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Abstract

In this article, we study Pointwise bi-slant Riemannian maps (PBSRM) from almost Hermitian manifolds to Riemannian manifolds.
The current study aims to establish the various results satisfied by these maps from Kahler manifolds to Riemannian manifolds.
To check the existence of such maps, we provide an example. We derive some important results for these maps including the
necessary and sufficient conditions for integrability of distributions related to these maps.
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1. Introductions

In differential geometry, smooth maps have an important role in study the geometrical properties of a manifold in order to
compare with another manifold. It is well known that the Riemannian maps are the most important type of maps in Riemannian
geometry and these maps are the generalization of isometric immersion, Riemannian submersion and an isometry. In 1992,
the notion of Riemannian maps between Riemannian manifold was introduced by Fischer [7] as a generalization of isometric
immersions and Riemannian submersions.

The concept of Riemannian submersion was initiated by O’ Neill [17] and Gray [8] in 1966-67. The theory of almost
Hermitian submersions was introduced by Watson [27] in 1976. The vital role and capability of Riemannian submersions in
present science era can be seen in ( [2], [4], [5], [6], [18]). In 1995, Riemannian submersion has been used as an application to
robotics by Bedrossian and Spong [3]. Both of them showed it in the presence of a special category of robotic chains with zero
Riemannian curvature when potential energy and friction phenomena are totally disregarded. Further, in 2004, an interesting
application of Riemannian submersions for the theory of modeling and control of inessential robotic chain by Altafini [1].
Different types of Riemannian submersions are discussed by several geometers in ([13],[19], [22], [26]).

On the other hand, In 2010, Sahin [23] introduced Riemannian maps between almost Hermitian manifolds and Riemannian
manifolds. In 2014, Park and Sahin [20] discussed semi-slant Riemannian maps into almost Hermitian manifolds and Kumar et
al [21] also investigated various results about similar maps from almost contact manifolds into Riemannian manifolds in 2018.
In recent past, many authors have broadly studied various types of Riemannian maps ([9], [11], [14], [15], [24], [25]). Recently,
Kumar et al [12] have studied Clairaut semi-invariant- from Kenmotsu manifolds to Riemannian manifolds. Slant Riemannian
maps have many applications in various field of science. Therefore, it is very enticing different types

of slant Riemannian maps on various structures in complex as well as contact geometry. So, it is interesting to study
pointwise bi-slant Riemannian maps. A succint summary of the article is provided below.

In this paper, we investigate pointwise bi-slant Riemannian maps from almost Hermitian manifolds to Riemannian
manifolds. The paper is divided into four sections. In section 2, we recall all the basic definitions and terminologies which are
needed throughout the paper. In section 3, we study pointwise bi-slant Riemannian maps from Kéhler manifolds to Riemannian
manifolds. We investigate the integrability of distributions and derive the conditions for horizontal and vertical distributions
to be totally geodesic. In section 4, we construct an example to show the existence of such maps.




On Pointwise Bi-Slant Riemannian Maps 27

2. Preliminaries

Let M, be an even-dimensional differentiable manifold and J be a (1,1) tensor field on M, such that
J?=—I#(2.1)

where [ is identity operator. Then J is called an almost complex structure on M, . The manifold M, with an almost

complex structure J is called an almost complex manifold [28]. It is well known that an almost complex manifold is necessarily

orientable. Nijenhuis tensor N of an almost complex structure is defined as:
N(Z,,Vy)=[JZ,, IV, |2V, |- T [JZ,,V, |- T [ Z,, IV, ], forall Z,,V, eT(TM,).

If Nijenhuis tensor field N on an almost complex manifold M, is zero, then the almost complex manifold M, is called

a complex manifold.

Let g, bea Riemannian metric on M, such that
8u, (JZpJVz ) =8wm, (ZI’VZ ),ng (ZlaJVz) ="8um, (JZsz ),#(2-2)

forall Z,,V, e (TM,).

Then g, is called an almost Hermitian metric on M, and manifold M, with Hermitian metric g, is called almost
Hermitian manifold. The Riemannian connection V of the almost Hermitian manifold M can be extended to the whole tensor
algebra on M, . Tensor fields (V U ) is defined as

(Vo Vo =V, Vs = IV, Vs,

forall Z,,V, eI'(TM,) .

