On Kenmostu Manifolds Satisfying Certain Conditions

S. Yadav and D. L. Suthar*

Department of Mathematics
Alwar Institute of Engineering & Technology,
North Ext., M.I.A., Alwar-301030, Rajasthan, India
e-mail: sunil.16184@yahoo.com, *dd_suthar@yahoo.co.in
(Received: 22 January, 2009)

Abstract

In this paper, we study 3-dimensional Kenmostu manifolds, weakly Ricci symmetric Kenmostu manifolds and generalized Ricci recurrent Kenmostu manifolds and prove that conformably flat Kenmostu manifold is η -Einstein manifolds, deduced that the square length of Ricci tensor. Further proved that if weakly Ricci-symmetric Kenmostu manifolds satisfies Ricci symmetric condition then manifolds is Einstein manifold. In last we prove that if generalized Ricci recurrent Kenmostu manifolds satisfies the condition $(\nabla_X \eta)(Y) = 0$ then $\alpha(X) = \beta(Y)$.

Keywords: Kenmostu manifold, weakly Ricci symmetric manifold, generalized Ricci recurrent Kenmostu manifold, η-Einstein manifold.

Mathematics Subject Classification 2000: 53C15, 53C05.

1. Introduction

Let (M, g) be a n-dimension $n \ge 3$, differentiable manifolds of class C^{∞} we denoted by ∇ its Levi-Civita connection. We define endomorphism R(X, Y) Z and $X \wedge Y$ by

$$R(X, Y) Z = [\nabla_X, \nabla_Y] Z - \nabla_{[X, Y]} Z$$
 and $X \wedge Y = g(Y, Z) X - g(X, Z) Y$
(1.1)

respectively, where $X, Y, Z \in \chi(M)$, $\chi(M)$ being the Lie-algebra of the vector fields on (M, g). The Riemannian Christoffel curvature tensor R is defined as

$$R(X, Y) Z = g(R(X, Y) Z, W), \qquad W \in \chi(M).$$

Let S and r denote the Ricci tensor and the scalar curvature of (M, g) respectively then Weyl conformal curvature tensor C is defined as

$$C(X, Y) Z = R(X, Y) Z - \frac{1}{(n-1)} [S(Y, Z) X - S(X, Z) Y + g(Y, Z) QX - g(X, Z) QY] + \frac{r}{(n-1)(n-2)} [g(Y, Z) X - g(X, Z)Y]$$
(1.2)

where Q is the Ricci operator defined by $g(\phi X, Y) = S(X, Y)$ [5].

L. Mamassy and T. Q. Binh [7] [8], introduced the notion of weakly symmetric and weakly Ricci symmetric Sasakian manifolds and M. Kon [3] introduced the notion of Ricci η -parallelity for Sasakian manifolds. A Riemannian manifolds is called weakly Ricci symmetric manifold if there exist 1-form ρ , η and ν such that relation

$$(\nabla_{\mathbf{Y}} \mathbf{S})(\mathbf{Y}, \mathbf{Z}) = \rho(\mathbf{X}) \; \mathbf{S}(\mathbf{Y}, \mathbf{Z}) + \mu(\mathbf{Y}) \; \mathbf{S}(\mathbf{X}, \mathbf{Z}) + \nu(\mathbf{Z}) \; \mathbf{S}(\mathbf{X}, \mathbf{Z})$$

holds for any vector fields X, Y and Z, where S is the Ricci tensor of type (0, 2) of the manifold. A weakly Ricci symmetric manifold is said to be proper if $\rho = \mu = \nu = 0$ is not the case.

In the present paper we study Kenmostu manifolds with certain conditions. This paper is organised as follows section-2 contain the necessary details about the Kenmostu manifolds and basic results. In section-3 we study 3-dimensional Kenmostu manifolds and proved that manifolds is η -Einstein manifolds and also find the square length of Ricci tensor. Further we shall prove that in 3-dimensional Kenmostu manifolds the relation $Q\xi = \left(1 - \frac{r}{2}\right)\xi$ always holds.

In section - 4, 5 we study weakly Ricci symmetric, 3-dimensional generalized recurrent Kenmostu manifolds and obtained several results.

2. Kenmostu Manifold

Let (M, g) be a almost contact manifolds [9] with a almost contact structure (ϕ, ξ, η, g) consisting a (1, 1) tensor field ϕ , a vector fields ξ , a 1-form η and a compatible Riemannian metric g satisfying

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi \xi = 0, \quad \eta \circ \phi = 0$$
 (2.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y), \qquad g(X, \xi) = \eta(X)$$
 (2.2)

$$g(X, \phi Y) = -g(\phi X, Y) \tag{2.3}$$

for all vector fields $X, Y \in \xi(M)$.

