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1. Introduction\
Contact structures, even contact structures, and Engel structures are geometric structures on differentiable manifolds, mainly 
studied in the field of differential geometry especially in the study of dynamical systems and control theory. They all involve 
the study of distributions of tangent spaces and their behavior. All these structures are defined by non-integrable distributions, 
meaning that they describe systems where the tangent planes ”twist” in a non-trivial way and cannot be integrated into 
submanifolds.

Contact structures are defined in odd-dimensional geometry, arising in classical mechanics and dynamical systems. Although 
even contact structures extend these ideas to even-dimensional manifolds, bridging contact and symplectic geometry. Contact 
and even contact structures have a well-defined Reeb vector field that is transverse to the distribution and is integrable in the sens 
of Frobenuis as a distribution spanned by a one vector field. Engel structures are uniquely defined on 4-dimensional manifolds 
and are important in the study of nonholonomic systems and control theory. It is characterized by a rank-2 distribution   of 
the tangent bundle that satisfies a certain maximal non-integrability conditions. Engel structures derive sometimes from Cartan 
prolongations of contact 3-manifold and have a hierarchly of derived distributions crucial in understanding the structure’s 
dynamics. The distribution   is part of a flag of distributions: TM⊂ ⊂  , where   is a rank-2 distribution, and [ ],=    
is a rank-3 distribution, which is an even contact structure, that is a hyperplane field defined as the kernel of a 1 -form α  such 
that ( )ndα α∧  never vanishes on a 2n -dimensional manifold, in this case we have [ ], TM=  .

We can introduce so-called Engel defining forms α  and β , which were first studied in [1] and used as a technical tool in 
[ [11, 15,16] . With any choice of Engel defining forms, it is possible to associate a rank- 2 distribution ( )span ,T R= , where 
T  and R  are vector fields. The distribution   is tranverse to ( )TM = ⊕   , which is not usually integrable as in the case 
of Reeb field of contact or even contact structure. Futhermore in [13], a necessary and sufficient condition for the integrability 
of   is proven by N. Pia. The aim of this paper is to prove the following two Theorems:
Theorem 1.1. Let ( ),M ω  be a ( )2 2m + -dimensional oriented even contact manifold admitting an orientable characteristic 
foliation ( )ker ( )mdα α= ∧  ker(ω^(dω)n) with volume-preserving holonomy, such that M  is foliated by closed hypersurfaces transverses to 
 . Then for any nonvanishing closed 1-form η  on M , the following are equivalents.
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1. The family of 1-forms ( ) 0t tη ≥
 defined by t tη η ω= +  in a linear deformation of η  is a family of even contact structures 

for any 0t > .

2. ( ) 0mdη ω∧ = .

Theorem 1.2. Let M  be a closed and oriented 4-manifold endowed with a Engel structure =  ( )1 2ker ω ω∧  with Engel 
defining forms 1ω  and 2ω  and Reeb distributionv  Suppose there exist a pair of closed 
non-singular 1-forms ( )1 2,η η  satisfying
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then for all 0t > , the pair ( )1 2,t tη η  in a Engel deformation of ( )1 2,η η  in the way of ( )1 2,ω ω  are Engel defining forms if 
and only if
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The paper is organized as follow, in section 2 we give some preliminaries about contact, even contact and Engel structures, 
in section 3 we recall linear deformations and old results obtained by different authors. Lastly we prove in section 3 our 
announced Theorems.

2. Preliminaries
Contact, even contact and Engel structures are geometric structures on differentiable manifolds, bringing together nonintegrability 
conditions. Here’s an overview of each:

2.1. Contact and even contact structure
A contact structure is a specific type of hyperplane field on an odd-dimensional manifold. It is defined by a 1 -form that 
satisfies a certain non-degeneracy condition, that captures the idea of non-integrable distributions. It provides a framework 
for understanding various physical and geometric systems, especially those involving constraints, like in classical mechanics.
Definition 2.1. Let M  be a smooth manifold of dimension 2 1n + . A contact structure on M  is a maximally non-integrable 
hyperplane distribution TMξ ⊂ , locally given as the kernel of a 1-form α  (called the contact form), such that the non-
degeneracy condition holds:

 ( )  is a volume form on Mndα α∧ .

This means that α  is «maximally non-integrable,» ensuring that the distribution of tangent spaces described by α  does 
not come from a foliation of the manifold by submanifolds.

The contact structure is determined by the kernel of the contact form, i.e., ( )kerξ α= . While the 1-form α  is not unique 
(it can be scaled by a non-vanishing smooth function), the structure it induces is the same. Moreover we have :
Proposition 2.2 Let M  be ( )2 1a n + -dimensional manifold, equipped with a 1-form α . Then the followings are equivalents.
1.  The distribution ( )kerξ α=  is a contact structure on M .
2.  ( )ndα ∣  does not vanish anywhere.

3.  d ξα∣  is nondegenerate.

