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Abstract

Induced energy is obtained in the exterior Schwarzschild space-time through
one-loop quantum correction to scalar field. It is discussed that energy tunnels
quantum mechanically through the event horizon contrary to results of classical
mechanics that black-holes cannot emit anything. Three decades ago, Hawking had
obtained this type of result through the process of creation of scalar particles.
Evaporation of energy from black-hole results into loss of mass. It is found that a
primordial black-hole of mass 101> gm might have evaporated by now. Moreover,
luminosity of hole also increases gradually. It is suggested that decreasing area of
the event horizon due to loss of mass causes increase in entropy in the outer space
of the hole. It is speculated that black-holes in the extreme past might be glowing
bright now and will leave behind dark naked singularities.

Keywords : Black-holes, one-loop quantum correction, vacuum energy, lumi-
nosity. -
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1. Introduction

After exhausting their nuclear fuel, stars pass through the phase of gravita-
tional collapse, if certain initial conditions are satisfied. When collapse is complete,
there remains a singularity hidden from the view of an external observer. This
hidden object is called black-hole. There are two school of thoughts about the
existence of black holes. One believes that black holes do not exist as so far
attempts to observe them have yielded null results and these are only mathematical
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solutions of Einstein’s field equations having spatial singularities, Physicists be-
longing to other school say that black holes are not mathematical solutions only,
but they do exist physically. We are unable to observe them because they trap
particles going near to them and absorb, but they do not emit anything.

If one believes in the second school of thought, it is natural to investigate the
effect of their existence in the universe. One such attempt was made by S. W.
Hawking. In 1974, he published his result shaking the old belief based on the
classical mechanics that black holes absorb everything but emit nothing [1].

According to Hawking [1-2], black holes are not completely black, but emit
radiation with thermal spectrum due to quantum effects. He obtained that virtual
pairs of particles and anti-particles are created in the external space-time of the
black hole with frequency ® < (GM)“] (G is the Newtonian gravitational constant
and M is the mass of the black hole) The gravitational tidal force between particles
and anti-particles prevent them from re-annihilation, Particles with positive energy
escape to infinity contributing to Hawking’s flux and particles with negative energy
(anti-particles with positive energy) are trapped in the black hole. Thus black holes
radiate quanta of energy with frequency .

In what follows, it is obtained that energy is radiated out of the black hole
through quantum process, but the approach to obtain this result is different from
Hawking’s one i.e. creation of particles in the external space-time of the hole. The
line-element for the Swartzschild space-time is taken as

~1
ds? =(1 QGM) o —(1 —ZGTM) da? -2 (6% +sin2 0 dy?), (L)

where 2GM <r <o, 0£6 <n and 0 <wy < 2xn. Like Hawking, here also a
massless hermitan scalar field ¢ is considered in the manifold with the distance
function, given by equation (1.1). The action for ¢ is written as

=& x Vg @] 79,479, 6. (12)

) |

wherep, v= (0, 1, 2, 3), g,y 2re components of the metric tensor and g(4) their
determinantin4-dim.spacetime.
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Further the entire problem is reduced to 3-dimensional space-time and a
spectrum of infinite number of massive scalar fields is obtained. One-loop quantum
correction is calculated and summed up over all scalar fields yielding 3-dim.
induced gravity. It is possible to do so, because all 3-dim. scalar fields in the
spectrum are identical in nature. Through this process, finite results are obtained
without renormalization, it is because divergences do not appear in odd-dimen-
sional space-times. It is explained below that the 3-dim. induced action for gravity
can be converted into 4-dim. induced action for gravity in the space-time given by
equation (1.1). As a result, one obtains induced vacuum energy. It is interpreted that
induced vacuum energy in the exterior Swartzschild space-time is radiated from the
black-hole itself as there exists no other source of energy in this space-time. It is
important to mention that results, obtained here, do not contradict Hawking’s
results. Section 2 contains one-loop quantum correction to scalar fields in 3-dim.
hypersurface. 4-dim. induced Einstein-Hilbert action and vacuum energy are
obtained in section 3. Section 4 is the concluding section, where results are
discussed and compared with Hawking,

Natural units kB =h=c¢=1 (where kB is Boltzman’s constant, T is Plank’s
constant divided by 2 and ¢ is the speed of light), are used here. In this system,
GeV is the fundamental unit, but sometimes c.g.s. system is needed to get better
understanding. So conversion scales are given as 1GeV = 1.16 x 10% °K = 1.78 x
1072* gm. and 1GeV ™ = 1.97 x 107" cm. = 6.58 x 10725 sec.