An almost contact metric manifolds is called Kenmostu manifolds if it satisfies [1]

$$(\nabla_X \phi)(Y) = g(\phi X, Y) \xi - \eta(Y) \phi X, \text{ for all } X, Y \in \chi(M)$$
 (2.4)

where ∇ is Levi-Civita connection of Riemannian metric g of type (0, 2). From the above equation it follows that

$$\nabla_{X} \xi = X - \eta(X) \xi \tag{2.5}$$

$$(\nabla_{\mathbf{X}} \, \eta)(\mathbf{Y}) = \mathbf{g}(\mathbf{X}, \, \mathbf{Y}) - \eta(\mathbf{X}) \, \eta(\mathbf{Y}). \tag{2.6}$$

Moreover the curvature R, the Ricci tensor S and the Ricci operator Q satisfy [1]

$$S(X, \xi) = (1 - n) \eta(X), \qquad S(\phi X, \phi Y) = S(X, Y) = (1 - n) \eta(X) \eta(Y) \quad (2.7)$$

$$Q\xi = (1 - n)\xi$$
 and $rank(\phi) = 2m$ (2.8)

$$R(\xi, X) Y = \eta(Y) X - g(X, Y) \xi$$
 (2.9)

where n = 2m + 1, Kenmostu manifolds have been studied by various authors [11], [10] and [6].

A Kenmostu manifold is normal (that is Nijenhuis tensor of ϕ equals $-2d\eta \otimes \xi$) but not Sasakian manifolds. Moreover it is also not compact, from (2.5), we get div $\xi = n - 1$.

A Kenmostu manifold is said to be η -Einstein manifolds if its Ricci tensor S is of the form

$$S(X, Y) = \alpha g(X, Y) + \beta \eta(X) \eta(Y)$$
 (2.10)

for any $X, Y \in \chi(M)$ and α, β are function on (M, g) [1][5].

3. Three-Dimensional Kenmostu Manifold

A Kenmostu manifold (M, g) is called conformally flat if it is conformally equivalent to Euclidean space. Let (M, g) be a 3-dimensional manifolds it is well-known [2] the conformal curvature of Weyl vanishes identically that for 3-dimensional manifolds (M, g) curvature tensor R is satisfies

$$R(X, Y) Z = g(Y, Z) QX - g(X, Z) QY + S(Y, Z) X - S(X, Z) Y$$
$$+ \frac{r}{2} [g(X, Z) Y - g(Y, Z)X]$$
(3.1)

where Q is the Ricci operator, that is g(QX, Y) = S(X, Y) and r is the scalar curvature of (M, g). Putting $Z = \xi$ in (3.1) and using (2.7) and (2.8), we have

$$\eta(Y) QX = \left[\left\{ \frac{r}{2} + n \right\} \eta(Y) X - \eta(X) Y \right] + \eta(X) QY. \tag{3.2}$$

Putting $Y = \xi$ in (3.2) and using (2.1) and (2.8), we have

$$S(X, W) = \left[\frac{r}{2} + n\right] g(X, W) - \left[\frac{r}{2} + 2n - 1\right] \eta(X) \eta(W)$$
 (3.3)

which is η -Einstein manifolds with $\alpha = \frac{r}{2} + n$, $\beta = 1 - \frac{r}{2} - 2n$.

We state the result:

Theorem (3.1). A conformally flat 3-dimensional Kenmostu manifolds is an n-Einstein manifolds.

Corollary. In a 3-dimensional Kenmostu manifold the relation $Q\xi = \left[1 - \frac{r}{2}\right]\xi$ holds.

For conformally flat Kenmostu manifolds, we have

$$\dot{\mathbf{r}} = \left[\frac{\mathbf{r}}{2} + \mathbf{n}\right] \mathbf{n} + \left[1 - 2\mathbf{n} - \frac{\mathbf{r}}{2}\right] \quad \text{and} \quad \mathbf{S}(\xi, \xi) = \left[\frac{\mathbf{r}}{2} + \mathbf{n}\right] \mathbf{n} + \left[1 - \frac{\mathbf{r}}{2} - 2\mathbf{n}\right] \tag{3.4}$$

where r is the scalar curvature of conformally flat Kenmostu manifold.

Let L be the symmetric endomorphism of the tangent space at a point corresponding to the Ricci tensor S, then

$$g(LX, Y) = S(X, Y) \quad \text{for all } X, Y. \tag{3.5}$$

Let l^2 be the square length of the Ricci tensor which is defined as

$$l^2 = S(Le_i, e_i)$$
 (3.6)

where $\{e_i\}$, i = 1, 2, 3, ..., n is orthogonal basis of the tangent space at a point of the manifold. From (3.3), we have

$$S(Le_{i}, e_{i}) = \left[\frac{r}{2} + n\right] g(Le_{i}, e_{i}) + \left[1 - \frac{r}{2} - 2n\right] \eta(Le_{i}) \eta(e_{i})$$

$$= \left[\frac{r}{2} + n\right] S(e_{i}, e_{i}) + \left[1 - \frac{r}{2} - 2n\right] S(e_{i}, \xi) g(e_{i}, \xi). \quad (3.7)$$

Using (3.4), (3.5) and (3.6) in (3.7), we have

$$l^{2} = \left\lceil \frac{r}{2} + n \right\rceil^{2} n + \left\lceil 1 - 2n - \frac{r}{2} \right\rceil \left\lceil 1 + \frac{r}{2} \right\rceil.$$
 (3.8)

We state the result.

