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Abstract

Riccion fields are obtained through spontaneous compactification of (4 +
D)−dimensional Kaluza-Klein type theory. It is found that multiplicatively
renormalizable quantum theory free from non-unitarity problem can be obtained
for Riccion fields which manifest material aspect of Recci scalar. The renormal-
ization group improved effective lagrangian for these fields is also derived.
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1. Introduction

It is believed, in Kaluza-Klein type theories that, at extremely high energy
levels (above Planck scale), the space-time need not be four-dimensional as it
is observed. These theories are higher-dimensional, where space-time is taken
to be (4 + D)−dimensional. As observed universe is 4-dimensional, it is also
believed that spontaneous compactification takes place at energy below Planck
scale [1]. The topology of the space-time is taken as M4×BD, where M4 is the
usual 4-dimensional space-time and BD is the D-dimensional compact space.
Here, it is planned to take BD as TD (D-dimensional torus).

The line-element for (4+D)−dimensional space-time with topology MD×
TD is taken as

ds2 = gµνdxµdxν + ρ2
1dθ2

1 + ρ2
2dθ2

2 + · · ·+ ρ2
Ddθ2

D (1)

where µ, ν = 0, 1, 2, 3 ; TD is the product of D-copies of circles with different
radii ρ1, ρ2, . . . , ρD and 0 ≤ θ1, θ2, . . . , θD ≤ 2π.
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In the present paper, a scalar field ψ is considered in the space-time given
by equation (1). After spontaneous compactification, a four-dimensional action
for the scalar field is obtained. One-loop correction to the four-dimensional
scalar induces higher-derivative gravity terms. As a result, an action for higher-
derivative gravity is obtained.

In what follows, trace of the resulting gravitational field equations are ob-
tained exhibiting matter aspect of Ricci scalar R manifested through a scalar
field φ̃ = ηR (η is a constant of length dimension and unit magnitude) called
Riccion [2]. Here, one-loop correction is done to Riccion-field using operator reg-
ularization method [3] and renormalization group improved effective potential
for φ̃ is derived.

Natural units (h = c = kB = 1, where h, c and kB have their usual meaning)
are used throughout the paper. MP stands for planck mass.

2. Spontaneous compactification and Riccion-field

In (4 + D)−dimensional space-time, the action for gravity and scalar field
ψ is taken as

S = Sg + Sψ =
∫

d4xdDy
√
|g4+D|

[
− R4+D

16πG4+D
+

1
2
{gMN (DMψ∗)(DNψ)− (ξ′R4+D + m2

0)ψ
∗ψ}

]
(2)

where xµ are co-ordinates of M4, y1 = ρ1θ1, y2 = ρ2θ2, . . . , yD = ρDθD, g4+D is
the determinant of the metric tensor, R4+D is the Ricci scalar in M4×TD, Dµ =
∇µ are covariant derivatives in M4, Dm′ = ∂m′ (m′ = 1, 2, . . . , D), M = (µ,m′),
mo is the mass of ψ field and G4+D is the (4+D)-dimensional gravitational
constant.

In the space-time with topology M4 ⊗ TD, ψ(x, y) can be decomposed as

ψ(x, y) = [(2π)Dρ1ρ2 . . . ρD]−1/2 ×
∞∑

n1...nD=−∞
ψ(n)(x) exp


i

D∑

j=1

2π(nj + α)
ρj

yj




(3)

where α = o(1
2) for untwisted (twisted) fields. As TD is not simply connected

manifold. So, possibility exists for both twisted and untwisted fields on TD,
here α = 0 is taken. Henceforth, as untwisted fields are abundant in the nature.
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So, the result is obtained from equations (2) and (3) as

S
(4)
ψ = −1

2

∫
d4x

√−g4

∞∑
n1...nD=−∞

ψ∗(n)(¤4 + m2
(n))ψ(n) (4a)

where ψ(n) = ψn1n2...nD and

m2
(n) = m2

o + ξ′R4 + (2π)2
(

n2
1

ρ2
1

+ · · ·+ n1
D

ρ2
D

)
(4b)

Also from equation (2), one obtains through spontaneous compatification on TD

S(4)
g = − 1

16πG4

∫
d4x

√−g4R4 (5)

where G4 = G4+D/(2π)Dρ1ρ2 . . . ρD.