Proof. 1 2⇒  : By definition we have ( ) 0ndα α∧ ≠ , so p M∀ ∈ , we have 0pα ≠ . Indeed if there exists p M∈  such that 
0pα = , then 1 2 1, , n pv v T M+∀ … ∈ , we have:

 ( ) ( ) ( )
2 1 ˆ

1 2 1 1 2 1
1

( ) , , ( 1) ( ) , , , , 0.
n

n i n
in p i p np

i

d v v v d v v vα α α α
+

+ +
=

  ∧ … = − … … =      
∑

 
This is a contradiction since is a contact form. Therefore :p pT Mα →   is surjective, the dimension of ( )kerp pξ α=  is 

2n  and that imply TMξ ⊂  is subbundle of rank 2n . Since
 ( )1 2Vec , , ,p p nT M E u u= …
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with the condition ( ) 0p pEα ≠  and ( ) 0,  1, , 2p iu i nα = = … , we have
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Then for all p M∈  and for the frame { }1 2, , , nu u… …  of pξ  we have

 ( ) ( )1 2( ) , , , 0.n
np

d u uα … … ≠
 

Then we have ( )( )nd
ξ

α
∣

 is zero.

2 3 :⇒  If ( )d ξα∣  is degenerate in ξ , then there exists V ξ∈  such that 0Vi dα =  that imply ( ) 0n
Vi dα =  and this is a 

contradiction with 2 .
3 1⇒  Let ,X Y ξ∈  be two vector field such that ( ), 0d X Yα ≠  that is [ ]( ), 0X Yα ≠ . So [ ],X Y ξ∈  which is equivalent 

to the non integrability maximal of ξ . Then ξ  is a contact structure.
It’s well know tha given a contact form α  on M , there exists a uniquely determined global vector field Rα  on M , 

associated to α , called the Reeb vector field of α , such that:

 1 and 0.R Ri i d
α α
α α= =  

This vector field is crucial in the study of contact dynamics, as it generates flows that preserve the contact structure.

Example 2.3. 
1. Standard Contact Structure on 2 1n+  : In 2 1n+  with coordinates ( )1 1, , , , , ,n nx x y y z… … , the standard contact form is 

given by:

 
1

n

i i
i

dz y dxα
=

= −∑
2. The 3 -sphere 3  can be given a contact structure by considering it as the unit sphere in 2 .

The standard contact form on 3  is :

 ( )1 1 1 1 2 2 2 2
1
2

x dy y dx x dy y dxα = − + −

where ( )1 1 2 2, , ,x y x y  are coordinates on 4 .
One of the key properties of contact structures is Darboux’s theorem, which states that all contact structures are locally 

equivalent. Specifically, any contact structure in a neighborhood around a point can be transformed into the standard contact 
structure on 2 1n+ . This implies that, unlike symplectic structures, there are no local invariants for contact structures, making 
them locally “trivial”. Namely we have the following well know Theorem :
Theorem 2.4 (Darboux’s theorem). About each point p  of a contact manifold ( )2 1,nM α+  there exists local coordinates 
( )1 1, , , , , ,n nx x y y z   around p  such that the 1 -forms can be expressed as follows:

 
1

.
n

i i
i

dz y dxα
=

= −∑
 

Even contact structure is a generalization of contact structures to even-dimensional manifolds. Like contact structures, 
even contact structures describe non-integrable distributions, but they exist on even-dimensional manifolds and exhibit certain 
symplectic-like properties when restricted to subspaces of the tangent bundle.
Definition 2.5. Let M  be a ( )2 2n + -dimensional manifold and   a codimension one distribution of M . The distribution   
is an even contact structure on M  if for every local 1-form η , with kerη= , the ( )2 1n + -form 0ndη η∧ ≠ .

The pair ( ),M η  is called an even contact manifold and the above 1-form is called an even contact form or even contact 
structure.
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To each even contact structure one can associate a line field ⊂  , called its isotropic foliation or kernel foliation, which 
is the kernel of dα  restricted to ξ . When 2n = , the even contact condition is equivalent to [ ], TM=  .

Proposition 2.6. Let M  be a 2 2n + -dimensional manifold, and let α  be a 1-form. Define a distribution   as ( )ker .α=  
The followings are equivalent.
1. The distribution   is an even contact structure.
2. A 2n -form ( )ndα ∣  on a distribution   does not vanish anywhere.
3. The rank of a linear map , ( ,X d Xα→ 

   (X,.), is 2n.

Proof. Same as Proposition 2.2 .
We note that   has dimension 2 1n + , then the rank of dη∣  is 2n . Hence dη∣  has a kernel Z  that belongs to  . Furthermore 
for any f ∞∈ , ker ( ) ker ( )d f f dη η= ∣ ∣  thus the line fiels W  defined by the kernel of ( )2 1n + -forms ( )ndη η∧  do not depend 
on the choice of a local defining form η  for  . Hence, we have the following definition inspired in [?].
Definition 2.7. [16] The line field W  is the characteristic line field for  . The foliation
 ( )ker nd Wη η= ∧ =

induced by this line field is called the characteristic foliation.
For an explicit construction, we refer the reader to see ([4]).

