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Abstract

We define a new type of semi-symmetric non-metric connection on
a Riemannian manifold and established its existence. Further, we find
some basic results of curvature tensor and Ricci tensor. It is proved
that such connection on a Riemannian manifold is projectively invariant
under certain conditions. We also studied some properties of submani-
folds of the Riemannian manifolds with respect to the semi-symmetric
non-metric connection D. To validate our findings, we construct two
non-trivial examples of 3-dimensional and 5-dimensional Riemannian
manifold equipped with a semi-symmetric non-metric connection D.
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1 Introduction

Let Mn be an n-dimensional Riemannian manifold and let D denote the Levi-
Civita connection corresponding to the Riemannian metric g on Mn. A linear
connection D defined on Mn is said to be symmetric if its torsion tensor T on
D defined by

T (X, Y ) = DXY −DYX − [X, Y ],

is zero for all X and Y on Mn; otherwise, it is non-symmetric. In 1924, Fried-
mann and Schouten [9] considered a differentiable manifold and introduced the
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idea of a semi-symmetric linear connection on it. A linear connection on Mn

is said to be semi-symmetric if

T (X, Y ) = [η(X)Y − η(Y )X]− [a(X)Y − a(Y )X], (1.1)

holds for all vector fields X, Y on Mn, where η and a are two non-zero 1- forms
associated with the vector fields U and V such that

η(X) = g(X,U) and a(X) = g(X, V ). (1.2)

In 1932, Hayden [10] gave the idea of a metric connection D on a Rieman-
nian manifold and later named such connection as a Hayden connection. A
linear connection D is said to be metric on Mn, if Dg = 0; otherwise, it is
non-metric. A systematic study of the semi-symmetric metric connection D
on Riemannian manifold was initiated by Yano [23]. Various properties of
such connection have been studied by Imai [11], Nakao [13], Smaranda [21],
Amur and Pujar [3], Barua and Ray [5], Hit [20], De and Biswas [8] and
many authors. In 1992, Agashe and Chafle [1] introduced a new class of con-
nection, called the semi-symmetric non-metric connection on a Riemannian
manifold and obtained its various geometric properties. This was further de-
veloped by Agashe and Chafle [2], Prasad [14], De and Kamilya [7], Tripathi
and Kakkar [22] and several geometers. Binh, De and Sengupta [6], Prasad
and Verma [15] defined new types of semi-symmetric non-metric connections
on Riemannian manifold in which they generalized the Yano’s [23] and Agashe
and Chafle’s [1] connections and studied some properties of curvature tensor,
Ricci tensor and Projective curvature tensor with respect to such connections.
In 2008, Prasad, Verma and De [16] introduced the most general form of the
semi-symmetric metric and non-metric connections on a Riemannian manifold
which includes the known semi-symmetric metric and non-metric connection.
Recently, Prasad, Dubey and Yadav [4], Prasad and Haseeb [18], Prasad et al.
[19] and Prasad, Kumar and Singh [17] defined and studied a new type of semi-
symmetric non-metric connection on Riemannian manifolds. Motivated by the
above studies, in the present paper, we define a new type of semi-symmetric
non-metric connection on a Riemannian manifold and then prove its existence.

We organize our present work as follows: After an introduction in section
1, we define a new type of semi-symmetric non-metric connection on a Rie-
mannian manifold and proved its existence in Section 2. In Section 3, we
established the relation between curvature tensors of the Levi-Civita D and
semi-symmetric non-metric connections D and prove some algebraic properties
of the curvature tensors and Ricci tensor of D. The necessary and sufficient
conditions for projectively invariant curvature tensors are proved in section
4. Section 5, deals with the submanifolds and its relation with Riemannian
manifold. In the last Section 6, we construct two non-trivial examples of 3-
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dimensional and 5-dimensional Riemannian manifold with a semi-symmetric
non-metric connection and prove some results.

2 Semi-symmetric non-metric connection D

Let (Mn, g) be a Riemannian manifold of dimension n endowed with a Levi-
Civita connection D corresponding to the Riemannian metric g. A linear
connection D on (Mn, g) defined by

DXY = DXY + η(X)Y − a(X)Y, (2.1)

for arbitrary vector fields X and Y on Mn is said to be a semi-symmetric
connection if the torsion tensor T on Mn with respect to D satisfies equation
(1.1) and (1.2). In view of equation (2.1), the metric g holds the relation

(DXg)(X, Y ) = −2η(X)g(X, Y ) + 2a(X)g(X, Y ) ̸= 0, (2.2)

for all vector fields X, Y and Z on Mn and called semi-symmetric non-metric
connection.
Remark 1 If in particular a = 0 then our connection becomes DXY =
DXY + η(X)Y .
This is defined Melhrotra [12] .
Remark 2 If we take η = a, then the connection is trivial. So, it must said
η ̸= a.
Now, we prove the existence of such connection on an n-dimensional Rieman-
nian manifold in the following theorem.

Theorem 2.1 Let (Mn, g) be an n-dimensional Riemannian manifold endowed
with the Levi-Civita connection D. Then there exist a unique linear connection
on Mn called a semi-symmetric non-metric connection given by (2.1) and it
satisfies equation (1.1) and (2.2).