For one-loop quantum correction to scalar fields ψ(n), operator regularization
method is used which is very convenient for regularization in 4-dimensional
curved spaces [3]. Using this method, one-loop effective action for ψ(n) is ob-
tained upto adiabatic order 4 as

Γ =S4
ψ +

∞∑
n1...nD=−∞

d

ds
{( µ2

m2
n

)s

∫
d4x

√−g4

× [
m2

n

(s− 2)(s− 1)
+

m2
n

(s− 1)
(
1
6
− ξ′)R

+ {1
6
(
1
5
− ξ′)¤R +

1
180

(RµναβRµναβ −RµνRµν)

+
1
2
(ξ′ − 1

6
)2R2}]|s = 0 (6)

The summation in equation (6), can be done using the procedure adapted
in ref. [2]. Here, onwards suffix 4 is dropped, as further analysis is confined to
M4 only. As a result, equation (6) is re-written as

Γ =S
(4)
ψ +

1
16π2

∫
d4x

√−g4[ln(µ2/m2
o + ξ′R){1

2
(m2

o + ξ′R)2+

(m2
o + ξ′R)(ξ′ − 1

6
)R +

1
6
(
1
5
− ξ′)¤R +

1
180

(RµναβRµναβ −RµνRµν+

1
2
(ξ′ − 1

6
)2R2} − 3

4
(m2

o + ξ′R)2 − (m2
o + ξ′R)(

1
6
− ξ′)R] (7)
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(4 + D)−dimensional space-time reduces to 4-dimensional one at or below
Plank scale. At these scales, terms containing derivatives of higher order than
R3, R¤R andR(RµναβRµναβ − RµνRµν) can be conveniently ignored. Now ex-
panding the logarithmic term and taking µ2 = m2

o, one gets from equation (5)
and (7)

Sg(4) + Γ =S
(4)
ψ − 1

16π

∫
d4x

√−g4[
R

G
+

3ξ′2R2

2π
+

ξ′

6πm2
o

(ξ′2 +
1
2
ξ′ − 1

12
)R3−

ξ′

30πm2
o

(5ξ′ − 1)R¤R + R
ξ′

180πm2
o

(RµναβRµναβ −RµνRµν)] (8)

neglecting 3m4
o/4 and taking approximation

1
G

+
m2

o

2
(
1
3

+ ξ′) ≈ 1
G

. It is physi-
cally reasonable to treat mo sufficiently small as it is mass of ψ-field in higher-
dimensional space-time.

Invariance of the action, given by equation (8) under transformation gµν −→
gµν + δgµν leads to fields equations [2,4,5].

G−1(Rµν − 1
2
gµνR) +

3ξ′2

2π
(2R;µν −2gµν¤R− 1

2
gµνR

2 + 2RRµν)+

ξ′

6πm2
o

(ξ′2 +
1
2
ξ′ − 1

12
)(3R2Rµν − 1

2
gµνR

3 + 6R2;µν −6gµν¤R2)+

ξ′
1

180πm2
o

R(−1
2
gµνR

αβγδRαβγδ + 2RµαβγRαβγ
ν − 4¤Rµν + 2R;µν −

4RµαRα
ν + 4RαβRαµβν − 2Rα

µ;να + ¤Rµν +
1
2
gµν¤R− 2Rα

µRαν+

1
2
gµνR

αβRαβ) +
ξ′

180πm2
o

{(RαβγδRαβγδ −RαβRαβ);µν−

¤(RαβγδRαβγδ −RαβRαβ)} − 8π〈Tµν〉 = 0 (9)

where semi-colon (;) denotes covariant derivative in curved space-time, and

¤ =
1√−g

∂

∂xα

(√−ggαβ ∂

∂xβ

)
.