An almost Hermitian manifold (M1 &M, ,J) is called a Kédhler manifold [28] if

(V7)1 =0#(23)
forall Z,,V, e'(TM,).

Let (M 1>&M, ) and (M 2:8m, ) be a Riemannian manifold, where g,, and g,, are Riemannian metrics on C * -manifolds
M, and M, respectively.
Let F: (Ml,ng )—) (Mz,gM2 ) be a Riemannian maps. Define O’Neill’s tensors 7 and A by [17]
AgF=HV, VF +VV,  HF #(2.4)
TgF=HV, VF+VV, HF #(2.5)
for any vector fields E,F on M, , where V is the Levi-Civita connection of g, . It is easy to see that T, and A, are

skew-symmetric operators on the tangent bundle of M, reversing the vertical and the horizontal distributions.

From equations (2.4) and (2.5), we have
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Vi V=TV +VVV#(2.6)
VyZ=TyZ+HV yZ#(2.7)
V,X=A,X+VV,X#(238)

VW= HY W+ AW #(2.9)

for X,V eT(kerF.) and Z,W eT (ker F. )l , where HV yW = Ay, X ,if W is basic. It is not difficult to observe that 7°
acts on the fibers as the second fundamental form, while A acts on the horizontal distribution and measures the obstruction
to the integrability of this distribution [2].

We recall that the notation of second fundamental form of a map between two Riemannian manifolds. Let (M 18M, ) and
(M 2 gMz) be Riemannian manifolds and F: (M 158, ) - (M 2>&u, ) be a C” map then the second fundamental form of
F is given by [24]

(VE)(2,U)=V} (FU)-FE(V,U)#(2.10)

for Z,U e F(TM ] ) , Where v’ isthe pullback connection and we denote for convenience by V the Riemannian connections
of the metrics g,, and g, .

Finally we also recall that a differentiable map F between two Riemannian manifolds is totally geodesic if [16]

(VE)(Z,U)=0, forall Z,U e T(TM, )#(2.11)

A totally geodesic map is that it maps every geodesic in the total space into a geodesic in the base space in proportion to
arc lengths.

3. Pointwise bi-slant Riemannian maps(PBSRM)
In this section, we discuss some results satisfied by pointwise bi-slant Riemannian maps from a Kéhler manifold (M 1>&um, )

to a Riemannian manifold ( M,,g,, ).
Definition 1. Let (M 1>8um,»J ) be an almost Hermitian manifold and (M 2>8M, ) be a Riemannian manifold. A Riemannian
maps F': (Ml,ng ,J) - (MZ,gM2 ) is called a pointwise bi-slant Riemannian maps (PBSRM) if for i =1,2 the angles 6,

between JX; and a pair of orthogonal distributions D, respectively, are independent of the choice of the nonzero vector

X; eT'(ker F.) such that kerF, =D, ® D, and JD, L D,,D; L JD,. Then the angle 6, is called the slant function of the

PBSRM.
Let F' be pointwise PBSRM from an almost Hermitian manifold (Ml,ng ,J) to a Riemannian manifold (MZ,gM2 )

Then, we have
TM, = kerF. ® (kerF. )" #(3.1)

Now, for any vector field X, eI’ (kerF*) , we put

X, = PX, + OX, #(3.2)
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where P and Q are projection morphisms of ker Fi onto D, and D, , respectively.
For Z, e (Tker F. ), we set

JZ, = §Z, + 0Z, #(3.3)

where ¢Z, e (TkerF.) and wZ, e(Tker F.) .

Also for any non-zero vector field U, e I'(ker F/ )t , we have
JU, =BU, +CU, #(3.4)
where BU, eT'(ker i) and CU, eT(ker )" .

Lemma 1. Let ' be a PBSRM from an almost Hermitian manifold (M 1>&8um, >/ ) to a Riemannian manifold (M 28, )

Then, we have
¢V, + BV, =V, 0V, +CaV, =0

wBZ, +C*Z, =-Z,,¢BZ, +BCZ, =0

forall ¥} e (ker F) and U, € l“(kerF*)i :
Proof. Using equations (3.3), (3.4) and J? = —I , we have Lemma 3.2.