Proof: We suppose that (Mn, g) is a Riemannian manifold of dimension n
and equipped with a linear connection. Then the Levi-Civita connection D
are connected by the relation

DXY = DXY +H(X, Y ), (2.3)

for arbitrary vector fields X and Y on Mn, where H is a tensor of type (1,2).
By definition of the torsion T and equation (2.3), we conclude that

T (X, Y ) = H(X, Y )−H(Y,X), (2.4)

which gives

g(T (X, Y ), Z) = g(H(X, Y ), Z)− g(H(Y,X), Z). (2.5)
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From (1.1) and (2.5), we have

g(H(X, Y ), Z)− g(H(Y,X), Z) =η(X)g(Y,X)− η(Y )g(X,Z)−
a(X)g(Y, Z) + a(Y )g(X,Z).

(2.6)

In the view of equation (2.1), we conclude that

g(H(X, Y ), Z) + g(H(X,Z), Y ) = 2η(X)g(Y, Z)− 2a(X)g(Y, Z),

⇒ g(H(X, Y ), Z) + g(H(X,Z), Y ) = −(DXg)(Y, Z),

⇒ (DXg)(Y, Z) = −H ′(X, Y, Z), (2.7)

where
H ′(X, Y, Z) = g(H(X, Y ), Z) + g(H(Y,X), Z).

Further, we have

g(T (X, Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X)

= g(H(X, Y ), Z)−H ′(X, Y, Z) +H ′(Z,X, Y )−H ′(Y,X,Z),
(2.8)

where equations (2.4), (2.5) and (2.7) are used. In consequences of equations
(2.2) and (2.7), the equation (2.8) assumes the form

2g(H(X, Y ), Z) = g(T (X, Y ), Z) + g(T ′(X, Y ), Z) + g(T ′(Y,X), Z)

= 2η(X)g(Y, Z) + 2η(Y )g(X,Z)− 2η(Z)g(X, Y )

− 2a(X)g(Y, Z)− 2a(Y )g(X,Z) + 2a(Z)g(X, Y ),

(2.9)

where

g(T
′
(X, Y ), Z) = g(T (Z,X), Y ) = η(Z)g(X, Y )−

η(X)g(Z, Y )− a(Z)g(X, Y ) + a(X)g(Z, Y ),
(2.10)

and

g(T
′
(Y,X), Z) = g(T (Z, Y ), X) = η(Z)g(Y,X)−

η(Y )g(Z,X)− a(Z)g(Y,X) + a(Y )g(Z,X),
(2.11)

for all vector fields X, Y and Z on Mn. By using equation (2.10) and (2.11)
in equation (2.9), we have

g(H(X, Y ), Z) = η(X)g(Y, Z)− a(X)g(Y, Z),

⇒ H(X, Y ) = η(X)Y − a(X)Y. (2.12)

Thus, equations (2.3) and (2.12) gives (2.1). This proves the existence of such
connection.
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Theorem 2.2 On an n-dimensional Riemannian manifold (Mn, g) endowed
with a semi-symmetric non-metric connection D, the torsion tensor T satisfies
the following algebraic properties:

′T (X, Y, Z) +′ T (Y,X,Z) = 0,

′T (X, Y, Z) +′ T (Y, Z,X) +′ T (Z,X, Y ) = 0.

Proof : We define ′T (X, Y, Z) = g(T (X, Y ), Z) on (Mn, g). Therefore, equa-
tion (1.1) gives

′T (X, Y, Z) =η(X)g(Y,X)− η(Y )g(X,Z)−
a(X)g(Y, Z) + a(Y )g(X,Z),

(2.13)

with the help of equation (2.13), we can easily prove the statement of Theorem
2.2.

Theorem 2.3 If (Mn, g) is an n-dimensional Riemannian manifold equipped
with a semi-symmetric non-metric connection D, then T is cyclically parallel
if and only if 1- form η and a are closed.

Proof: Taking the covariant derivative of (1.1) with respect to the semi-
symmetric non-metric connection D, we find that

(DXT )(Y, Z) =[(DXT )η(Y )Z − (DXT )η(Z)Y ]

− [(DXT )a(Y )Z − (DXT )a(Z)Y ].
(2.14)

The cyclic sum of (2.14) for vector fields X, Y and Z, we get

(DXT )(Y, Z) + (DY T )(Z,X) + (DZT )(X, Y ) =

[(DXη)(Y )− (DY η)(X)− (DXa)(Y ) + (DY a)]Z

+ [(DZη)(X)− (DXη)(Z)− (DZa)(X) + (DXa)(Z)]Y

+ [(DY η)(Z)− (DZη)(Y )− (DY a)(Z) + (DZη)(Y )]X.

(2.15)

From equation (2.15), we can easily show that (DXT )(Y, Z)+ (DY T )(Z,X)+
(DZT )(X, Y ) = 0 if and only if 1-form η and a are closed. Hence Theorem 2.3
is proved.

