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Abstract

Riccion fields are obtained through spontaneous compactification of (4 +
D)—dimensional Kaluza-Klein type theory. It is found that multiplicatively
renormalizable quantum theory free from non-unitarity problem can be obtained
for Riccion fields which manifest material aspect of Recci scalar. The renormal-
ization group improved effective lagrangian for these fields is also derived.
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1. Introduction

It is believed, in Kaluza-Klein type theories that, at extremely high energy
levels (above Planck scale), the space-time need not be four-dimensional as it
is observed. These theories are higher-dimensional, where space-time is taken
to be (4 + D)—dimensional. As observed universe is 4-dimensional, it is also
believed that spontaneous compactification takes place at energy below Planck
scale [1]. The topology of the space-time is taken as M* x BP where M* is the
usual 4-dimensional space-time and B is the D-dimensional compact space.
Here, it is planned to take B? as TP (D-dimensional torus).

The line-element for (4 + D)—dimensional space-time with topology M x
TP is taken as

ds? = g datda” + p2df3 + p3d03 + - - - + phHdo?, (1)

where pu,v = 0,1,2,3; TP is the product of D-copies of circles with different
radii p1, p2,...,pp and 0 < 61,0o,...,0p < 2m.
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In the present paper, a scalar field ¢ is considered in the space-time given
by equation (1). After spontaneous compactification, a four-dimensional action
for the scalar field is obtained. One-loop correction to the four-dimensional
scalar induces higher-derivative gravity terms. As a result, an action for higher-
derivative gravity is obtained.

In what follows, trace of the resulting gravitational field equations are ob-
tained exhibiting matter aspect of Ricci scalar R manifested through a scalar
field ¢ = nR (n is a constant of length dimension and unit magnitude) called
Riccion [2]. Here, one-loop correction is done to Riccion-field using operator reg-
ularization method [3] and renormalization group improved effective potential
for ¢ is derived.

Natural units (h = ¢ = kg = 1, where h, ¢ and kp have their usual meaning)
are used throughout the paper. Mp stands for planck mass.

2. Spontaneous compactification and Riccion-field

In (4 + D)—dimensional space-time, the action for gravity and scalar field
1 is taken as

P PN

R 1 ) .
“TorGs + 310" Dy (DNY) — (€ Rasp + v} (2)

where z# are co-ordinates of M*, y; = p101, yo = p2ba, ..., yp = pplp, gayp is
the determinant of the metric tensor, Ry p is the Ricci scalar in M*x TP, D, =
V,, are covariant derivatives in M4, D,y = 9,y (m' = 1,2,..., D), M = (u,m’),
m, is the mass of ¢ field and Gy4yp is the (4+D)-dimensional gravitational
constant.

In the space-time with topology M* @ TP, 4 (z,y) can be decomposed as

[e.o]

Y(a,y) = [2m)Pp1p2...pp] P x Y (@) exp |

ni...np=—00 7=1

27 ( nj—i-a

Mu

(3)
where o = o(3) for untwisted (twisted) fields. As T'” is not simply connected

manifold. So, possibility exists for both twisted and untwisted fields on T,
here o = 0 is taken. Henceforth, as untwisted fields are abundant in the nature.
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So, the result is obtained from equations (2) and (3) as

0 =3 [dovmm Y im0

n1..np=—00

Where w(n) == Q,Z)nlnz...np a’nd

m2 \ =m?2+ &Ry + (21)> nt iD 4b
(n) — "o 4+(7T) 2+ s ( )
P1 PD

Also from equation (2), one obtains through spontaneous compatification on 77

/ d*z\/—g4R4 (5)

4) — _
59 16mGy

where G4 = G4+D/(27T)Dp1p2 ... PD-

For one-loop quantum correction to scalar fields 1,), operator regularization
method is used which is very convenient for regularization in 4-dimensional
curved spaces [3]. Using this method, one-loop effective action for Y(n) i Ob-
tained upto adiabatic order 4 as

I =5} + i 4 (/ﬂ)s/d‘lx —g
¥ ds "m2 4

ni..np=—00

my my 1,
6oy T (5—1)(6_5)R
F{g G~ €O + o (B Ry — R R,)
1
ae - Lerye=o ©)

The summation in equation (6), can be done using the procedure adapted
in ref. [2]. Here, onwards suffix 4 is dropped, as further analysis is confined to
M* only. As a result, equation (6) is re-written as

/d‘*xﬁ[lnu/m FER){G(m2 +ERP+

—g)

(mg +&'R)(¢ — ,)R + 6<5 —¢)OR+ @<RW“‘*RW — R" Ryt
1 / 2 3 / 2 2 / /
5(5—6>R}—1<m0+5R> —(mo+fR)(g—f)R] (7)
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(4 4+ D)—dimensional space-time reduces to 4-dimensional one at or below
Plank scale. At these scales, terms containing derivatives of higher order than

R3, ROR and R(R“”“ﬁRumg — R*™R,,,) can be conveniently ignored. Now ex-

panding the logarithmic term and taking u? = m?2, one gets from equation (5)

and (7)
1

1 E 3£I2R2 5/

B N 2, 1y 1ips
Sgn + 1" =5y 167T/dx g+ =5, +67ng(§ NN TYL
3 ) ¢
RO pabp  papg
oz (€~ DEOR 4 Ry o (R Ry — B Ry)] (8)

1 21 1
neglecting 3m?/4 and taking approximation el + %(f +&) ~ vk It is physi-

cally reasonable to treat m, sufficiently small as it is mass of ¥-field in higher-
dimensional space-time.

