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Abstract

The present paper is devoted to the study of three kinds of hypcrplanc and
generalized Matsumoto B-change of Finsler metric. Here B=b,(x,y) ¥y, b, (x,y)is
h-vector in (M", L), The h-vector b, is v covariantly constant with respect to
Cartan’s connection CI” and satisfies the relation LCE b, =p hij and not only a

function of coordinate but it is also a function of directional arguments,
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1. Introduction

Let F" = (M", L) be an n-dimensional Finsler space where M" is an
n-dimensional differential manifold and L(x, y) is the fundamental function. In
1984 C. Shibata introduced the transformation of Finsler metric [5], which is
defined as :

L'(x, y)=f(L, B), (1.1

where 3 = b.(x) yi, b,(x) are components of a covariant vector in (M", L) and f is
positively homogeneous of degree one in L and B. This change of metric is called a
P-change. In this paper we shall study a generalized Matsumoto -change metric,
which is defined as :

L'(x,y)= “B— =f(L, B), (1.2)
where B = b.(x, ¥) yi b.(x, y) is an h-vector. As before Kropina and various

geometers has taken b, a covariant vector. Now we have taken b; as h-vector, which
is v-covariantly constant with respect to Cartan’s connection CI‘ and satisfies the
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LCh b, =p h . Thus the h-vector b, is not only a function of coordinate but it is

also a functlon of directional argument and b, satisfies all the condition of h-vector
which is given by Izumi [6] in 1980. M. Matsumoto [8] studied the theory of
Finslerian hypersurfaces and defined three types of hyperplane, which were later on
studied by various geometers ([11, 2], [7], [9]). In the present paper using the field
of linear frame ([2], [7], [9]) we shall consider Finslerian hypersurfaces given by a
generalized Matsumoto change of Finsler metric with h-vector. The purpose of the
present paper is to obtain the relation between original Finslerian hypersurfaces of
(M", 1) and another Finslerian hypersurfaces given by the generalized Matsumoto
change of Finsler metric (M", L") with h-vector.

2. Preliminaries

The vector field b, (x, y) in the Finsler space (M", L), is called h-vector if b,
(%, y) satisfy the following conditions :

(i  b,.=0, (b) LCE b, =p by 2.1

Here | j denotes the v-covariant derivative with respect to Cartan’s connection CT,

CE is the Cartan’s tensor, hij is the angular metric tensor and p is a function given

by :

p= LCib,, (2.2)

(n—l)

where C' = C%k gjk. From (2.1}, we get
' —_71-1
aj b=L" p hij . 2.3)

For an h-vector the function r and the magnitude of h-vector are independent of y
[6]. Let F"=(MP", L), be an n-dimensional Finsler space whose metric function is
L(x, y) on M". The metric tensor 8 (x, v} and Cartan’s C-tensor Cijk (%, y) of F*
are given by

_1_a? 198
B 2 0ap 0 CikT2 gk

respectively and we can introduce introduced the Cartan’s connection CI" = (F _]k ,
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Nj , Cjk ) along F". A hypersurface M" ~! represented by the equation x' = x' (u®),
where u® is Gaussian coordinates on M" ™} and greek indices vary from 1 to n —1.

As for the matrix we assumed that the projection factor }3i = ax' /ou® is of rank

n — 1 and also employed the notations BLﬁ =3 x' /6u® ouP and B:)B =v B&B

a point u®, the supporting element yi is tangential to M" 1 we may then write y =
Bi (u) v, where v* is the supporting element of M® ~! at the point u®. We get a

Finsler space F" ™! =(M" !, L(u, v)) of n -1 dimensional, where L(u v)=L{(x
(u), ¥(u, v)) along M" "1, The unit normal vector N' (u, v) at each point u® of F" ™!
is given by

g Bl N=0 and g NiNi =1, (2.4)
if (BfJL s Ni ) is the inverse matrix of (B(i}t . N ), then we get
Bl BP =5 Bl N =0, NiNJ.=1 2.5)
and B, B{" +N'N,=3.
From the reciprocal tensor (gaﬂ) of (guB), we have the following relations
BY = g™ g B, , N~ g; N, (2.6)

The second fundamental h-tensor H B and the normal curvature vector H of the

induced Cartan’s connection CI" = (F NB Ca Yon F"~ ~are respectively given
by [8]

- i i i nk
Hep=N; (B + T, BL Bg)+M, Hy, (2.7)
and H, =N, (By, + NJ? B ),
where
k .
M, =Cy B:I N NE, (2.8)

The contraction of I{-Im13 by v is defined as H, Ve = HB' Furthermore the second
fundamental v-tensor Maﬁ is given by [10]
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M

— i j k
op = Cij B, B NX. (2.10)

ijk "o
3.  Generalized Matsumoto change of Finsler metric with h-vector

Let F* = (M", L) be an n-dimensional Finsler space. We shall define a

function L*(x, y)>0 on M" by the equation (1.2). To find the metric tensor g ,
&jj

the angular metric tensor h;} and the Cartan’s C-tensor C;}k of F'P=(M", L"), we

used the following results :
oplay'=b, oLfy =1, @ ; oyl =11 by, 3.1
where hij are components of angular metric tensor of F" given by :

hy=g;—LL=L@L/y oy).