Proposition 2.4 If an n-dimensional Riemannian manifold (Mn, g) admits
a semi-symmetric non-metric connection D, then the Lie derivatives along the
vector fields U and V corresponding to D is equal to Lie derivative along the
vector fields U and V with respect to D if and only if η(X)η(Y ) = a(X)a(Y ).
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Proof : It is well known that

(LUg)(X, Y ) = g(DXU, Y ) + g(X,DYU)

and (LV g)(X, Y ) = g(DXV, Y ) + g(X,DY V ),
(2.16)

holds for arbitrary vector fields X and Y on Mn, where LU and LV denote the
Lie derivatives along the vector fields U and V corresponding toD respectively.

Analogous to the above definition of D, we define

(LUg)(X, Y ) = g(DXU, Y ) + g(X,DYU)

and (LV g)(X, Y ) = g(DXV, Y ) + g(X,DY V ),
(2.17)

holds for arbitrary vector fields X and Y on Mn, where LU and LV denote the
Lie derivatives along the vector fields U and V corresponding toD respectively.

On adding (2.16) and (2.17) and using equation (1.1), we find

(LUg)(X, Y ) + (LV g)(X, Y ) =(LUg)(X, Y ) + (LV g)(X, Y )+

2[η(X)η(Y )− a(X)a(Y )].

Hence, the statement of Proposition 2.4 is proved.

If the vector fields U and V are killing on (Mn, g), then (LUg)(X, Y ) = 0
and (LV g)(X, Y ) = 0. Thus, we can state the following proposition:

Proposition 2.5 If an n-dimensional Riemannian manifold (Mn, g) admits
a semi-symmetric non-metric connection and U and V are killing vector fields
with respect D, then Lie derivative with respect to D is also killing if and only
if η(X)η(Y ) = a(X)a(Y ).

3 Curvature tensor with respect to the semi-

symmetric non-metric connection D

Let (Mn, g) be an n-dimensional Riemannian manifold admitting a semi-symmetric
non-metric connection D. The curvature tensor R corresponding to D is de-
fined by

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z, (3.1)

for arbitrary vector fieldsX, Y and Z on (Mn, g) and the Riemannian curvature
R of the Levi-Civita connection D defined by

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z, (3.2)
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for all vector fields X, Y and Z on (Mn, g). In view of equation (1.1), (3.1)
and (3.2), we get

R(X, Y )Z = R(X, Y )Z + dη(X, Y )Z − da(X, Y )Z, (3.3)

where η and a are tensor field of type (0,2) and given by

(DXη)Y − (DY η)X = dη(X, Y ) and (DXa)Y − (DY a)X = da(X, Y ). (3.4)

Contracting (3.3) with respect to X, we have

Ric(Y, Z) = Ric(Y, Z) + dη(Y, Z)− da(Y, Z), (3.5)

Again, contracting (3.5) with respect to Y and Z, we get

r = r, (3.6)

where r and r are scalar curvature with respect to D and D respectively.

Proposition 3.1 Let (Mn, g) denote an n- dimensional Riemannian manifold
endowed with a semi-symmetric non-metric connection D. Then the scalar
curvatures r of D is equal to scalar curvature of D.

Interchanging Y and Z in (3.5) , we have

Ric(Z, Y ) = Ric(Z, Y ) + dη(Z, Y )− da(Z, Y ), (3.7)

Subtracting (3.7) from the equation (3.5) and then using the symmetric prop-
erty of the Ricci tensor in it, we conclude that

Ric(Y, Z)−Ric(Z, Y ) = 2[dη(Y, Z)− da(Y, Z)]. (3.8)

In view of (3.8) , we are in a position to state the following proposition:

Proposition 3.2 If an n-dimensional Riemannian manifold (Mn, g) admits
a semi-symmetric non-metric connection D, then the Ricci tensor Ric corre-
sponding to the connection D is symmetric if and only if dη(Y, Z) = da(Y, Z).

Theorem 3.3 Let (Mn, g) be a n-dimensional Riemannian manifold for equipped
with a semi-symmetric non-metric connection D, then the following relations
hold for all the vector fields X, Y, Z and W on Mn:

(i) R(X, Y )Z +R(Y,X)Z = 0,

(ii) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

(iii) (DXR)(Y, Z)W+(DYR)(Z,X)W+(DZR)(X, Y )W = −2[{η(X)− a(X)}R(Y, Z)W+
{η(Y )− a(Y )}R(Z,X)W + {η(Z)− a(Z)}R(X, Y )W ],
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(iv) ′R(X, Y, Z,W ) +′ R(X, Y,W,Z) = 2[dη(X, Y )− da(X, Y )]g(Z,W ),

(v) ′R(X, Y, Z,W )−′R(Z,W,X, Y ) = [dη(X, Y )−da(X, Y )]g(Z,W )−[dη(Z,W )−
da(Z,W )]g(X, Y ).

Proof: Interchanging X and Y in equation (3.3) and then adding with (3.3),
we obtain (i). Again from (3.3), we find

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

This expression shows that the Riemannian manifold (Mn, g) equipped with
a semi-symmetric non-metric connection D satisfies Bianchi’s first identity.
Thus, result (ii). Bianchi’s second identity for a semi-symmetric non-metric
connection D is given by the expression

(DXR)(Y, Z)W + (DYR)(Z,X)W + (DZR)(X, Y )W =

−R(T (X, Y ), Z)W −R(T (Y, Z), X)W −R(T (Z,X), Y )W,

for arbitrary vector fields X, Y, Z and W on Mn.

