J. T. S Vol. 3 (2009), pp.49-58 https://doi.org/10.56424/jts.v3i01.9971

On P2-Like Finsler Spaces

Bindu Kumari and Ekta Srivastava*

D. A. V. Degree College, Gorakhpur
*Department of Mathematics and Statistics
D. D. U. Gorakhpur University, Gorakhpur,
(Received: 15 July, 2008)

Abstract

In the present paper we have discussed a special form of (v) hv-torsion tensor P_{ijk} given by $P_{ijk} = \lambda X_i \ X_j \ X_k$, where X_i are covariant components of unit vector, λ is a scalar function of x, y in a Finsler space. Since P_{ijk} of every two dimensional Finsler space may be written in this form, we shall say an n-dimensional Finsler space F^n ($n \ge 2$) as P2-like Finsler space whose P_{ijk} is of this form. The values of λ and X_i are obtained in terms of main scalars and h-connection vectors with respect to orthonormal frame in three and four dimensional P2-like Finsler spaces.

Keywords. P2-like three and four dimensional Finsler spaces.

Mathematics Subject Classification 2000: 53B40, 53B18.

1. Introduction

There are three kinds of torsion tensors in Cartan's theory of Finsler spaces. Two of them are (h) hv-torsion tensor C_{ijk} and (v) hv-torsion tensor P_{ijk} which are symmetric in all their indices and both are indicatory tensors. Various interesting special forms of these torsion tensors have been studied by mathematicians. For example C-reducible [2], semi-C-reducible [3], [4], C2-like [4] and C3-like [7] Finsler spaces are based on the special forms of P_{ijk} where as P-reducible [1].[5] and P-symmetric [5] Finsler spaces are based on the special forms of P_{ijk} .

In the present paper we shall discuss another special form P_{ijk} given by

$$P_{ijk} = \lambda X_i X_j X_k, \tag{1.1}$$

where X_i are covariant components of unit vector λ is a scalar function of x and y.

It should be remarked here that a P2-like Finsler space is a Landsberg space if and only if $\lambda = 0$.

2. n-Dimensional P2-like Finsler space.

Let F^n be an n-dimensional Finsler space with the metric function L(x, y). We denote $g_{ij}(x, y)$ as the fundamental metric tensor : $g_{ij} = \frac{1}{2} \stackrel{\cdot}{\partial}_i \stackrel{\cdot}{\partial}_j L^2$; $C_{ijk}(x, y)$, the (h) hv-torsion tensor : $C_{ijk} = \frac{1}{2} \stackrel{\cdot}{\partial}_k g_{ij}$. The h-covariant derivative of C_{ijk} with respect to Cartan's connection $C\Gamma$, is used in defining (v) hv-torsion tensor P_{ijk} :

$$P_{ijk} = C_{ijk|h} y^h = C_{ijk|0}.$$

Let X_i are components of a covariant unit vector in F^n . Then we consider the special form of P_{iik} given by

$$P_{ijk} = \lambda X_i X_j X_k, \tag{2.1}$$

where λ is a scalar function of x, y and we call F^n as P2-like Finsler space if its P_{ijk} is of this form. Since P_{ijk} is a symmetric tensor and P_{ijk} $y^i = 0$ from (2.1) ot follows that X_i $y^i = 0$. The v-covariant derivative of this equation with respect to $C\Gamma$ gives

$$X_i |_j y^i + X_j = 0.$$
 (2.2)

If the vector field X_i is v-covariantly constant then from (2.2) it follows that $X_i = 0$, which is a contradiction. Hence we have the following:

Proposition (2.1). The vector field X_i occurring in P2-like Finsler space is not v-covariantly constant.

The concurrent vector field has been defined by Matsumoto [6] and Tachibana [12]. The semi-parallel vector field, the semi-parallel h-vector field and the concircular vector fields have been defined by Singh and Prasad [10], Singh and Kumari [11] and Prasad et al. [8] respectively. In all these works the vector field are v-covariantly constant. Hence, we may state that

Proposition (2.2). The vector field X_i occurring in P2-like Finsler space is none of the following:

- (a) a concurrent vector field (b) a semi-parallel vector field.
- (b) a semi-parallel h-vector field (d) a concircular vector field.