2, Scalar field and one-loop quantum correction

The equation (1.2) can also be written as

N *
$=-5 /' xVIE@T ¢' 0,0, @1
. -1 & 3
whereT, =(Vg @[ )" ~={]g@] g™ —).
4) u v
Ix ox
Theonformatransformations
8,y > gw = Q? " (2.22)

with Q= (r sin ) yield
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-1
g VE|:(rsin9)"2[l —z—(i—M],—(rsine)"z(l —g—(i—M—J ,—(sin8)"2, - 1]

()
(2.2b)

Using transformations (2.2), equation (2.1) is re-written as

= -1— 4 T 2.7
Sp=—5 [ xVg@ 8" 0yt md) 4, (23a)

where
m} =6 sin? 0 - 5in2 g 3 COSe_MJrlf_sze(l ) ZCiMJ
r

+ 18cot? B cosec” O
and D’(4) is D(4) with i replaced by g
Using m,, given by equation (2.3b), one obtains
mg _ | m,

sin®@ sinf@ sin’9

20|
_ ‘ﬁﬁ I8GM_(3+§] cos 8 +1_f(1_2GM]+18cos 0
r

2 2
P md

r r)sinZ 0 r sin* @

26 (23c)

4 r

18GM 18 (. 2GM
——""r"'"“-i-—r" | — ===,

which shows a strong possibility for m, to be imaginary when r <3GM which is
inconsistent as m, being mass of 3-dim. scalar field can not be imaginary. For
example, eq. (2.3b) shows that m, is definitely imaginary when r <3GM at the
hyper-surfaced = /2. So to be on the safe side r <3GM should be avoided while
using theseresults.

Now $ i1s decomposed as

=2 Z G Grnod. 2.4)

Connecting equations (2.3) and (2.4)
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s¢=—4ifd4xwl|g‘(4)| S 03
19

nn=-—ew
[Oggy 0%+ 15 1 bz, % exp {— in —n") . 2.5)
Integration over y and summation over n’ leads equation (2.5) to

Sy==3 = IExVEO §gnl0*nllhy, @6

n=-w

with mﬁ =n?+ m% . Scalar fields ¢(3)n live in the W = constant hypersurface with

the line-element
1

dS3;, = (rsin 0)2 (1 _ &M_J 42 — (¢ sin 0)" 2 [1 _ @} o - (sin 02 462

r

(2.7)

To compute one-loop quantum correction to scalar fields ¢(3)n, operator

regularization method [4] is employed. One-loop effective action upto adiabatic
order 4 is given as

o I'is+35 2\§
r-gy? z 4 I e LIS (oI . m—
n=—o0 kﬁ%) -

m
n -1 1 B 1Rkl [ R }
4 — —— RY _—~_ Rl =
G[ l] My (30 "o %o * 180 ey R T80 Rey Rei* 72 R@J]’FO’
2

where 1, j, k, 7= (0, 1, 2). In equation (2.8) T'(s) can be expanded as
M) =1 -1+0(s), (2.9)

with y as Euler’s’constant. Using eq. (2.9) in eq. (2.8)

0

r=24m) T J& x Vg @] {4m] -m R4 +

(3)
ne=-—ao
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T D 7 1=
Tmy [30 D(3) R(3) 180 R(B) R(S)ijkl 180 R(s) R(3)i_i ) R(s) 3 2.10)

Ineq. {2.10),

n
n=—03 n=—ow n=—om

oo} o o0 )
omp= T @mBH?= 2 mP (r+ 2 P (my?Hin®)
on T T

e a]
=26 my+2 2 O C mpC20g29)=—|my’,
q=1
o
where {(w) =Z " (Rew > 0) is the Riemann zeta function £(0) is divergent, but
n=1
through analytic continuation it is evaluated equal to —1/2 and &(- 2q) = 0 for
positive integers q. In a similar manner, one obtains

o o0
— ~1_
X m =|my]| and X m " =|m,
n=—oo n=—cw

-1
™.

Thus B
T=-4ny! [ExV[gG)] {4|m, |3—im0|R(3)+

-1 Ly g oilgiwg 1y L lw
*1my| [10 Yo R * 50 R R~ 50 Ry R " 24 R | 31D

3. 4-Dim. induced gravity and vacuum energy

From equation (2.11), 3-dim. induced Einstein_Hilbert action of gravity is
obtained as

ind __ ogmyt {3 = 3
8(3)g 4yt 1P xV[EB)| {41m| ImolR(3)}' (3.1)
To neutralize the effect of conformal transformations (2.2), another conformal
transformation

gij - gij = 5 2 gij (3.2)

with Q = (r sin 0), is used. As a result, eq. (3.1) is written as

: Imgl (41m® 4 oM
gind — _ -1 [ 43 = 0 0 a
Gy =~ (24m) IS HOY sin © er anZo 2 8 -
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4g1+coszez 2 2cot’@
+ o1 _R(3)]a

r2 sin? O 1 r

ol

; = 3 . 3 .
Putting R(3) = R( H= f(r) — R( 43 with f(r) and R(4)3 computed in the background