With the help of equation (1.1), (i) and the last expressions, we can easily
find (iii). If we define ′R(X, Y, Z,W ) = g(R(X, Y )Z,W ) and ′R(X, Y, Z,W ) =
g(R(X, Y )Z,W ), then equation (3.4) becomes

′R(X, Y, Z,W ) = ′R(X, Y, Z,W ) + dη(X, Y )g(Z,W )− da(X, Y )g(Z,W ),
(3.9)

or all vector fields X, Y, Z and W on Mn. Expressions (iv) and (v) are obvious
from equations (3.4) and (3.9) and the symmetric properties of the curvature
tensor. Hence, the proof is complete.

4 Projective Curvature tensor with respect to

D

Theorem 4.1 Let (Mn, g) be a Riemannian manifold of dimension (n > 2)
equipped with a semi-symmetric non-metric connection defined in equation
(2.1). Then the projective curvature tensor with respect to D is equal to the
Projective curvature tensor with respect to D if and only if dη(Y, Z) = da(Y, Z).

Proof: The Projective curvature tensor P with respect to D is defined by

P (X, Y )Z = R(X, Y )Z − 1

n− 1
[Ric(Y, Z)X −Ric(X,Z)Y ]. (4.1)
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By using equation (3.3) and (3.5) in equation (4.1), we have

P (X, Y )Z =P (X, Y )Z − 1

n− 1
[dη(Y, Z)− da(Y, Z)X]+

1

n− 1
[dη(X,Z)− da(X,Z)]Y + [dη(X, Y )− da(X, Y )]Z,

(4.2)

where

P (X, Y )Z = R(X, Y )Z − 1

n− 1
[Ric(Y, Z)X −Ric(X,Z)Y ], (4.3)

for all the arbitrary vector fields X, Y and Z on (Mn, g).

From equation (4.2), we get

P (X, Y )Z = P (X, Y )Z, if and only if dη(Y, Z) = da(Y, Z).

Thus, Theorem 4.1 is proved.

Let Mn be the Riemannian manifold satisfying

R(X, Y )Z = 0. (4.4)

Therefore, by contracting equation (4.4), we get

Ric(Y, Z) = 0. (4.5)

Using (4.4) and (4.5) in equation (4.1), we get

P (X, Y )Z = 0. (4.6)

In view of (4.6) and (4.2), we get

P (X, Y )Z =
1

n− 1
[dη(Y, Z)− da(Y, Z)X]−

1

n− 1
[dη(X,Z)− da(X,Z)]Y − [dη(X, Y )− da(X, Y )]Z.

(4.7)

Hence in the view of (4.7), we have the following proposition:

Proposition 4.2 If in a Riemannian manifold the curvature tensor of semi-
symmetric non-metric connection D vanishes then the manifold with respect
to D is projectively flat if and only if dη(Y, Z) = da(Y, Z).

Theorem 4.3 Let (Mn, g) be an n-dimensional Riemannian manifold equipped
with a semi-symmetric non-metric connection D, then the projective curvature
tensor for all the vector fields X, Y and Z on (Mn, g) holds the following rela-
tions:
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(i) P (X, Y )Z + P (Y,X)Z = 0,

(ii) P (X, Y )Z + R(Y, Z)X + R(Z,X)Y = 0, if and only if dη(X, Y ) =
da(X, Y ).

Proof Interchanging X and Y in equation (4.2) and then adding with (4.2),
we obtain

P (X, Y )Z + P (Y,X)Z = 0.

Again, from equation (4.2), we have

P (X, Y )Z+R(Y, Z)X+R(Z,X)Y = 0, if and only if dη(X, Y ) = da(X, Y ).

5 Submanifold of a Riemannian manifold with

respect to the semi-symmetric non-metric

connection D

Let (Mn−2, g) be an (n−2)-dimensional submanifold of an n-dimensional Rie-
mannian manifold Mn. Suppose i : Mn−2 −→ Mn is an inclusion map such
that p ∈ Mn−2 −→ pi ∈ Mn. The inclusion map i induces a Jacobian map
K : T (Mn−2) −→ T (Mn), where T (Mn−2) and T (Mn) denote the tangent
spaces to Mn−2 at i and Mn at p, respectively. Let L be a metric tensor of
Mn and g be an induced metric tensor of the submanifold Mn−2 at p and i,
respectively. Then we have

L(KX,KY )op = g(X, Y ), for every X, Y ∈ T (Mn−2).

Let S1 and S2 and to be two mutually orthogonal unit normal vector fields to
the submanifold Mn−2 satisfying the following relations:

(i) L(KX,S1) = L(KX,S2) = L(S1, S2) = 0,

(ii) L(S1, S1) = L(S2, S2) = 1. (5.1)

Let D be the induced connection on Mn−2 corresponding to the Levi-Civita
connection D on Mn. Then we can write

DKXKY = K(DXY ) + q1(X, Y )S1 + q2(X, Y )S2, (5.2)

for all vector fields X and Y on Mn−2. Here q1 and q2 denote the second funda-
mental tensors of the submanifold Mn−2. Let D be the induced connection of
the submanifold Mn−2 corresponding to the semi-symmetric non-metric con-
nection D on Mn defined as (2.1). Then for the unit normal vectors S1 and
S2, we have

DKXKY = K(DXY ) + ϕ1(X, Y )S1 + ϕ2(X, Y )S2, (5.3)



44 Anubhavi Gupta, Bhagwat Prasad and Rana Pratap Singh Yadav

for arbitrary vector fields X and Y of Mn−2 and ϕ1 and ϕ2 denote the tensor
fields of type (0,2) of the submanifold Mn−2.