Contracting (2.1) with g^{jk} , using the fact that X_i are components of unit covariant vector and $C_{i\mid 0} = P_i = P_{ijk}$ g^{jk} , we get $\lambda X_i = C_{i\mid 0}$. This shows that λ is the magnitude of the vector $C_{i\mid 0}$, i.e.,

$$\lambda^2 = g^{ij} C_{i \mid 0} C_{j \mid 0}.$$

3. Two and three-dimensional P2-like Finsler space.

First of all we consider the two dimensional Finsler space in which the Berwald's frame (l_i, m_i) plays an important role. With respect to his frame, the metric tensor and (h) hv-torsion tensor are respectively given by [3]

$$g_{ij} = l_i l_j + m_i m_j$$
 and $LC_{ijk} = I m_i m_j m_k$

where I is main scalar of two dimensional Finsler space F^2 . Since $m_{i\mid j}=0$ in F^2 , we have $LC_{ijk\mid h}=I_{\mid h}m_im_jm_k$, which gives $P_{ijk}=C_{ijk\mid 0}=L^{-1}I_{\mid 0}m_im_jm_k$. Thus we have the following :

Theorem (3.1). Every two dimensional Finsler space is P2-like with $\lambda = L^{-1} I_{|0}$ and $X_i = m_i$.

Now we consider the three-dimensional Finsler space F^3 in which the Moor's frame (l_i, m_i, n_i) plays the important role. With respect to his frame, the metric tensor and (h) hv-torsion tensor are respectively given by

$$g_{ij} = l_i l_j + m_i m_j + n_i n_j$$

and

$$LC_{ijk} = H m_i m_j m_k - J \pi_{(ijk)} \{m_i m_j n_k\} + I \pi_{(ijk)} \{m_i n_j n_k\} + J m_i n_j n_k$$
(3.1)

where H, I, J are main scalar of three-dimensional Finsler space F^3 such that H + I = LC [3] and $\pi_{(i j k)}$ { } stands for cyclic permutation of i, j, k and summation. Taking h-covariant derivative of (3.1), using [3]

$$m_i \mid_j = n_i h_j$$
, $n_i \mid_j = -m_i h_j$,

and then contracting the resulting equation with yh, we get

$$P_{ijk} = (H_{,1} + 3J h_1) m_i m_j m_k + (J_{,1} + 3I h_1) n_i n_j n_k + \{-J_{,1} + (H - 2I) h_1\} \pi_{(ijk)} \{m_i m_j n_k\} + (I_{,1} - 3Jh1) \pi_{(ijk)} \{m_i n_j n_k\},$$
(3.2)

where h, are components of h connection vector and

$$\mathbf{h}_1 = \mathbf{h}_i i^i, \, \mathbf{H}_{1} = \left(\frac{\partial \mathbf{H}}{\partial \mathbf{x}^h} - \frac{\partial \mathbf{H}}{\partial \mathbf{y}^r} \mathbf{G}_h^r\right) \mathbf{I}^h \text{ etc.}$$

If X_{α} ($\alpha = 1, 2, 3$) are scalar components of X_{i} with respect to Moor's frame (l_{i} , m_{i} , n_{i}), i.e.

$$X_{i} = X_{1} l_{i} + X_{2} m_{i} + X_{3} n_{i}.$$
 (3.3)

Then $X_i y^i = 0$ implies that $X_1 = 0$ and $g^{ij} X_i X_j = 1$ implies that

$$X_2^2 + X_3^2 = 1. (3.4)$$

If F³ is P2-like Finsler space, then from (2.1) and (3.3), we get

$$P_{ijk} = \lambda \left[X_2^3 \ m_i m_j m_k + X_3^3 \ n_i n_j n_k + X_2^2 X_3 \pi_{(ijk)} \{ m_i m_j n_k \} \right]$$

$$+ X_2 X_3^2 \pi_{(ijk)} \{ m_i n_i n_k \} . \tag{3.5}$$

Comparing (3.2) with (3.5), we get

(a)
$$\lambda X_2^3 = H_{1} + 3J h_1$$
, (b) $\lambda X_3^3 = J_{1} + 3I h_1$,

(c)
$$\lambda X_2^2 X_3 = -J_{,1} + (H-2I) h_1$$
, (d) $\lambda X_2 X_3^2 = I_{,1} - 3J h_1$. (3.6)