The proof of the following result is the same as given in [10], therefore, we omit its proof
Lemma 2. Let F' be a pointwise bi-slant Riemannian map from an almost Hermitian manifold (M 1>&um, >/ ) to a Riemannian

manifold (M 2-&u, ) Then, we have
(i) ¢*°Z, = —(0052491)21 ,for Z, eT'(Dy), where 6, is the slant function,
(i) BwZ, = —(sinzﬁl )Zl ,for Z, eT'(D,), where 6, is the slant function,
(iii) ¢*X, = —(cos292)X1, for X, eT'(D,), where 6, is the slant function,
(iv) BoX, = —(sin292 )X1 , for X, eI"(D,), where 6, is the slant function,
Lemma 3. Let F be a PBSRM from a Kéhler manifold (Ml,ng ,J) onto a Riemannian manifold (Mz,gM2 ) Then, we

have
Wy X, +Ty 0X, =Wy X, + BT, X,

T, ¢X, + HY,, 0X, = oW, X, +CTy, X,,
W, BX, + A, CX,=¢pA, X, + BHV , X,
Ay BX, + MV, CXy = 0Ay X, +CHV ; X,
Wy, BZ+T,, CZ, = ¢Ty, Z, + BHV , Z,,

T, BZ, + RV, CZ, = 0Ty, Z, + CHV , Z,,
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WZ] ¢U1 +AZ| wUl = BAZI Ul +¢WZI Ul

AZI ¢U1 + HVZI a)Ul = CUVZI Ul + CAZl Ul

forany Uy, X, eT(kerF.) and Z,, X, e [(ker £.)"
Proof. Using equations (2.3), (2.6)-(2.9), (3.3) and (3.4), we get equations (3.5)(3.12).
Now, we define

(Vi 8)Ui=VVy U, =47V, U #(3.13)

(Vy,0)U = HV  0U, -0V V , U, #(3.14)

1

(v2€)
)

(VB

X,=HV,;CX,-CHV, X, #(3.15)
X,=VV,BX, - BHVZIXz#(3.16)
forany X,,U; T (ker £2) and Z,, X, e[ (ker i )"
Lemmad4. Let F' bea PBSRM from a Kéhler manifold (M 1>&um,>J ) onto a Riemannian manifold ( M,, g M, ). Then, we have
(Vu8)X, =BT, X -Ty0X,
(Vo,0)X,  =CT, X, T, ¢X,,
(V,C)X, =wA, X, - A, BX,,
(V4B)X, =¢A;, X, - A, CX,,
for any vectors U, X, eT'(ker F) and U,, X, eI (ker F.).

Proof. Using equations (3.5)-(3.8) and (3.13)-(3.16), we get all equations of Lemma 3.5.
Theorem 1. Let ' be a PBSRM from a Kéhler manifold (Ml &M, ,J) to a Riemannian manifold ( M,,g,,, ) with the

slant function 6, . Then, the slant distribution D, is integrable if and only if
&m, (TZI opZ, - TZZ wpZ, W, )

= gy, (TZI wZ, - T, 0Z,,¢W ) + g, (HVZI 0Z, — MV, 0Z), 0l )

for Z,,Z, eT(D,) and W, eT(D,) .

Proof. For Z,,Z, eT'(D,), and W, eI'(D,), using equations (2.2), (2.3), (3.3), (3.4) and Lemma 3.3, we have
8u, ([ZDZZ]’VVI)

8u, (VzlJzz’JWl )_ng (VZZJZI’RVVI ),

(coszﬁl )ng ([Zlazz]’VVl ) —8m, (Vz1 w$Z,, W, ) +8um, (sz wpZ,, W, ) +

&m, (Vzla)Zz,JWl)—ng (sza)zlstl)-

By equation (2.7), we have

= (sin2 6 )ng ([Zlazz]an)—ng (Tzl w¢Zzan)+ng (Tzz w¢Zlan)+ &um, (TZ1 a’Z27¢Wl)