Theorem 5.1 The induced connection D on the submanifold Mn−2 of the Rie-
mannian manifold Mn endowed with a semi-symmetric non-metric connection
D is also a semi-symmetric non-metric connection.

Proof: In view of equation (2.1), we have

DKXKY = DKXKY + η(KX)KY − a(KX)KY, (5.4)

for all arbitrary vector fields X and Y . In consequences of equation (5.1), (5.2)
and (5.3), equation (5.4) assumes the form

K(DXY ) + ϕ1(X, Y )S1 + ϕ2(X, Y )S2 = K(DXY )+

q1(X, Y )S1 + q2(X, Y )S2 + η(KX)KY − a(KX)KY,

which gives

K(DXY ) = K(DXY ) + η(KX)KY − a(KX)KY,

⇒ DXY = DXY + η(X)Y − a(X)Y, (5.5)

and

q1(X, Y ) = ϕ1(X, Y ) and q2(X, Y ) = ϕ2(X, Y ). (5.6)

Thus, the induced connection D and D on Mn−2 corresponding to the semi-
symmetric non-metric connection and Levi-Civita connection of the Rieman-
nian manifold Mn are connected by (5.5). The torsion T of D is defined by

T (X, Y ) = DXY −DYX − [X, Y ] = η(X)Y − η(Y )X − [a(X)Y − a(Y )X],

where equations (5.5) is used. Thus, the induced connection D of the subman-
ifold Mn−2 is semi-symmetric. Next, we have to prove that the connection D
is non-metric; i.e., Dg ̸= 0. We have

Xg(Y, Z) = (DXg)(Y, Z) + g(DXY, Z) + g(Y,DXZ) = g(DXY, Z) + g(Y,DXZ).

This shows that the induced connection D of the submanifold Mn−2 corre-
sponding to the semi-symmetric non-metric connectionD is also semi-symmetric
non-metric. Hence, the statement of the theorem is proved.

Theorem 5.2 Let Mn−2 be a submanifold of the Riemannian manifold Mn.
Then



Riemannian manifold admitting a semi-symmetric non-metric connection 45

(i) The mean curvature of Mn−2 corresponding to the induced connections
D and D coincide.

(ii) The submanifold Mn−2 will be totally geodesic with respect to D if and
only if it is totally geodesic for D.

(iii) The submanifold Mn−2 is totally umbilical with respect to D if and only
if it is totally umbilical for D.

(iv) The submanifold Mn−2 is minimal corresponding to D if and only if it is
also minimal for D.

Proof: We define

DK(X, Y ) = (DXK)(Y ) = DKXKY −K(DXY ),

(DK)(X, Y ) = (DXK)(Y ) = (DKXKY )−K(DXY ).

In the view of equation (5.2) and (5.3) the above equations are considered in
the forms

(DXK)(Y ) = q1(X, Y )S1 + q2(X, Y )S2,

(DXK)(Y ) = ϕ1(X, Y )S1 + ϕ2(X, Y )S2.

Let {e1, e2, ..., en−2} be a set of (n−2) orthonormal local vector fields in Mn−2.
Then the mean curvature tensor ϕ of the submanifold Mn−2 with respect to
the connection D is a function defined by ϕ = 1

n−2

∑n−2
i=1 q(ei, ei).

Let ϕ = 1
n−2

∑n−2
i=1 q(ei, ei) denote the mean curvature of Mn−2 with re-

spect to the semi-symmetric non-metric induced connection D. In particular,
if ϕ = 0 onMn−2, then the submanifold is said to be a minimal submanifold for
D. Also, if ϕ = 0 onMn−2 , then the submanifold is said to be a minimal forD.

On the other hand, the submanifold Mn−2 is said to be totally geodesic
with respect to the Levi-Civita connection D if and only if q1 and q2 vanish
identically on Mn−2. If q1 and q2 are proportional to the metric g, i.e., q1 = ϕg
and q2 = ϕg, then the submanifold Mn−2 is said to be totally umbilical with
respect to the Levi-Civita connection D. In a similar fashion, we can say that
the submanifold Mn−2 is said to be totally umbilical with respect to the semi-
symmetric non-metric induced connection D if ϕ1 and ϕ2 are proportional to
g(ϕ1 = ϕ1 and ϕ2 = ϕ2). The statements of Theorem 5.2 are obvious from the
above discussion and equation (5.6).
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6 Examples

Example 6.1 Let us consider the 3-dimensional manifold M = {(x, y, z) ∈ R3, z ̸= 0},
where (x, y, z) are standard co-ordinate of R3.

We choose the vector fields

e1 = e−3z ∂

∂x
, e2 = e−3z ∂

∂y
, e3 =

∂

∂z
, (6.1)

which is linearly independently at each point of M and therefore it forms a
basis for the tangent space T (M3).