Proposition 2.8. [10] Let ( ))2 2 , kermM η+ =  be an even contact structure with orientable characteristic foliation 
( )ker ( )mdη η= ∧ , then the following are equivalent:

1.    has volume-preserving holonomy;
2.    is the kernel of a closed ( )2 1n + -form;
3.  η  can be chosen so that d η  has constant rank 2m ;
4.  there exists a vector field ( )ÎZ M∈  transverse to   whose flow preserves  .
Proposition 2.9. [14] If   is an even contact structure in M  and if H  is a hypersurface in M  transverse to  , then the 
plane field ζ  given by THζ = ∩  is a contact structure on H .
Example 2.10. Let ( ),N ζ  be a contact manifold and φ  the coordinate on [ ]0,1 . The hyperplane field ( )Zφζ= ⊕ ∂ +   in 

[ ]0,1N ×  is then an even contact structure whose isotropic foliation is spanned by Zφ∂ +  if and only if Z  is a contact vector 
field (Reeb vector field) in ( ),N ζ .
Example 2.11. Let Z  be a contact vector field in the contact manifold ( 1 2, ,N X Xζ =  ). For a sufficiently big positive integer 
n, consider the plane field   spanned by
 ( ) ( )1 2  and  cos sinnW Z X n X n Xφ φ φ= ∂ + = +

The distribution   given by
 [ ],n n n=  

is an even contact structure on [ ]0,1N × . In particular, the isotropic foliation is spanned by W .

2.2. Engel manifolds
Definition 2.12. Let M  be a 4-dimensional manifold. A distribution of rank 2 or a 2-plane field   on M  is a distribution of 
2-dimensional tangent planes p pT M⊂  for any p M∈ .

It is considered as a rank 2 sub bundle of the tangent bundle TM . We can think   of as a locally free sheaf of smooth 
vector fields on M . Let [ ],   denote the sheaf generated by all Lie brackets [ ,X Y  ] of vector fields ,X Y  on M , which 
are cross sections of .� We set

 [ ] ( )2 3 2 2,   and  : , # 2.1D D D  = + = +      

The Engel structure is defined as follows.
Definition 2.13. A distribution   of rank 2 on a 4 -dimensional manifold M  is called an Engel structure if it satisfies,

 ( )2 33  and   4# 2.2p pdim dim= =   

at any point p M∈ . The pair ( ),M   is called Engel manifold.
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Example 2.14. Consider 4  with coordinates ( ), , ,x y zω  and the following distribution   givent by

 

Using 2.1 one can get easily
 

  is an Engel structure. It is the standard Engel distribution on 4 .
The following definition gives a link between Engel structre and Even contact structure.

Definition 2.15. [5] An Engel structure   is a smooth plane field on a 4-manifold M  such that [ ], =    is an even contact 
structure.

Let ( ),M   be an Engel manifold. By the definition and the equation in 2.1, we see that, the distribution 2=   is an even 
contact structure on M . See [16] for more details.

Notice that if an even contact structure   is induced by an Engel structure, that is [ ], =   , then   is tangent to  . 
Thus, an Engel structure   induces a flag of distributions

 .TM⊂ ⊂ ⊂    

Moreover, if   comes from an Engel structure, then it is canonically oriented, and an orientation of TM  induces an 
orientation of   and vice versa. If we assume that both   and M  areoriented, then this shows that   induces a framing of 
TM  which is well defined up to homotopy. In particular, two Engel structures cannot be homotopic through Engel structures 
if the associated framings are not homotopic.

The fact that there is a line field associated to an even contact structure/Engel structure means that Gray’s stability theorem 
cannot hold for these distributions: a varying family of even contact structures or Engel structures will induce a varying family 
of isotropic foliations. Hence, the even contact structures/Engel structures in the family are not diffeomorphic to each other 
since dynamical properties of the isotropic foliation can change. See for details [5].

2.3. Engel defining forms and Reeb distribution
Definition 2.16. [16] Two non-singular 1-forms ,α β  are called Engel defining forms if they verify the following properties:
 

( )

0

0# 2.5

0

d

d

d

α α

α β α

α β β

∧ ≠

∧ ∧ =

∧ ∧ ≠

The distribution ( )ker α β= ∧  is an Engel distribution on M .
The condition 0dα α∧ ≠  ensures that kerα=  is an even contact structure; denote with ( )ker dα α= ∧  its characteristic 

foliation. The condition 0dα β β∧ ∧ ≠  implies that ker β  is an even contact structure, and it ensures that its characteristic 
foliation is transverse to  . Finally the equation 0dα β β∧ ∧ =  implies that kerβ⊂ . Namely we have :
Proposition 2.17. Let M  be a 4-manifold and ( ),α β  be a pair of Engel form. Then we have:

a) ( )ker α=  is an even contact structure with characteristic foliation ( )ker dα α= ∧ .
b) ( )ker β′ =  is an even contact structure with caracteristic foliation ′ . ′⊂   and ′  transverse to  .
Proof. The first part of a) is trivial by (2.3). Additionnaly we have

 ( )ker  ,.v d vα = → 

  

If 0X ∈  then ( ) ( )
0 00X Xi d X d i dα α α α α α∧ = − ∧  or 0X ∈  et 

0
0Xi dα =  then

 ( ) ( )
0 00 kerXi d X dα α α α∧ = ⇒ ∈ ∧

Conversely if ( )
0

0Xi dα α∧ =  for 0X ∈ . Then we have 
0

0Xi dα α∧ =  that is 
0Xi dα  is a multiple of α . There exists 

:h M →   such that 
0Xi d hα α= . Therefore

 ( )
0 0, 0 .XX i d X Xα∀ ∈ = ⇒ ∈ � 
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b) since (2.5) we have 0dβ β∧ ≠ . If ( )ker dβ β= ∧′  then for W ∈ ′ , we have

 

( ) ) ( ) ( )
( )( )
( )

0,  by 5  0

 0

 0

 .