~8um, (TZZ wZy,¢W ) +8um, (Hvzl W0Zy, oW ) ~8m, (Hvz2 wZy, oW )
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which prove.
In a similar way in as above, we obtain the following Theorem.
Theorem 2. Let ' be a PBSRM from a Kéhler manifold (M 158, > ) to a Riemannian manifold ( M, gu, ) with the

slant function 6, . Then, the slant distribution D, is integrable if and only if
g, (TXI wpX, - Ty 0pX,.Y, )

= gu, (’TX]a)X2 —TXza)Xl,¢Yl)+ng (’HVX]a)X2 —HVXZle,in),
forall X|,X, el'(D,) and Y, eI'(D,).
Theorem 3. Let F be a PBSRM from a Kéhler manifold (Ml &M, ,J) to a Riemannian manifold (M2,gM2 ) with the
slant functions 6,6, . Then, (kerF, )i is integrable if and only if
(005202 —cos6, )gM] ([v1.7,].00)

= gy, ([:72], 00U ) - gy, (A, BVs = Ay, BV, 0U ) =gy, (HV},CV, =1V, W, 0U )

for V;,V, e (kerF )" and U e (kerF).
Proof. For 1;,V, e (kerF. )" and U e (kerF.), we have
g, (H75)0) = gu, (V37U )~ 83, (V1 70U
Using equations (2.2),(2.3),(2.8),(2.9),(3.2),(3.3),(3.4) and Lemma 3.3, we get
gu, ([1-72].0)
= gy, IV V2, 8PU )+ gy, (T3, 12, 90U )+ gy, (IV V200U ) -

&m, (JVV2V1’¢PU)_gM1 (JVV2V1’¢QU)_gM1 (JVVZVl’a)U)

= cos” Oigy,, ([V12]:U )+ (cos O, —cos 6 ) gy, ([11:72],0U ) = gy, (Vi Voo 0pU ) + 21,

(V171,080 )+ gy, (A, BV, 0U )+ gy, (HY),CVy,0U )= gy, (A, BV, 0U )= gy, (HV),CV;,0U )

Now, we get

= sinzﬁlng ([V1 ,Vz],U)

(005292 —coszﬁl)ng ([11.72],0U ) =gy, ([V1.72], 09U ) + g, (.AVIBV2 —.AVZBVl,a)U)+gMl (HVVICV2 —HVVZCV],a)U).

Theorem 4. Let /' be a PBSRM from a Kéhler manifold (M 1>&m, ,J ) to a Riemannian manifold (M 2,8, ) with the
slant functions 6,0, . Then the horizontal distribution ( kerF ) defines a totally geodesic foliation on M, if and only if
sinzelng ([Y1 A ], Yz)

= (05”6, —cos’0, ) gy, (W, 011, 15 ) +5in20,Z, [0 ] 2y, (P, PY,) +5in26,7, [0, ]2y, (OF, 0%, )= g, (A 097, 1)
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&M, (Hvzlel’a)Yz)_ng (Azla)Y],¢Y2)

for ;,Y, e (ker £.) and Z, e T (ker £.) .
Proof. For Y,,Y, eT'(ker F2) and Z, e T'(ker F )", using equations (2.2), (2.3), (3.2), (3.3) and Lemma 3.3, we have
gw, (Vi 5.2
==, ([N 2] %) -2, (V2 5 12
=gy, ([%.2].%)—cos’0.gy, (V, PY,, Y, )+5in26,Z,[6 ]2y, (P, 1)
005’0, (V, 00,1, )+5in260,7,[6;] gy, (OF;, 75 ) +

2w, (V4 08%. %) -2y, (V4,08 J%)
Now, using equations (2.8) and (2.9), we obtains
=sin*0g,, (Vy 1202
—sin’6,g,, ([YI,ZI],YZ)+(c0s2€1 —coszéz)ng (WleYl,Yz)+

sin26,Z, [0 gy, (PY,,PY ) +sin20,7, [0, ]y, (OY,.0%,) -

gu, (A @97, ) = gy, (HV 5, 08,0, )= gy, (A 0%.0Y,).
Theorem 5. Let F be a PBSRM a Khler manifold (M,, g, /) to a Riemannian manifold (M,,g,, ) with the slant

functions 6,6, . Then the vertical distribution (kerF )" defines a totally geodesic foliation on M, if and only if
8u, (VY]E* (0¢Z,),F. (Yz)) =8um, (Anwzl’BYz)JrgMz (VY]E‘ (0Z,).F. (CYz)),