Let g be the Riemannian metric denoted by

g(ei, ej) =

{
1, i = j

0, i ̸= j
(6.2)

Let D be the Levi-Civita connection with respect to metric g. Then from equa-
tion (6.1), we have

[e1, e2] = 0, [e1, e3] = 3e1, [e2, e3] = 3e2. (6.3)

The Riemannian connection D of the metric g is given by

2g (DXY, Z) =Xg (Y, Z) + Y g (X,Z)− Zg (X, Y )− g (X, [Y, Z])

− g (Y, [X,Z]) + g (Z, [X, Y ]) ,
(6.4)

which is known as Koszul’s formula. Thus, we obtain

De1e1 = 3e3, , De1e2 = 0, De1e3 = 3e1,

De2e1 = 0, De2e2 = 3e3, De2e1 = 3e2,

De3e1 = 0, De3e2 = 0, De3e3 = 0,

(6.5)

where D denotes the Levi-Civita connection corresponding to the metric g. The
non-vanishing components of the Riemannian curvature tensor can be calcu-
lated by the using the equation (3.2), (6.3) and (6.5), we have The curvature
tensor is given by

R (e1, e2) e1 = 9e1, R (e1, e2) e2 = 9e1, R (e1, e2) e3 = 0,

R (e2, e3) e1 = 0, R (e2, e3) e2 = −9e3, R (e2, e3) e3 = −9e2,

R (e1, e3) e1 = −9e3, R (e1, e3) e2 = 0, R (e1, e3) e3 = −9e1,

R (e1, e1) e1 = R (e1, e1) e2 = R (e1, e1) e3 = 0,

R (e2, e2) e1 = R (e2, e2) e2 = R (e2, e2) e3 = 0,

R (e3, e3) e1 = R (e3, e3) e2 = R (e3, e3) e3 = 0.

(6.6)
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The Ricci tensor can be calculated by the following expression

Ric(X, Y ) =
3∑

i=1

g(R(ei, X)Y, ei). (6.7)

From (6.6) and (6.7), we get

Ric(e1, e1) = 9, Ric(e1, e2) = 0, Ric(e1, e3) = 0,

Ric(e2, e1) = 18, Ric(e2, e2) = −9, Ric(e2, e3) = 0,

Ric(e3, e1) = −18, Ric(e3, e2) = 0, Ric(e3, e3) = −9.

(6.8)

It is obvious that the scalar curvature is r = −9.

Taking U = e3 and V = e2.In consequences of the above discussion and
equation (2.1), we have

De1e1 = 3e3, De1e2 = 2e2, De1e3 = 3e1,
De2e1 = −e1, De2e2 = 3e3 − e1, De2e3 = e3,
De3e1 = e1, De3e2 = e2, De3e3 = e3.

 (6.9)

In view of (6.9), we can easily prove that equation (1.1) holds for all vector
fields ei(i = 1, 2, 3),e.g.,

T (e1, e1) = T (e2, e2) = T (e3, e3) = 0,
T (e1, e2) = e1, T (e1, e3) = −e1, T (e2, e3) = −(e2 + e3).

}
(6.10)

This shows that the linear connection D defined as (2.1) is a semi-symmetric
connection on (M3, g), also(

De1g
)
(e3, e3) = 2 ̸= 0,

(
De2g

)
(e1, e1) = 2 ̸= 0,

(
De3

)
(e1, e1) = 2 ̸= 0.

Similarly, we can verify this for other components.

Hence, the semi-symmetric connection D is non-metric on (M3, g).
Let X, Y and Z be vector fields on M3. Then it can be expressed as a linear
combination of e1, e2 and e3, that is,

X = X1e1 +X2e2 +X3e3, Y = Y 1e1 + Y 2e2 + Y 3e3, Z = Z1e1 + Z2e2 + Z3e3,

where X i, Y i and Zi, i = 1, 2, 3 are real constants, we have

′T (X, Y, Z) = g(T (X, Y ), Z),

′T (X, Y, Z) =(X1Y 2 −X2Y 1)Z1 − (X1Y 3 −X3Y 1)Z1−
(X2Y 3 −X3Y 2)Z2 − (X2Y 3 −X3Y 2)Z3,

(6.11)
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′T (Y,X,Z) =(Y 1X2 − Y 2X1)Z1 − (Y 1X3 − Y 3X1)Z1−
(Y 2X3 − Y 3X2)Z2 − (Y 2X3 − Y 3X2)Z3,

(6.12)

′T (Y, Z,X) =(Y 1Z2 − Y 2Z1)X1 − (Y 1Z3 − Y 3Z1)X1−
(Y 2Z3 − Y 3Z2)X2 − (Y 2Z3 − Y 3Z2)X3,

(6.13)

′T (Z,X, Y ) =(Z1X2 − Z2X1)Y 1 − (Z1X3 − Z3X1)Y 1−
(Z2X3 − Z3X2)Y 2 − (Z2X3 − Z3Y 2)Y 3.