W Wi d W d i d

W d

W

W

α β β α β β α β β

α β β

α

∧ ∧ ≠ ⇒ ∧ − ∧ ∧ ≠

⇒ ∧ ≠

⇒ ≠

⇒ ∉  
So ′  doesn’t intersect  . We use the same proof by the condition of (2.5) for showing that ′⊂  .

Definition 2.18. Let ( )( )1 2, kerM ω ω= ∧  be an Engel manifold. The Reeb distribution associated to the forms 1ω  and 2ω  
is 1 2,Z Z=  and Z2 satisfies the following conditions:
 

( ) ( ) ( )
( ) ( ) ( )

( )2

1

1 2 2 2 1 2

2 2 2 1 1 1

0, 1, 0
# 2.7

0, 0, 1

Z

Z

i d Z Z

i d Z Z

ω ω ω ω

ω ω ω ω

∧ = = =

∧ = = =
 

The two following propositions will link some propreties between Engel structures and Engel defining forms.
Proposition 2.19. [14], [15] Let 4M  be a parallelizable smooth manifold and 1 2,ω ω  two 1-forms.

If 1ω  and 2ω  are Engel defining forms then the plane field 1 2kerω ω= ∧  is an orientable Engel structure. Conversely if 
  is an orientable Engel structure there exist Engel defining forms η  and ω  such that ( )1 2ker ω ω= ∧ .
Proposition 2.20. [13] Let ( )1 2, kerM ω ω= ∧  be a 4-manifold with Engel structure 1 2kerω ω= ∧  of Engel defining forms 

1ω  and 2ω  whose Reeb distribution  Then the Reeb distribution   is given by
 

{ } ( ) ( )
1 2 1 22 . 1 2 . 2 1 2  with  , # 2.8Z Z Z ZR ker d C C d Z Zω ω ω ω= + ∧ =

and it is integrable if and only if
 ( ) ( )

1 2. 1 2 0# 2.9Z Zd C ω ω∧ =

For more details about Even contact structure and Engel structure, see ([11], [13],[15],[15]).

3. Old results about Linear deformations
In this section, we recall the notion of deformation of codimension 1 foliation into contact structure.
Definition 3.1. Let M  be a smooth manifold. A foliation   of codimension 1 on M  is deformable into contact structures if 
there exist a one parameter family { } 0t t≥  of hyperplane fields satisfying 0 =   and t  is a contact distribution, for all 0t > .

Now, suppose   is defined by a closed 1-form 0α . Following [7], we say that a deformation t  of   is linear if there is 
a 1-parameter family of 1-forms of the form: 0t tα α α= + , where α  is a fixed 1-form on M  with ( )kert tα= . We will say 
that tα  is a linear deformation of 0α  via α .

The following result was proven by Dathe and Rukimbira in [7.]
Theorem 3.2. 77 Let M  be a closed ( )2 1n + -dimensional manifold, let 0α  be a closed 1 -form and α  a 1 -form on M . 
Then, the following conditions are equivalent.
(i)  The linear deformation 0t tα α α= +  of 0α  is a contact 1-form for all 0t > .
(ii)  The 1 -form α  is contact and ( )0 0Zαα = , where Zα  is the Reeb vector field of α .

Now let us given the notion of contact pair structure in the sens of Hadjar and Bande in sens of G. Bande and A. Hadjar 
as defined in [2].
Definition 3.3. [2] Let M  be an even-dimensional manifold. A pair ( ,α β ) of 1-forms is called contact pair on M  of type 
( ),k l  if ( ) ( )k ld dα α β β∧ ∧ ∧  is a volum form on M  and

 1 1( ) ( ) 0.k ld dα β+ += =  

For any contact pair forms ( ),α β  on M , it corresponds a pair ( ),Z Zα β  of commuting vector fiels uniquely determined 
by the relations
 ( ) ( ) ( ) ( )

( )
1  and  0

# 3.1
0  and  0Z Z Z Z

Z Z Z Z

i d i d i d i d
α α β β

α β β αα β α β

α β α β

 = = = =


= = = =
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Following H. Dathe and P. Rukimbira in [7], we have the following definition in [12].
Definition 3.4. Let 0α  and 0β  be two closed 1-forms on M  that are linearly independent at every point m M∈ . A linear 
deformation of ( )0 0,α β  is a pair ( ),t tα β  of 1-forms of the type:

 ( )0 0  and    0# 3.2t tt t tα α α β β β= + = + ∀ ≥  
for some α  and ( )1 Mβ ∈Ω .
The following result is proved by the authors of ([12]).