8m, (VYlF* (092,).F. (Yz)) =8&u, (AY] a)Zz,BYz)+gM2 (VY]F* (@0Z,),F(CY, )) ,
for ¥;,Y, e(ker 2)",Z, €T (D)) and Z, eT(D,).
Proof. For ¥,,Y, € 1"(kerF*)l ,ZeT(Dy) and Z, eI'(D,). Using equations (2.2), (2.3), (3.3), (3.4) and Lemma 3.3, we

have
Em, (VYI Y2>Zl)

=—8um, (VYIZI,YZ),
2
=cos Gigyy, (VYthYz)JFgMI (V}’lw¢ZIHYZ)_gM1 (VYIleﬂBY2>_gM1 (VYICUZI’CYZ)
Now, using equations (2.9), and (2.10), we have

sin’6,g,,, (V4 %5.2 )

= g, (Vi F(042)), (%)) - gy, (A, 02, BY, ) - gy, (Vy e (02)), F (CY,) ).



On Pointwise Bi-Slant Riemannian Maps 33

Similarlly, we

sin’6,g,, (Vy,15,2, )

= 8u, (VYIE“ (w¢Zz)’F*(Yz))_gM1 (Ayla)Zz’BYz)_gMz (VYIE‘(a)Zz),F* (& ))

Theorem 6. Let ' be a PBSRM from a Kihler manifold (Ml,ng ,J) to a Riemannian manifold (Mz,gM2 ) with the

slant functions 6,8, . Then, the distribution D, defines a totally geodesic foliation on A, if and only if

8um, (TX10)¢X2aV1) =8um, (TX ‘(’Xz’¢V1)+gM1 (HVXIwXZ’le)a

1
sin®6gy, ([X1.U,]. X5 ) —sin20,U,[6 ] g, (X1, X,)

= gy, (A, 09X, X, ) - gy, (Ay, 0X,.0X, ) - gy, (HVy, 0X),0X, ),
for X,,X, eT(D,),V; eT(D,) and U, eT (ker F.)".
Proof. For X,, X, e [(D,),V; e[ (D,) and U, eT (ker £ )", using equations (2.2), (2.3), (2.7) and (3.3), we have

8y, (VXIXZﬂVl)
= gy, (VX007 )5
=g, (V8" X2 0 )~ 2, (Va, 080201 ) + 2, (Vi 0 X577 ),
=cos” 02y, (Vi X277 )= 2w, (T, 085,71 )+ &, (T, X271 )+ @, (HY x, 05, 01, ).

Now, we get

sin’6,g,, (V. X2.7 )

= —&um, (TX]a)¢X2’Vl)+gM] (TXIWX2,¢I/1)+gM1 (HVXla)Xz,le).

Next, using equations (2.2), (2.3), (3.3) and Lemma 3.3, we have
&M, (VXIinUl)

=—gy, ([X.U,].X,) -2y, (VUIXI,Xz),
=gy ([X.U]. %, )+ g, (VU] ¢2X1,X2)+ 2, (Vo, 09X, X, ) - g, (Vo 01,05 ),
=—sin’6,g,, ([X1.U,]. X, )+sin20U, [0 ] gy, (X1, X, )+
008’68y, (Vx, X2.U1 )+ &y, (Vo, 08, X, ) =gy, (Vo XX, )
Then form the equation (2.9), we get
sin’6,g,, (Vx, X5.U) )
= —sin’fgy, ([X.U,]. X, )+sin20,U,[6 ] gy, (X, X, )+

8um, (AUlw¢X1’X2)_gM, (-'41110))(15¢X2)—gM1 (HVU]‘OXDCUXz),

which completes the proof.
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In a similar way in as above, we obtain the following Theorem.