(6.14)

Hence, from the equation (6.11), (6.12), (6.13) and (6.14), we have
′T (X, Y, Z) +′ T (Y,X,Z) = 0,

and
′T (X, Y, Z) +′ T (Y, Z,X) +′ T (Z,X, Y ) = 0.

Therefore, Theorem 2.2 is verified.

we have also

R(ei, ej)ek ̸= 0, for all i, j, k = 1, 2, 3. (6.15)

Hence, the Riemannian equipped with a semi-symmetric non-metric connection
D is not flat.

Example 6.2 Let us consider a 5-dimensional manifold
M5 = (z1, z2, z3, z4, z5) ∈ R5, z ̸= 0,where z1, z2, z3, z4, z5 are standard co-ordinate
in R5.
We choose the vector fields

e1 = e−z5
∂

∂z1
, e2 = e−z5

∂

∂z2
, e3 = e−z5

∂

∂z3
,

e4 = e−z5
∂

∂z4
, e5 = e−z5

∂

∂z5
.

(6.16)

which are linearly independent at each point of M5 and therefore it forms a
basis for the tangent space T (M5).
Let g be the Riemannian metric defined by (6.2) . Let D be the Levi-Civita
connection with respect to metric g. Then from equation (6.16), we have

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = 0, [e2, e3] = 0, [e2, e4] = 0, [e3, e4] = 0,

[e1, e5] = e−Z5e1, [e2, e5] = e−Z5e2, [e3, e5] = e−Z5e3, [e4, e5] = e−Z5e4.
(6.17)

The Riemannian connection D of the metric g is given by (6.4). With help of
(6.2), (6.4) and (6.17), we obtain

De1e1 = e−Z5e5, De1e2 = 0, De1e3 = 0, De1e4 = 0 De1e5 = e−Z5e1,

De2e1 = 0, De2e2 = e−Z5e5, De2e3 = 0, De2e4 = 0, De2e5 = e−Z5e2,

De3e1 = 0, De3e2 = 0, De3e3 = e−Z5e5, De3e4 = 0, De3e5 = e−Z5e3,

De4e1 = 0, De4e2 = 0, De4e3 = 0, De4e4 = e−Z5e5, De4e5 = e−Z5e4,

De5e1 = 0, De5e2 = 0, De5e3 = 0, De5e4 = 0, De4e5 = 0.

(6.18)
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The non-vanishing components of the Riemannian curvature tensor can be
calculated by the using the equation (3.2), (6.17) and (6.18), we have The
curvature tensor is given by

R (e1, e2) e1 = e−2Z5e2, R (e1, e2) e2 = 0, R (e1, e2) e3 = 0, R (e1, e2) e4 = 0,

R (e1, e2) e5 = 0, R (e1, e3) e1 = e−2Z5e5, R (e1, e3) e2 = −9e3, R (e1, e3) e3 = e−2Z5e1,

R (e1, e3) e4 = 0, R (e1, e3) e5 = 0, R(e1, e5)e1 = 0, R(e1, e5)e2 = 0,

R(e1, e5)e3 = 0, R(e1, e5)e4 = 0, R(e1, e5)e5 = 0, R(e2, e3)e1 = 0,

R(e2, e3)e2 = 0, R(e2, e3)e3 = −e−2Z5e2, R(e2, e3)e4 = 0, R(e2, e3)e5 = 0,

R(e2, e4)e1 = 0, R(e2, e4)e2 = e−2Z5e4, R(e2, e4)e3 = 0, R(e2, e4)e4 = e−2Z5e2,

R(e2, e4)e5 = 0, R(e2, e5)e1 = 0, R(e2, e5)e2 = 0, R(e2, e5)e3 = 0,

R(e2, e5)e4 = 0, R(e2, e5)e5 = e−2Z5e2, R(e3, e4)e1 = 0, R(e3, e4)e2 = 0,

R(e3, e4)e3 = −e−2Z5e3, R(e3e4)e4 = 0, R(e3, e4)e5 = 0, R(e3, e5)e1 = 0,

R(e3, e5)e2 = 0, R(e3, e5)e3 = −e−2Z5e5, R(e3, e5)e4 = 0, R(e3, e5)e5 = −e−2Z5e3,

R(e4, e5)e1 = 0, R(e4, e5)e2 = 0, R(e4, e5)e3 = 0, R(e4, e5)e4 = 0, R(e4, e5)e5 = 0.

(6.19)

The Ricci tensor can be calculated by the following expression

Ric(X, Y ) =
5∑

i=1

g(R(ei, X)Y, ei). (6.20)

From (6.19) and (6.20), we get

Ric(e1, e1) = 0, Ric(e1, e2) = 0, Ric(e1, e3) = 0, Ric(e1, e4) = 0,

Ric(e1, e5) = 0, Ric(e2, e1) = 0, Ric(e2, e2) = −e−2Z5 , Ric(e2, e3) = 0,

Ric(e2, e4) = −9, Ric(e2, e5) = 0, Ric(e3, e1) = 0, Ric(e3, e2) = 0,

Ric(e3, e3) = e−2Z5 , Ric(e3, e4) = 0, Ric(e3, e5) = 0, Ric(e4, e1) = 0,

Ric(e4, e2) = 0, Ric(e4, e3) = 0, Ric(e4, e4) = e−2Z5 , Ric(e4, e5) = 0,

Ric(e3, e1) = Ric(e3, e2) = Ric(e3, e3) = Ric(e5, e4) = Ric(e5, e5) = 0.