Theorem 3.5. [12] Let M  be a closed and oriented even-dimensional manifold and let 1  and 2  be two foliations in M  
defined by two linearly independent closed 1-forms 0α  and 0β , respectively. Consider the linear deformation ( ),t tα β  given by:
 

( )0 0  and   0# 3.2t tt t tα α α β β β= + = + ∀ ≥

for some α  and ( )1 Mβ ∈Ω . Then the couple ( ),t tα β  is a contact pair of type ( ),k l  for 0t >  whose associated pair of 

Reeb vector fields has the form 
1 1,X Y
t t

 
 
 

 (where X  and Y  are vector fields on M) if and only if ( ),α β  is a contact pair of 

type ( ),k l  whose pair of Reeb vector fields ( ),Z Zα β  satisfies the compatibility conditions
 ( ) ( ) ( ) ( ) ( )0 0 0 0 # 3.3Z Z Z Zα β α βα α β β= = =

4. Main results
4.1. Linear deformations of closed 1-forms into even contact forms
Definition 4.1. Let M  be a ( )2 2m + -dimensional smooth manifold endowed with a non-singular closed 1-form η . A linear 
deformation of η  into an even contact structure is given by a one parameter family tη  of the type

 ( ) 0,  where  is an even contact form on # 4.1t t t Mη η ω ω= + ∀ ≥

and for all 0, tt η>  is an Even contact structure on M .
We will say that η  is a linear deformable into even contact structure via ω .

Theorem 4.2. Let ( ),M ω  be a ( )2 2m + -dimensional oriented even contact manifold admitting an orientable characteristic 

foliation ( )ker ( )md= Ω∧ Ω  with volume-preserving holonomy, such that M  is foliated by closed hypersurfaces transverses 
to  . Then for any nonvanishing closed 1 -form η  on M , the following are equivalents.

1. The family of 1-forms ( ) 0t tη ≥
 defined by t tη η ω= +  in a linear deformation of η  is a family of even contact structures 

for any 0t > .
2.  ( ) 0mdη ω∧ = .

Proof. Under the assumptions of Theorem 4.2 we have
 

( ) ( )( ) ( ) # 4.2m m m m
t td t d t dη η η ω ω ω ∧ = ∧ + ∧ 

If ( ) 0mdη ω∧ =  then for all 0, tt η>  is an even contact structure on M .
Conversely suppose, suppose for all 0, tt η>  is an even contact structure on ( )0t tM dη η∧ ≠ . Then tη  is a contact 

structure on any closed oriented transverse hypersurface H  to the characteristic foliation  . Therefore ( ) 0m
t t Hdη η∧ >∣  

and this implies that ( ) ( ) 0m m
H

d t dη ω ω ω ∧ + ∧ > ∣
. Hence, from Dathe and Rukimbira (see [7] ), tη  is a linear deformation 

of η  if ( ) 0H Zη =∣  where Z  is the Reeb vector field of Hω∣  moreover ( ) 0m
Hdη ω∧ =∣  on every such hypersurface H . Since 

these hypersurfaces foliated M , then ( ) 0mdη ω∧ =  on M .
Let us given an application of Theorem 4.2.

Example 4.3. Consider the 6-dimensional Lie algebra 12
6n  given by

 
[ ] [ ] [ ] ( )1 6 5 1 5 4 2 3 4, , ,   and  , # 4.3X X X X X X X X X= = =

From the equation (4.3), the structural equations are given by:
 ( )5 1 6 4 1 5 2 3 1 2 3 6, , 0# 4.4d d d d d dλ λ λ λ λ λ λ λ λ λ λ λ= ∧ = ∧ = ∧ = = = =
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By easy cumputation, we see that the pair ( )4 6,λ λ  defines a contact pair structure of type ( )2,0  and in this case 4λ  is an 
even contact structure on 12

6n  since 2
4 4 0dλ λ∧ ≠  and the characteristic foliation is given by 6X= .

The 1-forms 1 2,λ λ  and 3λ  define the foliations 
1 2
,λ λ   and 

3λ  respectively and morever

 ( ) ( ) ( )1 4 2 4 3 4 1 6 2 6 3 60  and  0.d d d X X Xλ λ λ λ λ λ λ λ λ∧ = ∧ = ∧ = = = =  

Hence each foliations 
1 2
,λ λ   and 

3λ  is linearly deformable into even contact structures via 4λ  and these characteristic 

foliation spanned by  

4.2. Linear deformations of pair of closed non-singular 1-forms into Engel defining forms
Definition 4.4. Let M  be a 4-dimensional smooth manifold endowed with an Engel distribution ( )1 2ker ω ω= ∧  with Engel 
defining form 1ω  and 2ω . A linear deformation of a pair of codimension 1 foliations ( )1 2,   defining by a pair ( )1 2,η η  of 

non-singular closed 1-forms is a pair of 1-parameter family ( ){ }1 2 0
,t t

t
η η

≥
 of the type:

 
( )1 1 1 2 2 2  and  # 4.5t tt tη η ω η η ω= + = +

and for all ( )1 20, ,t tt η η>  is couple of Engel defining forms.

We will say that the pair of foliations ( )1 2,   defined by the pair of integrable 1-forms ( )1 2,η η  is linear deformable via 

the pair of Engel defining forms ( )1 2,ω ω .
Using the notations of the Definition 4.4 and we get, by simple calculations, the following equalities:

 
[ ] ( )

( ) ( )
( ) ( )

1 1 1 1 1 1

2
1 2 1 1 2 1 1 2 1 2 1 1 1 2 1

2
1 2 1 1 2 2 1 2 2 2 1 2 1 2 2

 # 4.6

 # 4.7

 # 4.8

t t

t t t

t t t

d t d t d

d t d t d d t d

d t d t d d t d

η η η ω ω ω

η η η η η ω ω η ω ω η ω ω ω ω

η η η η η ω ω η ω ω η ω ω ω ω

∧ = ∧ + ∧

 ∧ ∧ = ∧ ∧ + ∧ ∧ + ∧ ∧ + ∧ ∧ 
 ∧ ∧ = ∧ ∧ + ∧ ∧ + ∧ ∧ + ∧ ∧ 

For simplifying these expressions, we need the following three lemmas.
Lemma 4.5. By the above notations and assumptions we have:
 ( ) ( )