Theorem (3.2). In a 3-dimensional conformally flat Kenmostu manifolds the length of the Ricci tensor S is given by

$$l = \sqrt{\left[\frac{\mathbf{r}}{2} + \mathbf{n}\right]^2 \mathbf{n} + \left[1 - 2\mathbf{n} - \frac{\mathbf{r}}{2}\right] \left[1 + \frac{\mathbf{r}}{2}\right]}.$$

4. Weakly Ricci Symmetric Kenmostu Manifold with η -Parallel Ricci Tensor

Definition. The Ricci tensor S of a weakly Ricci symmetric 3-dimensional Kenmostu manifold is said to η -parallel if it satisfies the condition

$$(\nabla_X S)(\phi Y, \phi Z) = 0$$
 for all X, Y and Z. (4.1)

Let (M, g) be a weakly Ricci symmetric Kenmostu manifold, then from (1.3), we have

$$(\nabla_X S)(\phi Y, \phi Z) = \rho(X) S (\phi Y, \phi Z) + \mu(\phi Y) S(X, \phi Z) + \nu(Z) S(X, \phi Y). \quad (4.2)$$

Using (2.7), (4.1) in (4.2), we have

$$\begin{split} \rho(X) \left[S(Y,Z) - (1-n) \, \eta(Y) \, \eta(Z) \right] + \mu(\phi Y) \left[(1-n) \, g(\phi X, \phi Z) \right] \\ + \nu(\phi Z) \left[(1-n) \, g(X, \phi Y) \right] = 0. \end{split}$$

Putting $X = \xi$ in above and using (2.1), we have

$$\rho(\xi) [S(Y, Z) - (1 - n)\eta(Y)\eta(Z)] = 0. \tag{4.3}$$

This implies that $\rho(\xi) \neq 0$ and $S(Y, Z) = (1 - n)\eta(Y)\eta(Z)$, which is Einstein manifold, we state the results.

Theorem (4.1). If weakly Ricci symmetric 3-dimensional Kenmostu manifolds satisfies η -parallel Ricci tensor then the manifold is an Einstein manifold with scalar curvature $\tau = (n-1)$.

Definition. A Kenmostu manifolds is said to be Ricci symmetric if its Ricci tensor S satisfies the condition

$$(\nabla_X S)(Y, Z) = 0$$
 for all X, Y and Z. (4.5)

from equation (3.3), we have

$$(\nabla_{X} S)(Y, Z) = \left[1 - 2n - \frac{r}{2}\right] [(\nabla_{X} \eta)(Y) \eta(Z) + (\nabla_{X} \eta)(Z) \eta(Y)]. \tag{4.6}$$

Using (2.6) and (4.5) in (4.6), we have

$$\left[1 - 2n - \frac{r}{2}\right] [g(X, Y) \eta(Z) + g(X, Z) \eta(Y) - 2\eta(X) \eta(Y) \eta(Z)] = 0. \quad (4.7)$$

This implies that

$$r = 2(1 - 2n)$$
 and $g(\phi X, \phi Y) = (\nabla_X \eta)(Y) = 0.$ (4.8)

We state the result.

Theorem (4.2). If a 3-dimensional Kenmostu manifolds satisfies the Ricci symmetric condition then the relation holds:

(a)
$$r = 2(1 - 2n)$$

and

(b)
$$g(\phi X, \phi Y) = (\nabla_X \eta)(Y) = 0.$$

Further from (3.3), we have

$$(\nabla_{\mathbf{X}} \mathbf{S})(\mathbf{Y}, \mathbf{Z}) = \left[1 - 2\mathbf{n} - \frac{\mathbf{r}}{2}\right] [(\nabla_{\mathbf{X}} \mathbf{\eta})(\mathbf{X}) \mathbf{\eta}(\mathbf{Y}) + (\nabla_{\mathbf{X}} \mathbf{\eta})(\mathbf{Y}) \mathbf{\eta}(\mathbf{X})]$$

$$(\nabla_{\mathbf{Y}} \mathbf{S})(\mathbf{X}, \mathbf{Z}) = \left[1 - 2\mathbf{n} - \frac{\mathbf{r}}{2}\right] [(\nabla_{\mathbf{Y}} \mathbf{\eta})(\dot{\mathbf{X}}) \mathbf{\eta}(\mathbf{Z}) + (\nabla_{\mathbf{Y}} \mathbf{\eta})(\mathbf{Z}) \mathbf{\eta}(\mathbf{X})].$$

From above these two results and using the relation (4.8), we have

$$(\nabla_{X} S)(Y, Z) = (\nabla_{Y} S)(X, Z)$$
(4.9)

which is Ricci tensor of Codazzi type [4]. We state the result:

Theorem (4.3). If in a 3-dimensional Kenmostu manifold the relation (4.8) holds then the manifold has the Ricci tensor of Codazzi type.