Differentiating (1.2) with respect to y', we get

1= Al(B~2L) b, +BL], (3.2)
where Al = ——B—z
B-L)

To obtain angular metric tensor, we differentiate (3.2) with respect to ¥
which as follows :

by = QplB (1 +p) ~2pLY by +Q, b;b,~Q, (b +1b) + LB I (33)

where
B
RN

0 _ 2
L @-n*’

o _2p°L
2 (-’
0, =28
-t
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From (3.2) and (3.3), we get the following relation :

8= Qo[BI +p)=2pLl gy +8 b b+, (b +1 D)

+5, [4BL - B* (1 +p) + pL (3 - 2L))] L (3.4
where

g - B2 (B°+6L%-4BL)

! (B-L)* ’

g B @-4)

2" 4
(B-L)
B

Sy=——1.
L(B-L)

Now to obtain the contravariant metric tensor g"=ij we may here assume the
tensor Bij as:
Bi.i =Q, Cgij +C, Cj, (3.5)

where Q, is defined in (3.3).
C=p(1+p)-2pL,
C,=mb,.

In view of (3.4) the unknown quantities M_;, My and 7 are obtained using the
following relations :

(a) w2 =S, A,
®) . 82 _ [33/2 (B—4L)L1/2
0 g 1 (B L)% Al
2
D
(c) n2=Sl—ﬂ:g=m,
where

A =[4BL - B* (1 + p) + pL(3B — 2L)],
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D=A (B?+6L% - 4BL) - B (B - 4L’ L.

Using the relation BJ.J. Bik = 6;‘, we get

T b'bl LD 16
B7q,C [g BC(B—L)A+b2LD} G-6)

On account of (3.4) and (3.5) g;j may be written as :

* _
gij—~Bl.j+di dj )

where d;=myb - i~—L[(B—4L) L2 A= i02 b— A2 L2,

O oy

The g; is defined as

. did

&~ By~ 1+d%°

N _ 172 4172 o
Whel‘e dl = BU dJ :m L)3];2 A (L”2 Ebl . ll) ,

B2c
p=B-40L? Lp@_41)1'? A'b? gDt

BC(B-LYA+b2LD BC(B—L)A+b2LD

i 1
d 2odig ="
an d ' C({B-L)

—
Hence g Y is given as:

(L2 E(B-4L) 6% - ABL2B - g(p—dL)+ A).

= 1 Tok, b+ K, (WA by -k, 78, 3.7)
QB Up 2 & T PTG EPEE) K
where K. = (B-LYL’D ;l_(B~L)3 L2 AE?‘}
' BCIBCB-L)A+b2LD] BCF

[33(31:

3
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= (B=LYLA
3 B3CF

F=L?E@-4L)b? - AEL™ 2B~ B(B-4L)+ A+C (B—L).
Differentiating (3.4) with respect to yk and using (3.1), we get the following results :
Cli = QpB (1 +p)—2pL] Caxt Ty (B* - 4L+ pT,) (hy; my

+ hjk m; + h,. mj) + T, m, m, my (3.8)

2
where T] = ——[3—4 s
2L (B-L)"

T,=(B* - 4L +6L?),

)
PL-py
. B
mi—bi—Lli.

The following important results are to be noted

1

_ . 2 . :
m, I'=0, m.bl=b2-J3—, h;m'=h, b'=m,,
i L g y !

i i_ i i B
hijl' 0 and m'=g m;=b i (3.9)

4.  Hypersurfaces due to generalized Matsumoto change with h-vector

Let F" 71 = (M™ ~1, L(u, v)) be a Finslerian hypersurface along the F* and
F'nol= (M" ”1, L* (u, v)) be another Finslerian hypersurface along the F'n

given by generalized Matsumoto change with h-vector. Let (B? » N;) be the
inverse matrix of (Bfl , N! Y and N be the unit normal vector at each point of
F" ~! The function Bil may be considered as component of n -1 linearly indepen-

dent tangent vectors of F' ! and fo are invariant function under generalized
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Matsumoto change with an h-vector. Thus we shall show that a unit normal vector
N"i(u, v) of F'"~} is uniquely determined by :

*i

g Bl Ni=0 and g NNI=1, (4.1

ij
Muitiplication of (3.4) by NN} and paying attention to (2.4) and /, Ni= 0, we have
& NI NI = Q,[B(1 +p) - 2pL] + S, (b; N'Y,
where Qg, S and C has been defined in (3.3), (3.4) and (3.5). Therefore we obtain

( VL B-L*N } ( £VL @-1)*N ]=1
l *

I\ B VPR R, 6N ) (BVpR+ R, (o)
where R=B(B—L)[‘E+|3—2L},

R, =L (B +6L* - 4BL).