Vacuum expectation value of components of energy-momentum tensor is given
as 〈Tµν〉 here.
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Trace of equation (9) is given as

¤R + (
π

9ξ′2G
)R− (

1
18ξ′m2

o

)(ξ′2 +
1
2
ξ′ − 1

12
)R3 + (

1
3ξ′m2

o

)

[¤R2 + (
1

180
)¤(RαβγδRαβγδ −RαβRαβ)] + (

8π2

9ξ′2
)〈T 〉 = 0

(10)

As dynamical contribution of terms
∫

d4x
√−g¤R2 and

∫
d4x

√−g(
1

180
)¤(RαβγδRαβγδ −RαβRαβ)

vanishes, so

gµν δ

δgµν

∫
d4x

√−g¤R2 = 0.

and

gµν δ

δgµν

∫
d4x

√−g¤(RαβγδRαβγδ −RαβRαβ) = 0.

These equations imply that

¤R2 = 0 = ¤(RαβγδRαβγδ −RαβRαβ) (11a, b)

Trace of components of energy-momentum tensor obtained from S
(4)
ψ , given by

equation (4) is

T =
∞∑

n1...nD=−∞
m2

(n)ψ
∗
(n)ψ(n)

which yields
〈T 〉 ∝ (m2

0 + ξ′R) (12)

performing summation as above. So 〈T 〉 can be neglected compared to other
geometric terms in equation (10). Thus from equations (10) and (11), one
obtains

¤φ̃ + m2φ̃ +
λ

6
φ̃3 = 0 (13)

where
φ̃ = ηR,

m2 = (
π

9ξ′2G
)

and

λ = −(
1

3ξ′m2
oη

2
)(ξ′2 +

1
2
ξ′ − 1

12
).
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If G = GN (the Newtonian gravitational constant), for ξ′ > 0.59, m < MP and
for ξ′ = 0.6, m = 9.85× 1018Gev as GN ' M−2

ρ . The equation (13) is the semi-
classical equation for φ̃ in curved space-time. The lagrangian density leading to
this equation is given as

L =
1
2
(gµν∂µφ̃∂ν φ̃−m2φ̃2)− λ

4!
φ̃4 (14a)

with the action

Sφ̃ =
∫

d4x
√−gL.

In equations (13) and (14), m2 > 0 and Riccion field φ̃ has self-interaction term.
So φ̃ is free from the tachyon ghost problem. Equation (13) can be obtained from
equations (14) also using invariance of Sφ̃ under transformation φ̃ −→ φ̃ + δφ̃. φ̃

is different from other spinless matter fields in the sense that at the classical
level,

φ̃classical = ˆ̃
φ = ηR = η[gµν(Γα

µν,α − Γα
µα,ν) + gµν(Γα

αβΓβ
µν − Γα

βµΓβ
αν)] (15)

where Γα
µν are affine connections in Riemannian geometry defined as

Γα
µν =

1
2
gαβ(gµβ,ν + gνβ,µ − gµν,β)

and comma (,) denotes partial derivatives.

3. One-loop correction to φ̃, renormalization and renormalization
group improved potential for φ̃.

The one-loop correction to φ̃, is given as

Γ̃(1) =
i

2
ln Det(D/µ2) (16a)

where

D = ¤ + m2 +
λ

2
ˆ̃
φ2. (16b)

Here, ˆ̃
φ is the classical minimum of the quantum field φ̃ with fluctuation

φ̃ − ˆ̃
φ. Γ̃(1) can be evaluated using the operator regularization method (used
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above) up to adiabatic order 4 as,