Adding (a) and (d) of equation (3.6), using (3.4) and the fact that H + I = LC, we get (LC), $X_1 = \lambda X_2$. Similarly adding (b) and (c) of equation (3.6), using (3.4) and the fact that H + I = LC, we get $LCh_1 = \lambda X_3$. Therefore

$$\lambda X_i = (LC)_{i_1} m_i + LC h_i n_i,$$
 (3.7)

and

$$\lambda^2 = [(LC)_{,1}]^2 + L^2 C^2 h_1^2.$$
 (3.8)

Theorem (3.2). In a three dimensional P2-like Finsler space the unit vector field X_i and the scalar λ are given by (3.7) and (3.8).

Now we consider the particular case of P2-like three dimensional Finsler space for which $X_i = m_i$. Then we have $X_2 = 1$, $X_3 = 0$. Therefore (3.6) reduces to

(a)
$$H_{1} + 3J h_{1} = \lambda$$
,

(b)
$$J_{1} + 3I h_{1} = 0$$
,

(c)
$$-J_{1} + (H-2I)h_{1} = 0$$
,

(d)
$$I_{1} - 3J h_{1} = 0.$$
 (3.9)

Solving these equations, we get

$$h_1 = 0,$$
 $H_{1} = \lambda,$ $J_{1} = I_{1} = 0,$

provided unified main scalar LC is non-zero.

Theorem (3.3). If the vector field X_i in three dimensional P2-like Finsler space is along one of the vector m_i of the Moor's frame (l_i, m_i, n_i) then $h_1 = 0$, $H_{11} = \lambda$, $J_{11} = I_{11} = 0$, provided unified main scalar LC is non-zero.

Next suppose that $X_i = n_i$. Then $X_2 = 0$, $X_3 = 1$ and hence (3.6) reduces to

(a)
$$H_{1} + 3J h_{1} = 0$$
,

(b)
$$J_{1} + 3I h_{1} = \lambda$$
,

(c)
$$-J_{1} + (H-2I)h_{1} = 0$$
,

(d)
$$I_{1} - 3J h_{1} = 0$$
.

Solving these equations and using the fact that H + I = LC we get $(LC)_{1} = 0$, $LCh_{1} = \lambda$.

Theorem (3.4). If the vector field X_i in three dimensional P2-like Finsler space is along one of the vector n_i of the Moor's frame (l_i, m_i, n_i) then (LC), = 0 and $\lambda = LCh_1$.

4. Four dimensional P2-like Finsler space

We consider the four-dimensional Finsler space F^4 in which the Moor's frame (l_i, m_i, n_i, p_i) plays the important role. With respect to his frame, the metric tensor and (h) hv-torsion tensor are respectively given by

$$g_{ij} = l_i l_j + m_i m_i + n_i n_j + p_i p_i$$

and

$$\begin{split} LC_{ijk} &= Hm_{i}\,m_{j}\,m_{k} + J\,\{n_{i}\,n_{j}\,n_{k}\} + H'\,p_{i}\,p_{j}\,p_{k} + I\,\pi_{(ijk)}\,\{m_{i}\,n_{j}\,n_{k}\} \\ &+ K\,\pi_{(ijk)}\,\{m_{i}\,p_{j}\,p_{k}\} - (J + J')\,\pi_{(ijk)}\,\{m_{i}\,m_{j}\,n_{k}\} + J'\,\pi_{(ijk)}\,\{n_{i}\,p_{j}\,p_{k}\} \end{split}$$

$$-(H' + I') \pi_{(ijk)} \{m_i m_j p_k\} + I' \pi_{(ijk)} \{n_i n_j p_k\}$$

$$+ K' \pi_{(ijk)} \{m_i (n_j p_k + n_k p_j)\},$$
(4.1)

where H, I, J, K, H', I', J' and K' are eight main scalars of F^4 . Taking h-covariant derivative of (4.1), using [9]

$$m_i |_i = n_i h_i + p_i j_i;$$
 $n_i |_i = -m_i h_i + p_i k_i;$ $p_i |_i = -m_i j_i - n_i k_i;$ (4.2)