Therefore, we can put

. 2 A7i
Ni= JL(B-LF*N

; 4.2)
B~/pR+Ry (BN
where we have choosen only positive sign.
Using equation (3.1), (3.4), (4.2) and from (4.1), we have
s s : . VL@-Ly*b, N
[(B"+6L°—4BL) b, B, +B(B-4L) B, ] =0. (43)

B~ pR+R (b N)*

If [(B?+6L2 —4BL) b, B + B (B—4L) [ B 1=0, then contracting it by v* and
using yi = BL v*®, we get L = 0, which is a contradiction with assumption that L >
0. Hence b, Ni = 0. Therefore (4.2) is written as

N'i = %%‘_im. 44
p
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Proposition 4.1. There exists a field of linear frame (B! , Bl , ... B;] .
N2 i . .
w_YLE-L'N ) of F'™ for a field of linear frame (B!,B., ... B; _1-NY

BV pR
of F" such that (4.1) is satisfied along F " =l and then b, is tangential to both the
hypersurfaces F* ™! and F*2 1,

We may write the quantities B of F' ! by

B = g*a[} g* BJB bl

where g**P is the inverse matrix of gaB . If (Bf"a N ) be the inverse matrix of,
(B(ix ,N1), then we have B(il B?ﬁ = 82 , B(ix N =0, N N =1and B' B*a+N
Nj* = Sji . We also get NI = g; N, which is on account of (3.2), (3.4) and'(4.4)
gives
_BIB(+p)-20L]
i (B L)2 r——— 1"

(4.5)

We define the Cartan’s connection of F" by (F§k, Nf- Cfl i) and Cartan’s connection
of F ™ by (F*' N*‘ C*‘) Let Dl be the difference tensor which is defined as :
i _ ok i
D ij — F
Let b, is the vector field in F" such that
i i i
Djk Ajk b —Bjkl .

where A, and B . are components of a symmetric covariant tensor of second order.
Since N, bl 0 aud N, I'= 0, contracting (4.6) by N, we get

i — [
N. Djk =0 and N, DOk = {,
From (3.3) and (4.5), we get

« B BU+p)-20L]
“ (B-Lypik ¢

4.7)
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If each path of a hypersurface F" -1 with respect to induced connection is also a
path of enveloping space F™, then F” ! is called a hyperplane of the first kind [8].
A hyperplane of the first kind is characterized by H, = 0. Hence from (4.7), we
have

Theorem 4.1. The hypersurface Fr-lisa hyperplane of the first kind if and
only if the hypersurface F* lisa hyperplane of the first kind, where by(x) is a
vector field satisfying equation (4.6).

Paying attention to (2.8), (3.8) and (4.4) and by using m. N' =0, by N N¥ = ] and
h. Bl Ni= 0, we get

i o
R i
M =M _+—L B, 4.8
ot 2R m, (4.8)
where R, = (B2 —4BL +pT,).

Using the equations (3.3}, (4.5), (4.6), (4.7) and (4.8), we get

» B 2 R i
H, = —2pLB)H_,+———H,m Bl . (4.9
6~ B-0) ypIR *pB ~20LP) Hyp + 2(p-1) BBl (49

If each h-path of a hypersurface F" =1 with respect to the induced connection is
also h-path of the enveloping space F", then F" 1 is called a hyperplane of the
second kind [8]. A hyperplane of the second kind is characterized by H ap ” 0.
Since H ap = 0 implies that H_ = 0. From (4.7} and (4.8), we have the following :

Theorem 4.2. The hypersurface F' " ~! is a hyperplane of the second kind if and
only if the hypersurface F" tisa hyperplane of the second kind where b(x) is a
vector field satisfying equation (4.6).

Using equations (2.9), (3.8) and (4.4), we get

. _ BB +p)~2pL]
M . = M .. 4,10
8 (B-L)JLpR @ P 10

If the unit normal vector of F™ ! is parallel along each curve of F" ~!, then F"~!
is called a hyperplane of the third kind [8]. A hyperplane of the third kind is
characterized by H op= 0, M o™ 0. From (4.7), (4.9) and {(4.10), we have
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Theorem 4.3, The hypersurface '™ ! is a hyperplane of the third kind if and
only if the hypersurface F" "1 is a hyperplane of the third kind. where bi(x)is a
vector field satisfying equation (4.6).

Finally we have shown that a generalized Matsumoto change with h-vector makes
three types of hyperplanes invariant under certain conditions.

10.
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