5. Three-Dimensional Generalized Recurrent Kenmostu Manifold

A Riemannian manifold (M, g) is called Generalized recurrent [13] if its curvature tensor R satisfies

$$(\nabla_X R)(Y, Z) W = \alpha(X) R(Y, Z) W + \beta(X) [g(Z, W) Y - g(Y, W) Z]$$
 (5.1)

where α , β are two 1-form, β is non-zero and are defined as $\alpha(X) = g(X, A)$, $\beta(X) = g(X, B)$, A, B are vector fields associated with 1-form α , β respectively.

A Riemannian manifold (M, g) is called Generalized Ricci recurrent [13] if its Ricci tensor S satisfies the condition

$$(\nabla_{Y} S)(Y, Z) = \alpha(X) S(Y, Z) + (1 - n)\beta(X) g(Y, Z)$$
 (5.2)

where α , β are defined as above.

Further from (3.3), we have

$$(\nabla_{X} S)(Y, Z) = \left[1 - 2n - \frac{r}{2}\right] [(\nabla_{X} \eta)(Y) \eta(Z) + (\nabla_{X} \eta)(Z) \eta(Y)].$$
 (5.3)

Let (M, g) be generalized Ricci recurrent manifolds, using (5.2) in (5.3)

$$\alpha(X) S(Y, Z) + (1 - n)\beta(X) g(Y, Z) = \left[1 - 2n - \frac{r}{2}\right] [g(X, Y)(Z) - \eta(X) \eta(Y) \eta(Z) + g(X, Z)(Y) - \eta(X) \eta(Y) \eta(Z)].$$
(5.4)

Putting $Y = Z = \xi$ in (5.4) and using (2.1) and (4.8), we get

$$(1-n)[\alpha(X)-\beta(X)]=0.$$
 (5.5)

This implies that $(1-n) \neq 0$ and $\alpha(X) = \beta(X)$ for any vector field X.

Theorem (5.1). If a 3-dimensional generalized Ricci recurrent Kenmostu manifold satisfies the relation (4.8) then $\alpha = \beta$.

References

- Kenmostu, K.: A class of contact Riemannian manifolds, Tohoku Math. Soc. J., 24 (43) (1972), 93-103.
- 2. Chain, B. Y.: Geometry of submanifold, Morcel Dekker, New York, 1973.
- 3. Kon, M.: Invariant submanifold in Sasakian manifold, Mathematics Che. Annales., 219 (1976), 277-290.
- Ferus, D.: A remark on Codazzi tensor I contact curvature space, lecture note in Mathematics, 538, Global Differential Geometry and Global Analysis, Springer Verlag, New York, 1983.
- 5. Yano, K. and Kon, M. : Structure on manifolds, Series in Pure Mathematics, 3 World Scientific Publishing Co., Singapore, 1984.
- 6. Pitis, G.: A remark on Kenmatsu manifolds, Bull. Univ. Brasoy Ser. C, 30 (1988), 31-32.
- 7. Mamassy, L. and Binh, T. Q. : On weakly symmetric and weakly projective symmetric Riemannian manifolds, Cal. Math. Soc. J., Bolyai, 56 (1992), 663-679.
- Mamassy, L. and Binh, T. Q.: On weakly symmetric of Einstein and Sasakian manifolds, Tensor (N. S.), 53 (1993), 140-148.
- 9. Blair, D. E.: Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203 (2002), Birkhauser Boston Inc., Boston.
- 10. Binh, T. Q. and Tamassy, L., De, U. C. and Tarafdar, M. : Some remark on almost Kenmostu manifolds, Math. Pannon, 13 (2002), 31-39.
- 11. Jun, J. B., De, U. C. and Pathak, G.: On Kenmostu manifolds, J. Kor. Math. Soc., 42 (2005), 435-445.
- Özgür, Chain : On Kenmostu manifolds satisfying certain Pseudo symmetry condition, World Appl. Sciences J. 1(2)(2006), 144-149.
- 13. Özgür, Chain: On generalized recurrent Kenmostu manifolds, World Appl. Sciences J. 2 (1)(2007), 29-33.