2 1 2 1 1 2 1 22 1 2 . 2 . 2 1 2  and    with  , # 4.9Z Z Z Z Z Z Z Zi d C i d C C d Z Zω ω ω ω ω⋅= − = =

P r o of .  F r o m  t h e  D e f i n i t i o n  2 .18 ,  we  h a ve  ( )
2 21 2 1 20 0Z Zi d i dω ω ω ω∧ = ⇒ ∧ = .  He n c e  we  h a ve 

( ) ( )
1 2 21 2 2 1 2 2 10 , 0Z Z Zi i d i d d Z Zω ω ω ω ω∧ = ⇒ − =  then 

2 1 22 . 1Z Z Zi d Cω ω= − . By the same way we show that 
1 1 22 . 2.Z Z Zi d Cω ω=

Lemma 4.6. Let ( )( )4
1 2, kerM ω ω∧  be an Engel manifold with a pair ( )1 2,ω ω  of defining Engel forms and Reeb distribution 

 then for any 1-forms ( )1 Mδ ∈Ω  we have:

 ( ) ( ) ( )1 2 2 2 2 1 1 2 2  and    with  # 4.10d Z d Z dδ ω ω δ δ ω ω δ ω ω ω∧ ∧ = − Ω ∧ ∧ = Ω Ω = ∧ ∧

Proof. The technique is to take the interior produit of a 5-forms by the vector field 1Z  or 2Z  and using the equations in 
the Definition (2.18).

Let ( )1 Mδ ∈Ω . The pair of Engel forms satisfies the equations (2.3), (2.4) and (2.5). We have 0δ ∧Ω = .
 ( )

( ) ( )
( )

( )
( ) ( )
( )

1 1 1

1

2 2 2

2

1 2 2 1 2 2

1 2 2

2 1 2 2 1 2

2 1 2

0 ( }  

 

 

0 ( }  

 

 .2

Z Z Z

Z

Z Z Z

Z

i i i

Z d i d

Z d

i i i

Z d i d

Z d

δ δ δ

δ δ ω ω δ ω ω ω

δ δ ω ω

δ δ δ

δ δ ω ω δ ω ω ω

δ δ ω ω

= ∧Ω = Ω− ∧ Ω

= Ω− ∧ ∧ + ∧ ∧ ∧

= Ω− ∧ ∧

= ∧Ω = Ω− ∧ Ω

= Ω− ∧ ∧ + ∧ ∧ ∧

= Ω+ ∧ ∧
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Then we get the result.
Proposition 4.7. With assumption of Lemma 4.6, we have:

 
( ) ( )( )

( )
1 2

2 1 2 1 2 2 1 1 2 2

1 2 2 1 2 1 2 . 1 1 1 2

# 4.11
, Z Z

d d Z Z

d Z Z C

ω η ω η ω ω η η

η η ω η η η η ω ω

 ∧ ∧ + ∧ ∧ = + Ω


∧ ∧ = ∧ ∧ Ω+ ∧ ∧ ∧

Proof. The first point of the above system follows from the first equation of Lemma 4.6, 1δ η=  then 2δ η= .
For the second one, observe that 1 1 2 2 0dω η η ω∧ ∧ ∧ =  and then by contracting with 1Z , we have:

 ( )
1 1 1 2 2 0Zi dω η η ω∧ ∧ ∧ =

By developping ang using the Lemma 4.5, one has the following equation:
 

 #(4.12)
Using the equations of Lemma 4.6, the equation (4.12) becomes

 ( ) ( ) ( ) ( ) ( )
1 21 2 2 1 1 2 2 2 1 1 2 . 1 2 1 2 0# 4.13Z Zd Z Z Z Z Cη η ω η η η η η η ω ω∧ ∧ − Ω+ Ω− ∧ ∧ ∧ =

Hence it follows that
 ( )

1 21 2 2 1 2 1 2 . 1 1 1 2, # 4.14Z Zd Z Z Cη η ω η η η η ω ω∧ ∧ = ∧ ∧ Ω+ ∧ ∧ ∧

Corollary 4.8. Let ( )( )4
1 2,M ω ω= ∧  be an Engel manifold with Engel defining forms 1ω , 2ω  and Reeb distribution 

1 2,Z Z= . Then any pair of closed 1-formes ( )1 2,η η  on M , and for all 0t > , the linear deformation ( )1 2,t tη η  of ( )1 2,η η  
via ( )1 2,ω ω  satisfies the following system:
 

( )
( )

( )( )
( )

1 2

1 1 1 1 1 1

1 2 1 1 2 1 1 2 1 2 1 1

1 2 2 . 1 2 1 2

# 4.15

t t

t t t

t t t
Z Z

d t d t d

d t d t d d

d t g t h t C

η η η ω ω ω

η η η η η ω ω η ω ω η ω

η η η η η ω ω

 ∧ = ∧ + ∧

 ∧ ∧ = ∧ ∧ + ∧ ∧ + ∧ ∧   


 ∧ ∧ = + + Ω+ ∧ ∧ ∧  

 

If we fix the generic condition

 
1 1

2 1

0

0

d

d

η ω

η ω

∧ =


∧ =
then system 4.15 becomes:

 

( )( )
( )

1 2

2
1 1 1 1

1 2 1

1 2 2 1 2 1 2

0 # 4.16

Ù

t t

t t t

t t t
Z Z

d t d

d

d t g t h t C

η η ω ω

η η η

η η η η η ω ω⋅

 ∧ = ∧

 ∧ ∧ =


 ∧ ∧ = + + + ∧ ∧ ∧  

Therefore, we get the following theorem.