and then contracting the resulting equation with yh, we get

$$\begin{split} P_{ijk} &= [H,_1 + 3(J + J') \ h_1 + 3(H' + I') \ J_1] \ m_i \ m_j \ m_k + [J,_1 + 3Ih_1 - 3I'k_1] \ n_i \ n_j \ n_k \\ &+ [H',_1 + 3Kj_1 + 3J'k_1] \ p_i \ p_j \ p_k + [-(J + J'),_1 + (H - 2I) \ h_1 - 2K' \ j_1 + \\ &- (H' + I') \ k_1] \ \pi_{(ijk)} \{ m_i \ m_j \ n_k \} + [I,_1 - (3J + 2J') \ h_1 - I'J_1 - 2K'k_1] \\ &- \pi_{(ijk)} \{ m_i \ n_j \ n_k \} + [K,_1 - J'h_1 - (3H' + 2I') \ J_1 + 2K' \ k_1] \ \pi_{(ijk)} \{ m_i \ p_j \ p_k \} \\ &+ [J',_1 + Kh_1 + 2K'j_1 - (H' - 2I') \ k_1] \ \pi_{(ijk)} \{ n_i \ p_j \ p_k \} + [I',_1 + 2K'h_1 + Ij_1 + (J - 2J') \ k_1] \ \pi_{(ijk)} \{ n_i \ n_j \ p_k \} + [-(H' + I'),_1 - 2K'h_1 + (H - 2K) \ j_1 - (J + J') \ k_1] \ \pi_{(ijk)} \{ m_i \ m_j \ p_k \} + [K',_1 + (H' + 2I') \ h_1 - (J' + 2J') \ j_1 + (I - K) \ k_1] \ \pi_{(ijk)} \{ m_i \ n_j \ p_k + m_i \ p_i \ n_k \} \end{split}$$

where h_i , j_i , k_i are components of three h connection vectors in F^4 and

$$\mathbf{h}_1 = \mathbf{h}_i l^i$$
, $\mathbf{j}_1 = \mathbf{j}_i l^i$, $\mathbf{k}_1 = \mathbf{k}_i l^i$, $\mathbf{H}_{1} = \left(\frac{\partial \mathbf{H}}{\partial \mathbf{x}^h} - \frac{\partial \mathbf{H}}{\partial \mathbf{y}^r} \mathbf{G}_{t}^{r}\right) l^h$ etc.

Let X_{α} ($\alpha = 1, 2, 3, 4$) are scalar components of X_{i} with respect to Moor frame (l_{i} , m_{i} , n_{i} , p_{i}), i.e.,

$$X_{i} = X_{1} l_{i} + X_{2} m_{i} + X_{3} n_{i} + X_{4} p_{i}.$$
 (4.4)

Then $X_i y^i = 0$ implies that $X_1 = 0$ and $g^{ij} X_i X_i = 1$ implies that

$$X_2^2 + X_3^2 + X_4^2 = 1. (4.5)$$

If F⁴ is P2-like Finsler space, then from (2.1) and (4.5), we get

$$\begin{split} P_{ijk} &= \lambda \left[X_2^3 \ m_i \ m_j \ m_k - X_3^3 \ n_i \ n_j \ n_k + X_4^3 \ p_i \ p_j \ p_k + X_2^2 \ X_3 \ \pi_{(i \ j \ k)} \{ m_i \ m_j \ n_k \} \right. \\ &\quad + X_2 \ X_3^2 \ \pi_{(i \ j \ k)} \{ m_i \ n_j \ n_k \} + X_2 \ X_4^2 \ \pi_{(i \ j \ k)} \{ m_i \ p_j \ p_k \} \\ &\quad + X_3 \ X_4^2 \ \pi_{(i \ j \ k)} \{ n_i \ p_j \ p_k \} + X_4 \ X_3^2 \ \pi_{(i \ j \ k)} \{ p_i \ n_j \ n_k \} + X_4 \ X_2^2 \ \pi_{(i \ j \ k)} \{ p_i \ m_j \ m_k \} \\ &\quad + X_2 \ X_3 \ X_4 \ \pi_{(i \ j \ k)} \{ m_i \ n_j \ p_k + m_i \ p_i \ n_k \} \right] \,. \end{split} \tag{4.6}$$

