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Abstract

In this paper, we consider quasi-conformally flat, quasi-conformally conser-
vative and ¢-quasi conformally flat Lorentzian para-Sasakian manifold. It has also
been proved that an Einstein Lorentzian para-Sasakian manifold satisfying the

relation R(X, Y).é = 0, where C is quasi-conformal curvature tensor is locally
tsometric with a unit sphere.
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1.  Introduction

An n-dimensional differentiable manifold M" is a Lorentzian para-Sasakian

(LP-Sasakian) manifold, if it admits a (1, 1)-tensor field ¢, vector field &, 1-form q
and a Lorentzian metric g which satisfy

P X=X+1(X)E, (1.1)
neE)=-1, (1.2)
8(9X, Y) =g(X, Y) + n(X) n(Y), (1.3)
gX, &) =n(X), (1.4)

Dxd) (V) =X, V) E+n(V) X+2mX)n(Y)E, (1.5


 https://doi.org/10.56424/jts.v3i01.9972


60 Amit Prakash and Anjana Singh

and D, & = ¢X, : (1.6)

for arbitrary vector fields X and Y; where D denotes covariant differentiation with
respect to g, (Matsumoto, (1989) and Matsumoto and Mihai, (1988)).

In an LP-Sasakian manifold M" with structure (4, &, 1, g), it is easily seen that

@  95=0 (b)  nexX)=0 (©) rank $=(n—1). (1.7)

Let us put :
FX Y)=g (X, Y). ' (1.8)

Then the tensor field F is symmetric (0, 2) tensor field

F(X, Y)=F(Y, X), (1.9)
F(X, Y) =Dy n) (Y), | (1.10)
and Dy ) (V) - (D) (X)=0. (1.11)

An LP-Sasakian manifold M® is said to be Einstein manifold if its Ricci
tensor S is of the form
S, Y)=kg (X, Y), (1.12)

where k=(n-1).

An LP-Sasakian manifold M is said to be n-Einstein manifold if its Ricei
tensor S is of the form
S(X, Y)=og (X, Y) + Bn X n(Y), (1.13)

for any vector fields X and Y, where a, B are functions on M".

Let M" be an n-dimensional LP-Sasakian manifold with structure (¢, &, 1, g)-
Then we have (Matsumoto and Mihai, (1988) and Mihai, Shaikh and De (1999)).

gR(X, V) Z, E) = nR(X, V) Z) = g(¥, ) n(X) - g(X, Z)n(Y),  (1.14)
R(E, X) Y =g(X, Y) £ -n(Y) X, (1.15)(a)

RE, X)E=X+nX)s, (1.15)(b)
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R Y)E=n(V) X -n(X)Y, (1.15)(c)
S(X, &)= (n - 1) n(X), (1.16)
S(X, ¢Y)=S(X, Y) + (n - 1) n(X) n(Y), (1.17)

for any vector fields X, Y, Z, where R(X, Y) Z is the Riemannian curvature tensor
of type (1, 3), S is the Ricci-tensor of type (0, 2), Q is (1, 1) type Ricci tensor and r
is the scalar curvature, g (QX, Y)=S(X, Y), forall X, Y.

Quasi-conformal curvature tensor ¢ on a Riemannian manifold (M", g), (n >
3) of type (1, 3) is defined as follows (Yano and Sawaki, (1968)).

CKY)Z=aR(X, Y)Z+b[S(Y,Z) X-8(X,Z) Y + (Y, Z) QX - g(X, Z) QY]

I a
“n [(ﬂ_l)”b} [8(Y, 2) X - (X, 2) Y], (1.18)

where a, b are constants such that a, b # 0.

Ifa=1and b=- 1 , then (1.18) takes the form
(n-2)
COONZ=RO, N Z -S4, 2) X -S(X, D) Y +5(Y,2) QX
—r — =
-804, 2) QY]+ T [8(Y, ) X~ 8K, 2) Y] =C(X, ) Z

where C is the conformal curvature tensor. Thus the conformal curvature tensor C
is a particular case of the tensor . For this reason C is called the quasi-conformal

curvature tensor.

Let (X, Y)=S(X, Y) ~

T
T B, (1.19)

and g(NX, Y)=L(X, Y), (1.20)
where L and N are tensor field of type (0, 2) and (1, 1) respectively.