Γ̃(1) =
1

16π2

∫
d4x

√−g[(m2 +
λ

2
ˆ̃
φ2)2{3

4
− 1

2
ln(

m2 + λ
2
ˆ̃
φ2

µ̃2
)}

− 1
6
R(m2 +

λ

2
ˆ̃
φ2){1− ln(

m2 + λ
2
ˆ̃
φ2

µ̃2
)} − ln(

m2 + λ
2
ˆ̃
φ2

µ̃2
)

{ 1
30

¤R +
1
72

R2 +
1

180
(RµναβRµναβ −RµνRµν)}] (17)

In the operator regularization method, normal co-ordinates are used. ˆ̃
φ,

being a scalar field, remains invariant in these co-ordinates.

The renormalized form of one-loop effective lagrangian density for φ̃ can be
written, using euations (14) and (17) as

Lren =
1
2
(gµν∂µ

ˆ̃
φ∂ν

ˆ̃
φ−m2 ˆ̃

φ2)− λ

4!
ˆ̃
φ4 + ∧+ ∈0 R +

1
2
∈1 R2+

∈2 RµνRµν+ ∈3 RµναβRµναβ+ ∈4 ¤R + Γ̃(1) + Lct (18a)

where Lct is the counter-term contribution given as

Lct = −1
2
δm2 ˆ̃

φ2 − 1
4!

δλ
ˆ̃
φ4 + δ ∧ −1

2
δξR

ˆ̃
φ2 + δ ∈0 R +

1
2
δ ∈1 R2+

δ ∈2 RµνRµν + δ ∈3 RµναβRµναβ + δ ∈4 ¤R (18b)

In equations (18) ξ, ∈0,∈1, ∈2, ∈3, and ∈4 are dimensionless coupling con-
stants. Counter-terms δm2, δλ, δ∧, δξ, δ∈0, δ∈1, δ∈2, δ∈3 and δ∈4 can be
evaluated using the following renormalization conditions [6]

∧ = Lren| ˆ̃φ = φ0, R = 0

λ = − ∂4Lren

∂
ˆ̃
φ4

| ˆ̃φ = φ1, R = 0

m2 = − ∂2Lren

∂
ˆ̃
φ2

| ˆ̃φ = 0 , R = 0

ξ = − ∂3Lren

∂R∂
ˆ̃
φ2
|R = 0,

ˆ̃
φ = φ3

∈0=
∂Lren

∂R
| ˆ̃φ = 0, R = 0, (19)
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∈0=
∂2Lren

∂R2
| ˆ̃φ = 0, R = R5,

∈2=
∂Lren

∂(RµνRµν)
| ˆ̃φ = 0, R = R6,

∈3=
∂Lren

∂(RµναβRµναβ)
| ˆ̃φ = 0, R = R7,

∈4=
∂Lren

∂¤R
| ˆ̃φ = 0, R = R8.

Since φ̃ = ηR, so when R = 0, φ0 = φ1 = φ3 = 0. Similarly when ˆ̃
φ =

0, R5 = R6 = R7 = R8 = 0.

The counter-terms obtained are given as

16π2δ∧ = −m4[
3
4
− 1

2
ln(m2/µ̃2)]

16π2δλ = − 3λ2[
3
2
− ln(m2/µ̃2)]

16π2δm2 = 2λm2[1− ln(m2/µ̃2)]

96π2δξ = − λ ln(m2/µ̃2)

96π2δ ∈0= m2[1− ln(m2/µ̃2)]

1152π2δ ∈1= ln(m2/µ̃2)

2880π2δ ∈2= − ln(m2/µ̃2)

2880π2δ ∈3= ln(m2/µ̃2)

480π2δ ∈4= ln(m2/µ̃2).