Invariance of the action, given by equation (8) under transformation g,,, —
Guv + 99, leads to fields equations [2,4,5].

1 3 12 1
G*l(RuV - §guuR) + 257(2]%;“” —29,0OR — §Q;WR2 4 2RR;W)+
C e+t LER R — Lo RS + 612, —60, DR+
6mm? 2° 12 w = 59 s —60,
1 1
 S0mm2 R(_ﬁgﬂ”RawRaW + 2R 05, RSP — 4A00R,,,, + 2R; 0 —

1
4R, RS + 4RaﬁRauﬁ,, —2R% . +0OR,, + 5gWDR — 2R} Roy+

v

1 ¢

il af S apyé _ paB o

2gl“’R RO‘B) + 1807ng {(R Raﬂ'yé R Raﬂ)’ 214
D(Raﬁ’y(sRa,@’yé - RaﬁRaﬂ)} - 87T<TMV> =0 (9)

where semi-colon (;) denotes covariant derivative in curved space-time, and

__1 0
/=g 0x®

Vacuum expectation value of components of energy-momentum tensor is given
as (T.,) here.

0
O (\/ _ggaﬁamﬂ> .
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Trace of equation (9) is given as

T 1
DR R 12 - 3
1 87T2
As dynamical contribution of terms
/ d*z/—¢g0R? and / dz/—g (180) (R*®Ropy5 — R*PRop)
vanishes, so
)
gt /d4x\/—gDR2 =0.
dghv
and
17 6 Q Q
g Sghv /d4x V=9O(R*° Rag5 — R Rap) = 0.
These equations imply that
OR? = 0 = O(R*® Ropys — R*P Rap) (11a,b)

Trace of components of energy-momentum tensor obtained from Sz(;l), given by
equation (4) is
oo

2 *
T= Y  miydintm

ni..np=—o00
which yields

(T) o< (m§ +€'R) (12)
performing summation as above. So (T') can be neglected compared to other

geometric terms in equation (10). Thus from equations (10) and (11), one
obtains

- U
O¢ +m?¢p + 6¢3 =0 (13)
where
¢ =R,
9 T
and
1 1, 1

2 127
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If G = Gy (the Newtonian gravitational constant), for & > 0.59, m < Mp and
for ¢ = 0.6, m = 9.85 x 10'¥Gev as Gy ~ Mp_2. The equation (13) is the semi-

classical equation for ¢ in curved space-time. The lagrangian density leading to
this equation is given as

A gt (14a)

_]‘ v 7 7 272
‘C—i(g'u au¢8u¢_m o )_4!

with the action

Sq; = /d4x\/—g£.

In equations (13) and (14), m? > 0 and Riccion field ¢ has self-interaction term.
So ¢ is free from the tachyon ghost problem. Equation (13) can be obtained from
equations (14) also using invariance of S; under transformation b— d+0¢.¢
is different from other spinless matter fields in the sense that at the classical

level,

Q;classical = QE = 77R = U[Q”V(Fﬁu,a - an,u) + guy(rgﬁrgu - Fgurgy)] (15)

where I'jj, are affine connections in Riemannian geometry defined as

1
Lo = §ga5(9u[37V + Gupu — Guv,B)

and comma (,) denotes partial derivatives.

3. One-loop correction to gz~5, renormalization and renormalization
group improved potential for ¢.

The one-loop correction to ¢, is given as

= %ln Det(D/u?) (16a)
where
2 A3
Here, qg is the classical minimum of the quantum field (Z) with fluctuation
¢ — ¢. T can be evaluated using the operator regularization method (used
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above) up to adiabatic order 4 as,

1
1672

3 1 + 347

B0 s [yl + 576 - 5

1 2 | A3y %Qz m? %92
R A Ui B R WL

1 vao v
o0 (B Ryvap — R Ru)}] (17)

2 4
UR + 2R 130

{30 7

In the operator regularization method, normal co-ordinates are used. ¢,
being a scalar field, remains invariant in these co-ordinates.