From (1.19) and (1.20), we get

N(X)=QX - —F

2(n-1)

X. (1.21)
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Using (1.19) and (1.20), we can write (1.18) as follows
X Y)Z=aR(X, Y)Z+b[L(Y, Z) X~ L(X, Z) Y + (Y, Z) NX — g(X, Z) NY]
—Ar[a(Y, Z) X - g(X, Z) Y], (1.22)

_a+{n-2)b

where A=
n{n-1)

2.  An Einstein LP-Sasakian manifold satisfying E(X, Y)Z=0.
In this section we assume that C (X, Y)Z=0.
Then from {1.18), we get

aR(X,Y)Z=-b[XY, Z) X~ S(X, Z) Y + &Y, 2) QX — (X, Z) QY]

I a
ey {(n_ 0 +2b} Te(Y, Z) X —g(X, Z) Y1, 2.0
or a ’R(X, Y, Z, W) = - b[S(Y, Z) g(X, W) - S(X, Z) g('Y’ W) + g(Y, Z) S(X, W)
[ a i

- 8(X. 2) S(Y, W) + #2| (02806 W)

L(_ n—1)
—-a(X, Z) g(Y, W)], (2.2)

where R(X, Y, Z, W) =g(R(X,Y) Z, W).
Putting X =W =£ in (2.2) and using (1.12), we get

[a+2b(n—1)][r~n(n-1)] &Y, $Z) =0. (2.3)
Thus we see that g(dY, ¢Z) = 0.
Hence from (2.3), we get r=n{n— 1), provideda+2b(n—1)=0.
Hence, we can state the following theorem :

Theorem 1. An Einstein LP-Sasakian manifold satisfying the condition ¢(X, Y)
Z =0, has constant curvature r=n (n— 1), providleda+2b(n—-1)#0.
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Contracting equation (1.18) with respect to X, we get
(S} )Y, Z)=a S(Y, Z) + b[S(Y, Z) n - S(X, Z)+g(Y, Z)r - S(Y, Z))
- [ . +2b] [8(Y. Z)n - g(¥, 2)]

ni(n-1)
=la+(n~2)b][S(Y,Z)- i gy, Z)], 24)

where (S{ C )Y, Z) is the contraction of ¢ (X, Y) Z with respect to X.
If (S]TXNY,Z)=0, we get
S(Y, 2) = ﬁ g(Y, Z), provided a+(n—2)b=0, (2.5)

Hence from (2.2) it follows that

I

n(n-1)

Therefore, from (2.6), we get

a[R(X,Y, Z, W) - {8(Y, Z) a(X, W) — g(X, Z) g(Y, W)}] =0. (2.6)

r

n(n-1)

R, Y, Z, W) = [6(Y, Z) g(X, W~ g(X, 2) s, W)],  (2.7)
provided a0,
Hence, we can state the following theorem :
Theorem 2. A quasi-conformally flat (M", g) (n > 3), LP-Sasakian manifold
satisfying (S% C XY, Z)=0 is a manifold of constant curvature provided a + 0.
Using (2.5) and (2.7) in (2.2), we get
T Y, Z, W)=0.

From this it follows that
CX,Y)Z=0.

Hence the manifold is quasi-conformally flat.

Hence, we can state the following theorem :
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Theorem 3. An LP-Sasakian manifold (M?, g) (n > 3) satisfying (S} CYY,Z)=

0, of constant curvature is quasi-conformally flat.

3. Einstein LP-Sasakian manifold satisfying (div C )(X, Y) Z=0.

Definition. A manifold (M, g) (n > 3) is called guasi-conformally conservative
if (Hicks, N. J. (1969)), div ¢ =0.

In this section we assume that

dive =0, 3.D
where div denotes divergence.
From (1.21), we get
i
N=Q- .
Q 2(n-1)
Hence divN=div Q-7 (nd"_ 5 (3.2)
But divQ= % dr, therefore
divN=-0=2 4 (3.3)
2(n-1)

Now differentiating (1.22) covariantly, we get
Dy, T) % V) Z=2DyR) (X, V) Z+b[(DyL) (¥, Z) X - Dy (X, 2) Y
+g(Y, Z) (Dy,N)(X) — g(X, Z) (Dy; N) (Y)]
—A(Dy e, ) X-g(X,2) Y], (3.4)
which gives on contraction

(divCIX, V) Z=a(divR) (X, Y) Z+b [(DyL) (Y, Z) - (D, L) (X, Z)]

* [zn(ﬁ 1? B ?“} [e(Y, 2) dr(X) —g(X, ) dr (Y)]. (3.5

We have (Eisenhart, L. P. (1926)).
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(divR) (X, Y) Z=(Dy8) (Y, Z) - (Dy, ) (X, Z)