(20)

Using equations (20) in equations (18), one obtains

Lren =
1
2
(gµν∂µ

ˆ̃
φ∂ν

ˆ̃
φ−m2/

ˆ̃
φ2)−

λ

4!
ˆ̃
φ4 + ∧+ ∈0 R +

1
2
∈1 R2+ ∈2 RµνRµν+

∈3 RµναβRµναβ+ ∈4 ¤R− 16π2 ln(1 +
λ

ˆ̃
φ2

2m2
)

[
1
2
(m2 +

λ

2
ˆ̃
φ2)2 − 1

6
R(m2 +

λ

2
ˆ̃
φ2)+

1
30

¤R +
1
72

R2 +
1

180
(RµναβRµναβ −RµνRµν)] (21)
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The effective renormalized lagrangian can be improved further solving renor-
malization group equations. The corresponding β- functions are calculated us-
ing counter- terms given by equations (20). The resulting renormalization group
equations are obtained as [6-8]

d∧
dt

=
m4

32π2

dλ

dt
= − 3λ3

16π2

dm2

dt
= − λm2

32π2

d ∈0

dt
= − m2

96π2
(22)

d ∈1

dt
=

1
1152π2

ln(m2/m2
c)

d ∈2

dt
= − 1

2880π2
ln(m2/m2

c)

d ∈3

dt
=

1
2880π2

ln(m2/m2
c)

d ∈4

dt
=

1
480π2

ln(m2/m2
c)

where t = ln(m2
c/µ̃2) with mc as cut-off mass-scale. Equations (22) yield solu-

tions

∧ = ∧0 +
m4

0

2λ0
[(1 +

3λ0t

16π2
)

1
3 − 1]

λ = λ0(1 +
3λ0t

16π2
)−1

m2 = m2
0(1 +

3λ0t

16π2
)−

1
3

∈0=∈00 +8π2m2
0[1− (1 +

3λ0t

16π2
)2/3]

∈1=∈10 +
t

1152π2
ln(m2/m2

c) (23)

∈2=∈20 − t

2880π2
ln(m2/m2

c)

∈3=∈30 +
t

2880π2
ln(m2/m2

c)

∈4=∈40 +
t

480π2
ln(m2/m2

c)

where ∧0, λ0, m2
0, ∈00, ∈10, ∈20, ∈30 and ∈40 are coupling constants evaluated

at t = 0.
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4. Conclusion

Using the definition of λ given by equation (13), in the equation (2), it is
obtained that

(ξ′ +
1
2
− 1

12ξ′
) = (ξ′0 +

1
2
− 1

12ξ′0
)


1−

(ξ′0 +
1
2
− 1

12ξ′0
)t

16π2m0η2




−1

(24)

which implies that

ξ′ = (ξ′0 +
1
2
)


1−

(ξ0 +
1
2
)t

16π2m2
0η

2




−1

− 1
2

(25a)

in case ξ′2 +
ξ′

2
>

1
12

and

ξ′ = ξ′0 +
t

192π2m2
0η

2
(25b)

in case ξ′ +
ξ′

2
<

1
12

.

The definition of m2, from equation (13), with the help of equation (23) yields
that

ξ′2G = ξ′0G0(1 +
3λ0t

16π2
)

1
2 (26)

If ξ′2 +
ξ′

2
>

1
12

, equation (26) implies that

G =
ξ2
0G0[1− (ξ′0 +

1
2
)t/16π2m2

0η
2]

7
3

[(ξ′0 +
1
2
)(1 + t/16π2m2

0η
2)− 1

2
]2

(27a)

and

G = G0(1 +
t

192π2m2
0ξ
′
0η

2
)−5/3 (27b)

if ξ′2 +
ξ′

2
<

1
12

. Equation (27a) implies that G −→ ∞, as µ̃2 −→ ∞, whereas

equation (27b) shows that G −→ 0 as µ̃2 −→∞.

Thus, it is found that we can get a multiplicatively renormalizable quantum
theory for φ̃ = ηR, at high energy level which is free from non-unitarity problem.
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Moreover, solutions of renormalization group equations, given by equations(23),
show that curvature terms are very strong at high energy.
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