(3.3)

where

geometry of Swartzchild space time in eq. (3.3) and integrating over y, one obtains

2
{ my| |(4|m0| L4 _12G6M
r sin® @ krz sin@ 12 r

L 4(+codB) 2 2c0t*B

% sin 0 P 2

—%(1 ——2—@—‘] (1 - 36M , 4G J-Rm) . (3.4)

Sghe =~ @0 [a*xVTe @] [

I r r r

The line element for Schwarzschild space-time, given by eq. (1.1) is
obtained solving field equations derived from Einstein-Hilbert action

R
= [ g4 -

Sy~ 1d x Vg @] G (3.5)

using invariance under transformations By ™ By + 0 Buv So,
off _ ind

S0 Swe™ Swe- .9

Eqgs. (3.4) - (3.6} yield
I _ 1 [ my |

167G g 167G 24 12 sin® 0

which implies
2imy|G T
Gy=G|1 +T cosec” 0 (3.7

giving that G o ~G when >3GM.
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The general form of Sg? . is supposed to be

A,
fa*x Vg @] (R“” - "J

16 nG 8 “Gin

Soeqgs. (3.4)-(3.7) yield

2
M Ming 1, | my | (4“‘0 4 12GM

3‘EGeff=8‘JTG=24TC r*sin® 6 (% sin’ @ 2 9

+4g1+cos291 2
2 .2 -
r“sin“ 9 P 2

2(,_26My 'f| 30M 4G*M?
- - 1- +
r2 r r 1‘2

24 _72GM 72(, 2GM) 8 12GM 2 2(, 2GM),
2 r o 2 P 2

using the inequality (2.3c).

ind
8 =G
hole. So vacuum energy around the black-hole is computed as

is the vacuum energy density in the exterior space-time of the black-

n/2 2w . A. /2
E=2 ind T’ L sin 6 do dw dr'
'[o jo 'LGM 8 arG( ) 1 v

rl

oL [yl _ 1y 97GM+2( 1 1) GM( 1 1),
V6 |T2GM r 2 leem? 2] 3 leomy® 2] 7
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z% GGMy., (3.9)

The Schwarzschild exterior solution given by eq. (1.1), is obtained in empty
space-time. It means that the energy, given by eq. (3.9), is radiated from the black-
hole by the process of quantum tunnelling through the layer r = 2 GM, as there
exists no other source of energy except a massless scalar field activating the black-
hole.

4.  Implications and comparison with Hawking’s results

Physical parameters such as temperature, life-time, entropy and luminosity
can be calculated from results obtained above.

(a) Temperature

If black-hole is treated as a black-body radiant, one can use Plank’s formula
for the energy distribution given as [5]

O

E= (2/n)j J 'LGM\(T_@

r

2
. v dv
0do dy dr' —_—
sin y dr' x J-O D]

(ZGM) [\] X(x—1) {2(4x— 1) (4x —3) +36 (2x — 1)+ 90 +

= 360
. ““f_x (io— ) cosh‘1 oy -(V3/2) (192 + E 2 coshi™ (V372 )] T

4.1

where r = x (2GM) gives different orbits around the black-hole with real numbers
x=1.

Comparing equations (3.9) and (4.1), temperature is obtained as
T>B(QGM)™, 4.2)
where

B=5516[Vx(x—1) {(dx-3)+36 (2x - 1)+ 90+ cosh™! (\/x)}

60
vxx-1
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-~ (V372 {192 + —%9 cosh™! (V372 y31 V4, (4.3)

It is interesting to note that as r increases, temperature of the black-hole decreases.
It means that observed temperature will be less for distant observers than the
temperature observed by those who are comparatively closer to the black-hole. For
a black-hole of mass 104 gm, temperature at r = 200 GM is > 2.06 x 1071 Gev =
2.387 x 1012 %K. For a black-hole of one solar mass, temperature at r = 200 GM is
22.058 x 1072% GeV = 2,387 x 107 %K. These results obtained here at r = 200 GM
agree with Hawking’s results [1.2]. Temperature, obtained by Hawking, has no
radial dependence.

(b) Life-time of the black-hole

As energy is radiated from the black-hole, its mass will decrease, So, the rate
of loss of mass can be equated with luminesity L which is given as [3]

L ~T* (GM)? (4.4

in the case of black-hole implying its life-time

T 0
T= fo di=- | dMT *GM)™ .5)
M

T is the time period during which entire mass of the black-hole evaporates after its
formation.