The renormalized form of one-loop effective lagrangian density for ¢ can be
written, using euations (14) and (17) as

1 2 2 2 A\ 2 1
Lren = 5(9" 0p 0006 — m?¢?) — Wﬁ‘* +A+ € R+ & R?+
€9 R“VRMV—F €3 Rl”waﬁleag—l— es R+ f(l) + Lo (18&)
where L. is the counter-term contribution given as
1 2 1 .= 1 2 1
Lo = —§5m2¢2 - Iam‘* +0A —§5§R¢2 +d€ R+ 506 R*+

§ € R Ry +6 €3 R'*PR,05+6 €4 0OR (18b)

In equations (18) &, €q, €1, €2, €3, and €4 are dimensionless coupling con-
stants. Counter-terms dm?2, ), A, 6&, 6€g, 6€1, 6€q, 6€3 and §€4 can be
evaluated using the following renormalization conditions [6]

N = ren|¢~$:¢07 R=0

84['ren
>\ = ’(b ¢17 =0
a¢4
2
m= _ 2 E“’“yqb_o R=0
D¢p?
a Eren
§= IR =0, d> ¢3
8R8¢2
€o= Mre“ =0, R=0, (19)
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e Toog— 0, r= R,

€= ng}mlqb —0, R= Ry,
G R0 =0 B
€4= gér;lw? —0, R= Ry,

Since ¢ = nR, so when R = 0,¢9 = ¢1 = ¢35 = 0. Similarly when qi =
0, Rs =Rs=Rr=Rg=0.

The counter-terms obtained are given as

1
16726 = — m4[% — 5 In(m?/2%)]

167260 = — 3\°[> — In(m? /i)
167%6m? = 2Am?[1 — In(m?/i?)]
96726¢ = — XIn(m?/fi%)
96728 €o= m?[1 — In(m?/i?)]
1152726 €1= In(m?/ji%)
2880728 €o= — In(m?/ji%)
2880726 €3=1In(m?*/ji%)
4801%5 €4= In(m?/fi?).

(20)

Using equations (20) in equations (18), one obtains
1 N 2
[,ren :i(glwaugﬁal/(ﬁ - m2/¢2)_
A2 1
SO AT €0 R+ 5 €1 R €0 R Ryt

A’
€3 R/U/Oéﬁleaﬁ_i_ €4 OR — 1672 ln(l + T¢2
m

1 59 Ao 1 9 | A%y
[50m2 + 5327 — SR(m® + 5)+
1 1 1
—0OR+ —R>+ —
30 + 72 + 180

)

(R'PR05 — R* Ry)] (21)
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The effective renormalized lagrangian can be improved further solving renor-
malization group equations. The corresponding (- functions are calculated us-
ing counter- terms given by equations (20). The resulting renormalization group
equations are obtained as [6-8]

an _
dt  32m2
dx 3N
dt 1672
dm? _ Am?2
dt 3272
d €g m?
- 22
dt 9672 (22)
bl S S |
gt~ Tipae mm/me)
— 1
dt 288072 (m/me)
=3 _ 1
&~ ams0n2 mm/me)
¢4 1
g~ asoq2 mim/me)
where t = In(m2/ji?) with m, as cut-off mass-scale. Equations (22) yield solu-
tions .
my 3ot .1
A /\0+2)\0[( +167r2)3 ]
3)\0t —1
= 1
A=do(l+ 167‘(’2)
3ot . _1
2 _ .2 0v\-1
m* =mg(1+ 71677‘2) 3
3ot
_ 29 0l \2/3
€o=Ego +8mmg[1l — (1 + 167‘(’2) / ]
t 2, 9
€1=¢E19 +Wln(m /mz) (23)
t 2, 9
€2=E —Wln(m /mg)
€3=€30 283072 n(m*/mg)
t
€4=€a0 + 003 In(m?/m?)

where Ag, Ao, m%, €00, €10, €20, €30 and €49 are coupling constants evaluated
at t =0.
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4. Conclusion

Using the definition of A given by equation (13), in the equation (2), it is
obtained that

G+ 2——at]
€438 = &+ 5 1g) |1 o (24)
which implies that
o]
=+ 3) |1 e | s (250)
in case £ + g > % and
¢=6+ 1927r2tmgn2 (25)
in case & + §2I < %

The definition of m?, from equation (13), with the help of equation (23) yields
that

3ot .1
5/2G:€6G0(1+@)2 (26)
/
1
e+ % ~ 12’ equation (26) implies that
1 7
ngo[l - (& + §)t/167'r2m%7]2]3
“= 1 i (27a)
(& + 5)(1 +t/1672m2n?) — 5]2
and t
= —5/3
G_GO(1+1927r2—mgg(m2) / (27b)
¢ _ 1
if €2 + 7 <1 Equation (27a) implies that G — oo, as i — oo, whereas

equation (27b) shows that G — 0 as i — oc.

Thus, it is found that we can get a multiplicatively renormalizable quantum
theory for ¢ = nR, at high energy level which is free from non-unitarity problem.
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Moreover, solutions of renormalization group equations, given by equations(23),
show that curvature terms are very strong at high energy.
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