Theorem 7. Let F' be a PBSRM from a Kéhler manifold (M 15&um, ) to a Riemannian manifold (M 2>&u, ) with the

slant functions 6,6, . Then, the distribution D, defines a totally geodesic foliation on M, if and only if

8um, (Tyla’(/jYz’Vl): &m, (waYMV])ﬂLgMI (Hvxa)sta’K)s
Sinz‘glng ([YlaUl]ayz)_Sinz‘glUl [gl]ng (n.1)

2, (Ay, @971 ) - gy, (Au, 0. 0Y; ) - g, (HV 08, 013 ),
for Y;,Y, eT(D,),V; eT(D,) and U, eT (ker F.)" .
Theorem 8. Let ' be a PBSRM from a Kéhler manifold (M 1>&um, ) to a Riemannian manifold (M 2>&u, ) Then, F

is a totally geodesic map if and only if
00526’17}l PY, + 00521927}l 0y,
= HVy0¢PY, + HVy 0¢PY, + 0Ty Y, + CHVy 0),,

cos2<91AX1PY1 +005202AX1QYI
= HVy,0pPY + HV y QY + 0 Ay oY, + CHV y oY,
for ¥;,Y, eT(ker £) and X, X, e[ (ker )" .
Proof. Since F is a PBSRM, we have
(VE) (X, X,)=0,
for X, X, eT (kerF.)" .
For X,, X, e'(ker £.)", using equations (2.1), (2.3), 2.6), (2.7), (3.2), (3.3), (3.4) and Lemma 3.3, we have
(VE)(1.1,)
= F(JVyJ1,),
= F.(JVy $PY, + IV, 9OY, + IV, 0, ),
=F (—cos2 0, (T, PY, + VW, PY, ) +5in 26,1, [6,] PY, —cos” 0, (T;, OY, + WV, OY, | +sin 26, Y, 6, ] PY,
Ty, 0¢PY, + HVy @¢PY, + Ty opPY, + HVy 0pPY, + g7, Y, + &1y oY, + BHVy oY, + CHVY]a)Yz)
Next, using equations (2.1),(2.3),(2.6),(2.7),(3.2),(3.3),(3.4) and Lemma 3.3, we have
(VE)(X,.1).
=—F(Vy¥)

= F.(JV 5, ¢PY, +JV , gOY, +JV %),
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= F(~cos”6, (Ay, PY; + Wy PY, ) +5in20,.X, [6,] PY; -
cos’6, (AXIQYl +WX1QY1)+sin292X1 [6,]07, +
Ay opPY, + HV y 0pPY, + Ay 0pQY, + HV y 0gQY, +

Ay, Y + 0 Ay oY + BHV y o + CHY o,

Example
Note that given an Euclidean space R** with coordinates (X152 . X551, X5, ) We can canonically choose an almost complex
structure J on R* as follows:
0 0 0 0
J(b1 +by—+. +by +b,, J
ox X2 X2s-1 Oy
0 0 0 0
= “by—+bh—+.... by, +by, ,
o X2 Xy Oy,

where b,,b, ,

Example 1. Let Rg, g.s,J | be a Kdhler manifold with usual metric g, and R4,g + | be a Riemannian manifold with
p R R R

Riemannian metric

————— 00 0
sin“x; +cos”x;
0 1o 0
0 01 0
i o8 Xg +8in"xg |

where sin’x, +cos’x; # 0,cos%x, +sin’xg # 0. Define amap F:R® — R* by

F (), X ,Xg ) = (cosx; +sinxs, x,, x5, sinx, +cosxg ),

which is a pointwise bi-slant Riemannian map such that

o . 0 0
X, = cosxy—+siny —,X, =—
ox, X 0Ox,

0 . 0 0
X;= —,X, =sinxg —+cosxg —
0Ox4 Ox Oxg

kerF. =D, @ D,

where
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= <H :sinxli—cosygi,H2 =i

ox, 0x3 0x,4

H; = i,H4=cosx6i—sinx8i>
OX Oxg Oxg

with bi-slant functions x; and x;.