Comparing (4.3) and (4.6), we get

(a)
$$\lambda X_2^3 = H_{1} + 3(J + J') h_1 + 3(H' + I') J_1$$

(b)
$$\lambda X_3^3 = J_{1} + 3Ih_1 - 3I'k_1$$

(c)
$$\lambda X_4^3 = H'_{1} + 3Kj_1 + 3J'k_1$$

(d)
$$\lambda X_2^2 X_3 = -(J + J')_{1} + (H - 2I) h_1 - 2K' j_1 + (H' + I') k_1$$

(e)
$$\lambda X_2 X_3^2 = I_{1} - (3J + 2J') h_1 - I' j_1 - 2K' k_1$$
, (4.7)

(f)
$$\lambda X_2 X_4^2 = K_{1} - J' h_1 - (3H' + 2I') j_1 + 2K' k_1$$

(g)
$$\lambda X_3 X_4^2 = J'_{1} + Kh_1 + 2K'j_1 - (H' - 2I')k_1$$

(h)
$$\lambda X_3 X_3^2 = I'_{,1} + 2K' h_1 + Ij_1 + (J - 2J') k_1,$$

(i)
$$\lambda X_4 X_2^2 = -(H' + I')_{1} - 2K' h_1 + (H - 2K) j_1 + (J + J') k_1$$

(j)
$$\lambda X_2 X_3 X_4 = K'_{,1} - (H' + 2I') h_1 - (J + 2J') j_1 + (I - K) k_1$$

Adding (a), (e) and (f) of equation (4.7), using (4.5) and the fact that H+I+K=LC, we get $(LC)_{1}=\lambda X_{2}$. Also adding (b), (d) and (g) of equation (4.7), using (4.5) and the fact that H+I+K=LC, we get LC $h_{1}=\lambda X_{3}$. Similarly adding (c) (h) and (i) of equation (4.7), using (4.5) and the fact that H+I+K=LC, we get $LCj_{1}=\lambda X_{4}$. Therefore

$$\lambda X_i = (LC)_{,1} m_i + LC (h_1 n_i + j_1 p^i)$$
 (4.8)

and

$$\lambda^{2} = [(LC)_{,1}]^{2} + L^{2} C^{2} (h_{1}^{2} + j_{1}^{2}). \tag{4.9}$$

Theorem (4.1). In a four dimensional P2-like Finsler space the unit vector field X_i and the scalar λ are given by (4.8) and (4.9).

Now we consider the particular case of P2-like four dimensional space for which $X_i = m_i$. Then we have $X_2 = 1$, $X_3 = X_4 = 0$. Therefore (4.7) reduces to

(a)
$$H_{1} + 3(J + J') h_{1} + 3(H' + I') J_{1} = \lambda$$
,

(b)
$$J_{1} + 3Ih_{1} - 3I'k_{1} = 0$$
,

(c)
$$H'_{1} + 3Kj_{1} + 3J'k_{1} = 0$$
,

(d)
$$-(J+J')_{1}+(H-2I)h_{1}-2K'j_{1}+(H'+I')k_{1}=0,$$

(e)
$$I_{1} - (3J + 2J') h_{1} - I' j_{1} - 2K' k_{1} = 0,$$
 (4.10)

(f)
$$K_{1} - J' h_{1} - (3H' + 2I') j_{1} + 2K' k_{1} = 0$$

(g)
$$J'_{1} + Kh_{1} + 2K'j_{1} - (H' - 2I')k_{1} = 0$$
,

(h)
$$I'_{1} + 2K' h_{1} + Ij_{1} + (J - 2J') k_{1} = 0$$
,

(i)
$$-(H' + I')_{1} - 2K' h_{1} + (H - 2K) j_{1} + (J + J') k_{1} = 0,$$

(j)
$$K'_{1} - (H' + 2I') h_{1} - (J + 2J') j_{1} + (I - K) k_{1} = 0.$$

Solving these equations we get $h_1 = 0$, $j_1 = 0$, $H_{1} = 1$ and

$$\frac{J_{1}}{2I'} = \frac{H_{1}'}{-3J'} = \frac{I_{1}}{2K'} = \frac{K_{1}}{-2K'} = \frac{J_{1}'}{H'-2I'} = \frac{I_{1}'}{-(J-2J')} = \frac{K_{1}'}{-(I-K)} = k_{1}, \quad (4.11)$$

provided unified main scalar LC is non-zero.