Theorem 4.9. Let M  be a closed and oriented 4-manifold endowed with an Engel structure =  ( )1 2ker ω ω∧  with Engel 
defining forms 1 2,ω ω  and Reeb distribution  Suppose there exists a pair of closed 
non-singular 1-form ( )1 2,η η  satisfying
 1 1

2 1

0

0

d

d

η ω

η ω

∧ =


∧ =
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then for all 0t > , the pair ( )1 2,t tη η  in an Engel deformation of ( )1 2,η η  in the way of ( )1 2,ω ω  are Engel defining forms 
if and only if
 

Proof. Let us remark that, for the 4-form 1 2 1 2η η ω ω∧ ∧ ∧  is a volum form on M , then there exists a function ( )K C M∞∈  

suth that )1 2 1 2 1 2 2K dω ω η η ω ω ω∧ ∧ ∧ = ∧ ∧ .
 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1

1 2 2 1 2 1 2 1 2 2 1 2 2 1

1 1 2 2 1 2 2 1 2 1 2 2 2 1

, , , , , ,

 , , , , , ,

 , , 2 Z Z

Z Z Z Z Z Z Z Z

K d Z Z Z Z d Z Z Z Z

Z Z Z Z K d Z Z d Z Z KC

η η ω ω η η ω ω

ω ω ω ω ω ω

η η η η ω ω

∧ ∧ ∧ − ∧ ∧ ∧

= ∧ ∧ − ∧ ∧

= − = − =  

Hence, we obtain  and therefore the system 4.16 becomes
 

( ) ( )( )

( )

2
1 1 1 1

1 2 1

2
1 2 2 1 2 1 2 1 1 2 2

0 # 4.17

3 ,
2

t t

t t t

t t t

d t d

d

d t Z Z t Z Z t

η η ω ω

η η η

η η η η η η η


 ∧ = ∧
 ∧ ∧ =

  ∧ ∧ = ∧ ∧ + + + Ω   

 

It suffises to prove that 

 

( ) ( )1 1 2 2
1 2 2

1 2 1 2

0
0

, 0.
t t t

Z Z
d

Z Z

η η
η η η

η η

+ ≥∧ ∧ > ⇔ 
∧ ∧ =

If we suppose that 1 2 2 0t t tdη η η∧ ∧ >  then for all 0t > , one has

 ( ) ( )( ) ( )2
1 2 1 2 1 1 2 2

3 , 0# 4.18
2

Z Z t Z Z tη η η η∧ ∧ + + + >

and when t  goes to 0, we have by continuity also that  Furthermore 1 2 2dη η ω∧ ∧ =  

 By Stock’s theorem, since M  is closed we have
 

It follows that  Returning in the equation 4.18, we have for all 0t > , ( ) ( )( ) 2
1 1 2 2 0t Z Z tη η+ + >  

which implies that ( ) ( )1 1 2 2 0Z Z tη η+ + >  and when again t  goes to zero, we finally obtain ( ) ( )1 1 2 2 0Z Zη η+ ≥ . The converse 

is trivial.
Corollary 4.10. Let M  be a closed and orientable 4-manifold endowed with a Engel structure ( )1 2ker ω ω= ∧  with Engel 
defining forms 1ω  and 2ω  and Reeb distribution
 

Suppose there exists a pair of closed non-singular 1-forms ( )1 2,η η  such that
 

1 1 2 10  and  0d dη ω η ω∧ = ∧ =

If 1η  and 2η  are proportionals, then for all 0t > , the pair ( )1 2,t tη η  is a pair of Engel defining forms if and only if
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( ) ( )1 1 2 2 0.Z Zη η+ ≥

Proof. If the assumptions of the Corollary 4.10 is true then the 4 -form 1 2 1 2η η ω ω∧ ∧ ∧  vanish and therefore the system 
(4.16) becomes:
 

( ) ( )( )

2
1 1 1 1

1 2 1

2
1 2 2 1 1 2 2

0

t t

t t t

t t t

d t d

d

d t Z Z t

η η ω ω

η η η

η η η η η

 ∧ = ∧

 ∧ ∧ =


 ∧ ∧ = + + Ω  

 

So, it suffises to prove that ( ) ( )1 2 2 1 1 2 20 0t t td Z Zη η η η η∧ ∧ > ⇔ + ≥ .

Suppose that 1 2 2 0t t tdη η η∧ ∧ >  then for all  and when t  goes to 0, we have by continuity 

that ( ) ( )1 1 2 2 0Z Zη η+ ≥ . The converse is trivial.