(6.21)

It is obvious that the scalar curvature is r = e−2Z5.
Taking U = e3 and V = e2 and in consequences of the above discussion and
equation (2.1), we have

De1e1 = e−Z5e5, De1e2 = 0, De1e3 = 0, De1e4 = 0, De1e5 = e−Z5e1,

De2e1 = −e1, De2e2 = e−Z5e5 − e2, De2e3 = −e3, De2e4 = −e4,

De2e5 = e−Z5e2 − e5, De3e1 = e1, De3e2 = e2, De3e3 = e−Z5e5 + e3,

De3e4 = e5, De3e5 = e−Z5e3 + e5, De4e1 = e1, De4e2 = e2,

De4e3 = 0, De4e4 = e−Z5e5, De4e5 = e−Z5e4,

De5e1 = De5e2 = De5e3 = De5e4 = De5e5 = 0.

(6.22)
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In view of (6.22), we can easily prove that equation (1.1) holds for all vector
fields ei(i = 1, 2, 3, 4, 5),e.g.,

T (e1, e1) = 0, T (e2, e2) = 0, T (e3, e3) = 0, T (e4, e4) = 0, T (e5, e5) = 0,

T (e1, e2) = e1, T (e1, e3) = −e1, T (e1, e4) = 0, T (e1, e5) = 0,

T (e2, e1) = −e1, T (e2, e3) = −(e2 + e3), T (e2, e4) = −e4, T (e2, e5) = −e5,

T (e3, e1) = e1, T (e3, e2) = e2 + e3, T (e3, e4) = e4, T (e3, e5) = e5,

T (e4, e1) = 0, T (e4, e2) = e4, T (e4, e3) = −e4, T (e4, e5) = 0,

T (e5, e1) = 0, T (e5, e2) = e5, T (e2, e3) = −e5, T (e5, e4) = 0.

(6.23)

This shows that the linear connection D defined as (2.1) is a semi-symmetric
connection on (M5, g), also(

De2g
)
(e3, e3) = 2 ̸= 0,

(
De3g

)
(e1, e1) = 2 ̸= 0.

Similarly, we can verify this for other components.

Hence, the semi-symmetric connection D is non-metric on (M5, g).
Let X, Y and Z be vector fields on M5. Then it can be expressed as a linear
combination of e1, e2, e3, e4 and e5, that is,

X = X1e1 +X2e2 +X3e3 +X4e4 +X5e5,

Y = Y 1e1 + Y 2e2 + Y 3e3 + Y 4e4 + Y 5e5,

Z = Z1e1 + Z2e2 + Z3e3 + Z4e4 + Z5e5,

where X i, Y i and Zi, i = 1, 2, 3, 4, 5 are real constants, we have

′T (X, Y, Z) = g(T (X, Y ), Z),

′T (X, Y, Z) =(X1Y 2 −X2Y 1 −X1Y 3 −X3Y 1)Z1−
(X2Y 3 −X3Y 2)Z2 − (X2Y 3 −X3Y 2)Z3

− (X2Y 4 −X4Y 2 +X3Y 4 −X4Y 3)Z4

− (X2Y 5 −X4Y 2 −X3Y 5 +X5Y 3)Z4,

(6.24)

′T (Y,X,Z) =(Y 1X2 − Y 2X1 − Y 1X3 − Y 3X1)Z1−
(Y 2X3 − Y 3X2)Z2 − (Y 2X3 − Y 3X2)Z3

− (Y 2X4 − Y 4X2 + Y 3X4 − Y 4X3)Z4

− (Y 2X5 − Y 4X2 − Y 3X5 + Y 5X3)Z4,

(6.25)

′T (Y, Z,X) =(Y 1Z2 − Y 2Z1 − Y 1Z3 − Y 3Z1)X1−
(Y 2Z3 − Y 3Z2)X2 − (Y 2Z3 − Y 3Z2)X3

− (Y 2Z4 − Y 4Z2 + Y 3Z4 − Y 4Z3)X4

− (Y 2Z5 − Y 4Z2 − Y 3Z5 + Y 5Z3)X4,

(6.26)
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′T (Z,X, Y ) =(Z1X2 − Z2X1 − Z1X3 − Z3X1)Y 1−
(Z2X3 − Z3X2)Y 2 − (Z2X3 − Z3X2)Y 3

− (Z2X4 − Z4X2 + Z3X4 − Z4X3)Y 4

− (Z2X5 − Z4X2 − Z3X5 − Z5X3)Y 4.

(6.27)

Hence, from the equation (6.24), (6.25), (6.26) and (6.27), we have

′T (X, Y, Z) +′ T (Y,X,Z) = 0,

and
′T (X, Y, Z) +′ T (Y, Z,X) +′ T (Z,X, Y ) = 0.

Therefore, Theorem 2.2 is verified.

We have also

R(ei, ej)ek ̸= 0, for all i, j, k = 1, 2, 3, 4, 5. (6.28)

Hence, the Riemannian equipped with a semi-symmetric non-metric connection
D is not flat.
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