Theorem (4.2). If the vector field X_i in four dimensional P2-like Finsler space is along one of the vector m_i of Moor's frame (l_i, m_i, n_i, p_i) then $h_1 = 0$, $j_1 = 0$, $H_{i,1} = \lambda$, provided unified main scalar LC is non-zero and (4.11) holds.

Next suppose that $X_1 = n_1$. Then $X_2 = X_4 = 0$, $X_3 = 1$ and hence (4.5) reduces to the same equations as given in (4.8) except the equations (a) and (b) which now become

(a)
$$H_{1} + 3(J + J') h_{1} + 3(H' + I') J_{1} = 0$$
, (b) $J_{1} + 3Ih_{1} - 3I' k_{1} = \lambda$, (4.12) Solving these equations and using the fact that $H + I + K = LC$ we get $(LC)_{1} = 0$, $LCh_{1} = \lambda$, $h_{1} = \frac{H_{1}}{-3(J + J')}$, $j_{1} = 0$, $k_{1} = \frac{H_{1}'_{1}}{3J'}$. Hence we have the following:

Theorem (4.3). If the vector field X_i in four dimensional P2-like Finsler space is along one of the vector n_i Moor's frame (l_i, m_i, n_i, p_i) then (LC), $l_i = 0$, $l_i = LCh_1$, $l_i = \frac{H_{i,1}}{-3(J+J')}$, $l_i = 0$ and $l_i = \frac{H_{i,1}}{3J'}$.

Lastly suppose that $X_i = p_i$. Then $X_2 = X_3 = 0$, $X_4 = 1$ and hence (4.7) reduces to the same equations as given in (4.10) except the equations (a) and (c) which now becomes

(a)
$$H_{1} + 3(J + J') h_{1} + 3(H' + I') J_{1} = 0$$
, (b) $H'_{1} + 3Kj_{1} + 3J' k_{1} = \lambda$. (4.13) Solving these equations and using the fact that $H + I + K = LC$, we get (LC), $I_{1} = 0$, $I_{1} = 0$, $I_{2} = 0$, $I_{3} = 0$, $I_{4} = 0$, $I_{5} = 0$, $I_{5} = 0$, $I_{6} = 0$, $I_{7} = 0$, I_{7}

Theorem (4.4). If the vector field X_i in four dimensional P2-like Finsler space is along one of the vector p_i Moor's frame (l_i, m_i, n_i, p_i) then (LC), $p_i = 0$, $p_i = 0$,

References

- 1. Hombu, H.: Konforme Inveriaten in Finslerchen Raume, J. Fac. Sci. Hokkaido Univ., 12(1934), 157-168.
- 2. Matsumoto, M.: On C-reducible Finsler spaces, Tensor, N. S., 24 (1972), 29-37.
- Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa Otsu 520, Japan, 1986.

- Matsumoto, M. and Numata, S.: On semi-C-reducible Finsler space with constant coefficients and C2-like Finsler spaces, Tensor, N. S., 34 (1980), 218-222.
- Matsumoto, M. and Shimada, H.: On Finsler spaces with the curvature tensor Phijk and Shijk satisfying special conditions, Reports on Mathematical Physics, 12 (1977), 77-87.
- Matsumoto, M. and Eguchi, K.: Finsler spaces admitting a concurrent vector field, Tensor, N. S., 28 (1974), 239-249.
- Prasad, B. N. and Singh, J. N. : On C3-like Finsler spaces, Ind. J. Pure Appl. Math., 19 (5) (1998), 423-428.
- 8. Prasad, B. N. and Singh, V. P. and Singh, Y. P. : On concircular vector fields in Finsler space. Ind. J. Pure Appl. Math., 17 (8) (1986), 998-1007.
- 9. Prasad, B. N. and Chaube, G. C. and Patel, G. S.: The four dimensional Finsler space with constant unified main scalar, Calcutta Mathematical Society (to appear).
- 10. Singh, U. P. and Prasad, B. N.: Modification of a Finsler space by a normalized semiparallel vector field, Periodica Mathematica Hungarica, 14 (1983), 31-41.
- 11. Singh, U. P. and Kumari, Bindu : Normalized semi-parallel h-vector fields in special Finsler spaces, J. Nat. Acad. Math., 11 (1997), 142-151.
- 12. Tachibana, S.: On Finsler spaces which admit a concurrent vector field, Tensor, N. S., 1 (1950), 1-5.