Corollary 4.11. Let M  be a closed and orientable 4-manifold endowed with a Engel structure ( )1 2ker ω ω= ∧  with Engel 
defining forms 1ω  and 2ω  and Reeb distribution  Suppose there exist a pair of closed non-singular 1 -forms 

( )1 2,η η  such that
 1 1 2 1 0d dη ω η ω∧ = ∧ =

Then we obtain the following properties.
1. If the Reeb distribution is given by ( )1 2ker η η= ∧  the pair of 1 -forms ( )1 2,η η  is deformable to the pair ( 1 2,t tη η  ) 

of Engel defining forms in the way of Definition 4.4
2. If for { } ( ), 1, 2 , 0i ji j Zη∈ = , then for all 0t > , the pair of 1 -forms ( )1 2,η η  is deformable to the pair ( )1 2,t tη η  of 

Engel defining forms in the way of Definition 4.4 and the Reeb distribution associted to 1
tη  and 2

tη  is given by 
 

Proof. 1. For the first part, let us remark that if M  is a closed and orientable 4-manifold endowed with an Engel structure 

( )1 2ker ω ω= ∧  with Engel defining forms 1 2,ω ω  and Reeb distribution  then:
 

In that case, if the Reeb distribution is given by ( )1 2ker η η= ∧ , where 1 2,η η  are two closed non-singular 1-forms on 
M, then
 

1 21 2 2 1 2.Z Zd Cη η ω ω ω∧ = + ∧

Therefore 

For the second part, by 

 ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1
1 10 and 1 1t t t tZ Z Z Z Z
t t

η ω η η η = = ⇒ = = = 
 

 ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2
1 10 and 0 0t t t tZ Z Z Z Z
t t

η ω η η η = = ⇒ = = = 
 

 ( ) ( ) ( ) ( )2 1 2 1 2 1 2 1 2 1
1 10 and 0 0t t t tZ Z Z Z Z
t t

η ω η η η = = ⇒ = = = 
 

 ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2
1 10 and 1 1t t t tZ Z Z Z Z
t t

η ω η η η = = ⇒ = = = 
 
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By this method, we also get
 ( ) ( )

2 1
1 2 2 20  and  0.t t
t t t t

Z Zi d i dη η η η∧ = ∧ =

For illustrate the results of the Theorem 4.9, let us study the following examples.
Example 4.12. On 4 , the following forms
   and  dz ydx dy dxα β ω= − = −

are Engel forms with are the local prototype of Engel structures. The Reeb distribution associated is guiven by 

 Consider the following pair of foliations ( )1 2,   defined the pair of 1-forms ( )1 2,η η  with 1 2 dxη η= = . 

Since 

1 2

1 1

2 2

0

0

0,

d d

y z

y z

η α η β

η η

η η




∧ = ∧ =


 ∂ ∂  = =    ∂ ∂  


  ∂ ∂ = =    ∂ ∂  

 then for 0t > ,

the pair of 1-forms ( )1 2,t tη η  as defined in Definition 4.4 define a pair of Engel forms.

Example 4.13. On 4  with coordinates (x, y, z, t) the 1 -forms given by
 

( ) ( ) ( ) ( )1 2cos 2 sin 2   and  sin 2 cos 2dz t dx t dy t dx t dyω π π ω π π= − − = − +

define an Engel struture on 4  with associated Reeb distribution
 

Consider the following pair of foliations ( )1 2,   defined the pair of 1-forms ( )1 2,η η

with 1 2 dtη η= = . Since ( ) ( )
( ) ( )

1 1 2 1

1 1 1 2

2 1 2 2

0

0

0.

d d

Z Z

Z Z

η ω η ω

η η

η η

∧ = ∧ =
 = =


= =

 then for 0t > ,

the pair of 1-forms ( )1 2,t tη η  as defined in Definition (4.4) defined a pair of Engel forms.

Example 4.14. Conside the four dimensional Lie algebra nil4 given by
 [ ] [ ]1 4 3 1 3 2,   and  ,X X X X X X= =

Then the structures equations are given by
  # (4.21)

Using the equation (4.21), we have
 



 Linear deformations of closed non-singular 1-forms into even contact and Engel defining forms 13

Then the couple ( 2 3,λ λ  ) is a pair of Engel defining forms on the Lie algebra nil4 with the associated Reeb distribution 

Since 1 4 0d dλ λ= = , the couple ( )1 4,λ λ  defines a pair of codimension one foliations ( 
1 4
,λ λ   ).

 
( ) ( )
( ) ( )

1 2 1 1 3 1 2 1 3

1 3 1 1 4 4 2 4 3

0 0
 Since   and  

0 0

d X X

d X X

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

 ∧ = ∧ ∧ = = = 
 

∧ = ∧ ∧ = = = 

Then from the Theorem 4.9, the couple ( )1 4
,λ λ   is linear deformable into Engel structure ( 2 3,t tλ λ  ) via ( )2 3,λ λ  in the 

sens of definition 4.4 and of Reeb distribution given by
 

5. Conclusion
We have investigated the linear deformations of closed non-singular one forms into even and engel defining froms. For both 
we gave a necessary and sufficient condition of deformability. We have provided many examples for each deformation. In 
some approaches to canonical quantum gravity, the prequantization of the phase space involves an even contact structure. The 
hypersurfaces transverse to the characteristic foliation correspond to quantization levels, possibly relevant for the emergence 
of spacetime in quantum gravity. Even contact or Engel structures appear in geometric quantization, relevant for quantum 
gravity and loop quantum cosmology.
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