References

C. Altafini, Redundand robotic chains on Riemannian submersions, IEEE Transaction on Robotics and Automation, 20 (2004),
no. 2, 335-340.

P. Baird and JC. Wood, Harmonic Morphism Between Riemannian Manifolds, Oxford Science Publications, Oxford (2003).
Bedrossian NS. and Spong, NW. Feedback linearization of robot manipulators and Riemannian curvature, J. Robot Syst. 12 no. 8,
541-552 (1995).

JP. Bourguignon and HB. Lawson, Stability and isolation phenomena for Yan gmills fields, Commun. Math. Phys. 79 (1981).

JP. Bourguignon and HB. Lawson, A mathematician’s visit to Kaluza-Klein theory, Rend. Semin. Mat. Univ. Politec. Torino Special
Issue, (1989), 143-163.

M. Falcitelli, A. M. Pastore, and S. Ianus, Riemannian submersions and related topics, (2004).

A. E. Fisher, Riemannian maps between Riemannian manifolds, Contemp. Math., 132, (1992) 331-336.

A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-737.

Y. Giindiizalp and M. A. Akyol, Remark on conformal anti-invariant Riemannian maps to cosymplectic manifolds, Hecettepe
Journal of Mathematics and Statistics, 50(2021), (5), 1-9.

S. Kumar, R. Prasad and P. K. Singh, Conformal semi-slant submersions from Lorentzian para Sasakian manifolds
onto Riemannian manifolds, Commun. Korean Math. Soc., 34(2019) (2), 637-655.

S. Kumar, R. Prasad and S. Kumar, Clairaut semi-invariant Riemannian maps from almost Hermitian manifolds,
Turk. J. Math. 46(2022), no. 4, 1193-1209 .

S. Kumar, R. Prasad and P. K. Singh, CSI-&* Riemannian Maps from Kenmotsu Manifolds to Riemannian Manifolds, Gulf Journal
of Mathematics, 15 (2023) (2), 96-108,.

Kumar S, Kumar S, Prasad R, and Vanli, A., H-Quasi-Hemi-Slant Submersions, Commun. Korean Math. Soc. 38(2023) (2), 599—-620.
Y. Li, R. Prasad, A. Haseeb, S. Kumar and S. Kumar, A study of Clairaut semi-invariant Riemannian maps from Cosymplectic
manifolds, Axioms. 11 (2022), no. 10, 503.

M Bilal, S. Kumar, R. Prasad, A. Haseeb and S. Kumar, On h-Quasi-Hemi-Slant Riemann- ian Maps, Axioms. Nov 14(2022), 11(11),
P.641 .

T. Note, Second fundamental form of a map, Ann. Mat. Pura Appl. 146 (1986), 281-310.

B. O’Neill, The fundamental equations of a submersion, Mich. Math. J., Vol. 33 (1966), No. 13 458-469.

B. O’Neill, Semi Riemannian Geometry with Application to Relativity, Academic Press, New York, (1983).

K. S. Park and R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc, 50 (2013), No. 3, 951-962.

K. S. Park and B. Sahin, Semi-slant Riemannian maps into almost Hermitian manifolds, Czechoslov. Math. J., 64(2014), 1045-
1061 .

R. Prasad and S. Kumar, Semi-slant Riemannian maps from almost contact metric mani- folds into Riemannian manifolds, Thil.
Math. J., 11(2018), 19-34.

R. Prasad, PK. Singh and S. Kumar, On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds, Afrika
Matematika 32 (2021), no. 3, 403-417.

B. Sahin, Anti-invariant Riemannian maps from almost Hermitian manifolds, arXiv preprint arXiv:1210.0401, (2012).
B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Elsevier, Academic
Press (2017).

B. Sahin, Circles along a Riemannian map and Clairaut Riemannian maps, Bull. Korean Math. Soc. 54 (2017), no. 1, 253-
264.

SA. Sepet, HG. Bozok, Pointwise semi-slant submersion, Differential Geometry-Dynamical Systems, 22(2020), no. 1, 1-10.

B. Watson, Almost Hermitian submersions, J. Differ. Geom. 11(1976), no. 1, 147-165.

K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore (1984).