= (DyL) (Y, Z) - (DyL) (X, Z) + —

2(n-1)
- g(X, Z) dr(Y)}. (3.6)

[e(Y, Z2) dr (X)

Hence (3.5) takes the form

divE XX, Y)Z=(a+b) [(Dy L) (Y, Z) — (DyL) (X, Z)]

_I_(n—2) fa+tbmn-—2)]
2n(n-1)

[a(Y, Z) dn(X) — g(X, Z) dr(Y)].  (3.7)
If LP-Sasakian manifold is an Einstein manifold, then we have

(Dy L) (Y, Z) - (DyL) (X, Z) =0,
which gives from (3.7) that

(n-2)fa+b({m-2)]
2n{n-1)

divC)X, Y)Z= [8(Y, Z) dr(X) - (X, Z) dr(Y)). (3.8)

Hence if div ¢ =0, then g(¥, Z) dr(X) — g(X, Z) dr(Y) = 0, provided a-+(n—-2)b
# 0. Consequently r is constant. Again if r is constant then from (3.8) it follows
that (div ¢ )X, Y, Z)=0.

Hence, we can state the following theorem :

Theorem- 4. An Einstein LP-Sasakian manifold (M", g} (n > 3) is quasi confor-
mally conservative if and only if the scalar curvature is constant, provided a + (n
-2)b=0. ' ’

4. LP-Sasakian manifold satisfying ¢° ¢ (0X, 0Y) 6Z =0,

Definition, A differentiable manifold (M", g) (n > 3), satisfying the condition
¢2 C (X, $Y) ¢Z = 0 is called f-quasi conformally flat (Cabreizo, Fernandez,
Fernandez and Zhen (1999)).

In this section we assume that LP-Sasakian manifold (M", g) (n > 3), is ¢-quasi
conformally flat, then ¢)2 C (90X, 9Y) 6Z =0 implies
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g(C (0X, dY) 0Z, dW) =0, 4.1)
for any vector fields X, Y, Z, W.

So by the use of (1.18), ¢-quasi conformally flat means

a'R(9X, §Y, 97, 0W) =—b [S(PY, $Z) 2($X, W) — S(§X, ¢Z) g(§Y, $W)

(-1
[2 (8Y, $Z) g(0X, $W) ~ 84X, $Z) g($Y, $W)], (4.2)
where 'R($X, ¢Y, ¢Z, dW) = g(R(¢X, ¢Y) ¢Z, $W).

+ g (0Y, 0Z) S(OX, dW) — g(¢X, dZ) S(OY, ¢W)] + i[ a_ ., zb}

Let {e|, €5, ..., &, _ |, &} be a local orthogonal basis of vector fields in Mm"
by using the fact that {(])el, By onrs de _ |, £} is also a local orthonormal basis, if
we put X = W = e, in (4.2) and sum up with respect to i, then we have

(n-1) (n-1)
% a'Rie;, 9Y, ¢Z, de)=-b 21 [S(9Y, ¢Z) g(de;, be)) — S(de;, $Z) g(BY, de; )

i=1 1=

+ 8 (9Y, 0Z) S(de,, de) — g(de,, $Z) S@Y, de)] + i[ -y Zb]

-1
(n-1
El [g (9Y, 0Z) g(de;, de) — a(de;, $Z) g(9Y, de,)] . (4.3)
01.1 an LP-Sasakian manifold, we have (Qzgiir (2003))

(n-1)

_ ? Ride;, dY, §Z, e} = S(oY, ¢Z) + g($Y, $2), (4.4)
-1

.Z S(¢e, pe)y=r-+n-1, (4.5)
(n-1}

_ 21 glbe;, $2) S (9Y, de) = S(PY, §Z), (4.6)
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(n-1)

= g(d)ei. ¢ei y=n-+1, 4.7
i—1

tn=~ 1
S efde. dpZ) goY, (bei) =g(dY. ¢Z). (4.8)

=1

So by virtue of (4.4) - 1~ ). the equation (4.3) takes the form

[a+b (-~ 1V S(PY. ¢2)~L +br—bn+b—a] g (¢Y, ¢Z). (4.9)

—1)

Then by making use of (1.3yand (1.17). the equation (4.9) takes the form

fa+ bin — 1] [S(Y. )| 1—1. oY, Z) - t}']—n}n(\’)n(Z)F

\

which gives

S(Y. Z) = ( ~ J gy, Z)+L
provided a+(n—-1)b=0.

