH) =0.
Since, the horizontal distribution D is parallel, we have
g(9X, V¢ BH) = 0. (3.7)
Using (3.7) in (3.6) and taking X in D as a unit vector, we get
8(Vgyy OPX, X) — g(H, $QBH) = g(0PV,,,, X, X),

8((Vpg OPIX + PV X, X) - g(H, $QBH) = g(PV,y;, X, X),

8((V iy OPIX, X) + 80PV, X, X) - g(H, §QBH) = g(¢pPV; X, X),

g((Vgy 9P)X, X) = g(H, ¢QBH) = — g(¢H, QBH) = — g(BH, QBH).  (3.3)

Now, g((Vgy 9P)X, X)=0.
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From (3.8), we have
g(BH, QBH)=0,

BH=0.
Since ¢H e D', we have CH = 0, hence ¢H =0, thus H=0.

Hence M is totally r-contact geodesic.

Remark. For a generalized Kenmotsu manifold, we have

~

Vi &, =VyE +h(X, &)

=PX+QX - Z n (X) E um (X) Pc‘,p. 3.9)
=1 p=1
Equating the tangential and normal components, we have
.
VXE_,p =PX ;E Inp (X) ng. (3.10)
h(X, &)= QX. - @)

From (3.10) and (3.11), we can easily obtain
V&, =0 for Xin D!,
h(X, E;p) =0 forXinD,
Also for X in D, we have
2y £y 0 = 80X £ ), N) =0

and so we have A & e pt

Theorem (3.2). l.et M be D-umbilic (resp. DJ'—umbilic) semi-invariant submani-

fold of a generalized Kenmotsu manifold M. If M is & -horizontal (resp. E:, -verti-
cal), then M is D totally geodesic (resp. D -totally geodesic).

Proof. If M is D-umbilic semi-invarjant submanifold of a generalized Kenmotsu
manifold with é’;p-horizontal, then we have

L&
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h(X, &) =g(%, ) L,

which means that L=0,

from which, we get h(X, & p) =0.

Hence, M is D-totally geodesic.

Similarly, we can prove that if M is a D -umbilical semi-invariant

submanifold with ép—vertical, then M is Dl-totally geodesic.

-~
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