The result for temperature, given by eqs. (4.2) and (4.3), is very crucial here
due to its dependence on r. If T, given by eq. (4.2) is directly introduced in eq. (4.5),
T will also depend on r. It means that for distant observers life-time will be more
than that for those sitting comparatively closer to the black-hole. It may happen so
due to time-dilation in a strong gravitational field. Due to this reason, for
calculation of the comrect life-time it is better to obtain temperature near the
event-horizon (given by the surface r =2 GM), say atr = 2.1 GM.

But as discussed above, the result for temperature [given by eq. (4.2)] can
not be used for evaluation at r <3 GM. So, to be on safe side, one can calculate T at
r =200 GM using the eq. (4.2) and extrapolate T to r = 2.1 GM through the formula
given by the phenomena of gravitational red-shift/blue-shift [6)
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T, =T, [26(t,) g (r )12 4.6)

where g, () =1 - &GI,M’ T,=T@= r,) and L,=T(@= r;) observing from the

point r = r, =200 GM. It is calculated above that T, = 0.231 (2GM)L. so putting
r,=2.1 GM, T, is obtained from the eq. (4.6) as
T, 2 1.054 x 2GM)™. (4.6)
Now egs. (4.5) and (4.6) yield
T<48x G (GM)?, (4.7)

which implies that life-time of a black-hole of mass 10!° gm is less than or
approximately equal to 5.6 x 101° sec. According to this result, a primordial black-
hole of mass 1013 gm might have radiated by now. Hawking also has obtained
similar result [1, 2].

(c) Entropy of the black-hole
Entropy of the black-hole can also be calculated using the temperature at r =

2.1 GM, given by eq. (4.6). It is given by

dm

S=- T (4.8)

where M is the initial mass.

As area of the event horizon is directly proportional to square of mass, using
the definition of entropy [given by eq. (4.8)] and temperature at r = 2.1 GM, one
obtains

S<—(0.015/nG) _’D dA =(0.015/2G) A(0), (4.9)
A(D)
where A(0) = 16 1t(GM)2 is the initial area of the event horizon of the black-hole,

which is a constant. So, in the light of the result, given by eq. (4.9), with a
non-negative multiple A one can write

S+ %™ =(0.015/nG) A(0) = constant (4.10)



116 M. Ansari

implying that ¥ = 0 if S = (0.015/nG) A(0) and x # 0 if S < (0.015/nG) A(0).
Moreover, eq. (4.10) suggests that entropy increases as area of the event-horizon
decreases due to loss of mass. Thus this results confirms the Generalized Second
Law of black-hole physics proposed by Beckenstein which states that sum of
entropy and some multiple of area of the event horizon never decreases [2, 7].

Hawking too has confirmed this law and obtained ¥ = 1/4.

(d) Luminosity of the black-hole

Equating the rate of loss of mass with luminosity as above, one also obtains

® -
| “m?dm' >(BY16G?) f dt (4.11a)
M 0

yielding time-dependence of mass as
m® <M - (3B¥16GH)t, (4.11b)

where B is given by eq. (4.3) and 0 <t < T. The equation (4.1 1b) shows how mass
of the black-hole will decrease with time.

Replacing M in eq. (3.9) by m(t), given by eq. (4.11b), one obtains

293 3B4 3
E> M3 - t , 4.12
3G *f@[ 16G2LI “+12)

which shows that initially black-hole losses energy of the amount > %% and

gradually it increases till t = T. The equation (4.12) also shows that at t = ( 16/3B4G)
(GM), E is divergent and when t > (16/3B*G) (GM)®, E will be either negative or
imaginary. These are unphysical situations. It leads to a natural conclusion that
there will be no emission of energy when t > (16/3B4G) (GM)S, because T <
(16/3B*G) (GM)’.

Similarly, time dependence of temperature is obtained as

B |, 3 3B4
T> | M- 4.13
2G{ 16(32] @1
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implying that a stationary observer sitting at a particular space point will find that
black-hole is gradually getting hotter and hotter.

Moreover, eqgs. (4.2), (4.3) and (4.4) imply

L. _B® s
== m. 4.14
dt ~ 128G @19
Connecting incqualities (4.11b) and (4.14), it is obtained after integration that
~2/3
B* 3 3B* -2
Lz——=||M" ~——=t -M |, 4.15
16G° H 16G? ] 19

which shows that luminosity also increases with time. For an observer sitting at r =
200 GM, luminosity is given as

L>178 x 107G (M - 534 x 1074 G2y 2B M2, (4.16)

After t = T (life ~ time), black-hole reduces to a dark naked singularities as
luminosity will vanish due to loss of total mass.

It is interesting to infer from these results that black-hole may not remain
black for ever as it becomes more and more luminous with time. So, it is tempting
to speculate that some of the luminous celestial objects today might have been
black-hole in the past and black-holes today may glow in future.
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