- ﬂ) ¥y n(@,

Which shows that M? is an n-Einstein manifold, provided a + (n — 1) b = 0, with
constants o and 3 are same as in 1"| -Einstein manifold of an LP-Sasakian manifold,

—l'l}.
j

Hence. we can state the following theorem :

p
b —Iﬁ*———l",d ~|
given by o oy | and ln—l

Theorem 5. ILet M" be an n-dimensional (n > 3), ¢-quasi conformally flat
LP-Sasakian mani‘.ld, Then Mn is an 1-Einstein manifold, provideda+(n— 1) b

i { T r
- dB= —nj.
. l and l‘n ] n}

5. An Einstein LP-Sasakian manifold satisfying R(X, Y).C =0.

0, with constants ¢ =

In this section we assume that RIX, Y).0 (U, VI W =0. (5.1)

Let the Riemannian mar . 1d M" be an Einstein manifold, then (1.18) gives
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a

(m-1)
— (X, Z) g(Y, W), (5.2)

TOLY,Z, Wy=aR(X, Y, Z, W) + {2bk _ ﬁ { + ZbH [e(Y, Z) g(X, W)

where 'C(X, Y, Z, Wy=g(C (X, Y)Z, W).

Putting W =& in (5.2) and using (1.14), we get

@& Y) Z)={a+2bk—§{rfn+2bH (&Y, )00 - 806 2) NV (53)

Taking X =E in (5.3), we get

T EYV2)= [a +2bk -+ {(ﬁ-—ﬁ + 2bH &%, 2)-n) @) (54)

n(C (X, Y) &) =0. (5.5)

Now,
REY).CIU, VIW=REYV)CUVIW-CRX, YU, VW

~CURKYVIW-CUVIRX,Y)W. (5.6)
In view of (5.1), we get

REXY)IE (UVIW =8 REGY)IU, VIW - & (URGLY)VIW- E(U,VIR(X, Y)W = 0.
Putting X = £ and taking the inner product of the above equation with &, we get
gRE, YIC(U, VIW, §) - g(CRE, YU, V)W, &) - ¢(C(U, RE, YIVIW, £)
—g(CU, VIRE, Y)W, £)=0.
From this it follows that
- 'TU, V, W, Y) ~ n(Y) n(T(U, V)W) + n(U) (T, VIW) + n(V) n(CU, YIW)
+ (W) n(CU, V)Y) - &Y, Un(CEVIW) ~ g(Y, V) n(C(U, )W)

—g(Y, W)n(C (U, V) §)=0. (.7
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Putting Y = U in (5.7), we get
—-'C(U, V, W, U) - n(U) n(C(U, VW) + n(U) n(EU, V)W) + (V) n(C(U, Uyw)
+7(W) n(C(U, V)U) - g(U, U) n(CEVIW) — (U, V) nCU, )W)

~ (U, V)n(€ (U, &) W) - g(U, W)@ (U, V) &) = 0. : (5.8)

Let {e;},1=1, 2, 3, ..., n be an orthogonal basis of the tangent space at any
peint. Then the sum for 1 <1 <n of relation (5.8), for U = e, , gives
r

~— -_1-— . N x
N(C ¢, VIW) = (n_l)[ aS(V, W) {Zbk n(

a

" +2b]}(n— 1) gV, W)

n|(a-1)

Using (5.3) and (5.9), it follows from (5.7) that

—{a + 2bk _1( 4 +2b)} (- D) (V) n(W)). (5.9)

C(U, Y, W, Y) = [2bk - {;;j—l + 2bH [8(V, W) (¥, Uy~ (Y, Y) (U, W)]

a

(n-1)
Using (1.12) in (5.10), we get

+ [SCV, W) g(Y, U) - S(U, W) g(V, Y)]. (5.10)

T, V,W,Y)= |:a +2bk — ]l;“ {ﬁ + 2bH [2(V, W) g(Y, U) — g(V, Y) (U, W)] .

(5.11)
From equation (5.2) and (5.11), we get

RU, V, W, Y) = g(V, W) g(Y, U) - g(U, W) g(V, Y), provided a =0,
Hence, we can state the following theorem :

Theorem 6. If in an Einstein LP-Sasakian manifold, the relation R(X, Y).é = .0
holds, then it is locally isometric with a unit sphere, provided a = 0.
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