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EXPLICIT CHARACTERIZATION OF THE RADIUS OF

CURVATURE OF CURVES LYING IN A SURFACE OF E3 OR E3
1

ATHOUMANE NIANG AND AMETH NDIAYE

Abstract. The differential equation characterizing a spherical curve in R3

expresses the radius of curvature of the curve in terms of its torsion. In this

paper we show that the differential equation characterizing a curve lying in an
oriented surface E3 or E3

1 allows two express the radius of the curvature of the

curve in terms of its torsions. We give two examples for illustrate our main

result.

1. Introduction

We denote by E3 the Euclidean 3-space R3 with its canonical metric dx2
1+dx2

2+
dx2

3, and by E3
1 the 3-space R3 with the Minkowski metric dx2

1+dx2
2−dx2

3. We will
denote the scalar product of E3 and E3

1 by ⟨, ⟩.
The curves to be considered here are the unit speed curves in E3 (respectively
E3
1) of the form α = α(s), s ∈ [0, L] and having non-degenerate principal normal.

Recall that a curve α in E3 (respectively in E3
1) is a unit speed curve if ⟨α′, α′⟩ = 1

(respectively ⟨α′, α′⟩ = ±1). For such a curve (in E3), the following facts are well
known.
There exist two functions κ, τ defined on [0, L] that determine completely the shape
of the curve in R3. The functions κ and τ are respectively the curvature and the
torsion of the curve. Such a curve α : [0, L] −→ R3 has a Frenet frame (T,N,B)
which is a map on [0, L], s 7−→ (T (s), N(s), B(s)) that satisfies the Frenet equations T ′ = κN

N ′ = −κT − τB
B′ = τN

, (1.1)

where the prime (′) denotes the differentiation with respect to arc length. For more
information see [1, 3].
The condition for a curve to be a spherical curve, (i.e) it lies on a sphere, is usually
given by the relation [

1

τ

(
1

κ

)′
]′

+
τ

κ
= 0. (1.2)

Clearly, condition (1.2) has a meaning only if κ and τ are nowhere zero, and it is
only under this hypothesis that (1.2) is a necessary and sufficient condition for a
curve to be a spherical curve.
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In this paper we deal with an oriented surface. Let Σ be a surface on E3. We will
assume that Σ is oriented by choice of a unit normal field

ξ : Σ −→ S2. (1.3)

Recently, the authors in [4] gives the analogous of (1.2) when the curve α lies in
an arbitrary oriented surface Σ ⊂ E3. Their result is obtained by using the second
trihedron (T, ξ × T, ξ) (which is positively oriented), where T (s) = α′(s), ξ(s) is
the unit normal ξ : Σ −→ S2 of the surface restricted on α and the × is the vector
product in E3.
One can ask what is the analogous of the equation (1.2) when the curve is assumed
to be in an arbitrary oriented surface in E3

1? One of the aim of this work, is to give
an answer to this question.
When a curve consider as above is assumed to lie in a given oriented surface Σ ⊂ R3,
then there exist two other invariants κn and τg defined on [0, L] which are unique
except for the sign (depending on the orientation of Σ). The functions κn and τg
defined on [0, L] are the normal curvature and the geodesic torsion of the curve.
In Minkowski space the characterization of curve lying on pseudohyperbolical space
and Lorentzian hypersphere are stated both depending on curvature functions and
character of Serret-Frenet frame of the curve, respectively. For detail see [5, 6, 8].
The following theorem and corollary are proved in [4].

Theorem 1.1. [4]
Under the assumptions and notations above, we have the following

i) the trihedron (T, ξ, T × ξ) and the functions κ, τ , κn and τg satisfy the
following equation T ′ = κnξ +

√
κ2 − κ2

n(ξ × T )
ξ′ = −κnT + τg(ξ × T )

(T × ξ)′ = −
√
κ2 − κ2

nT − τg(ξ × T )

, (1.4)

ii) (κn

κ

)′
= −(τ − τg)

√
1−

(κn

κ

)2
(1.5)

iii)

τ2g = −(K − 2Hκn + κ2
n) (1.6)

where H and K are respectively the restriction of mean curvature and the
Gauss curvature of Σ to α.

Corollary 1.2. [4]
If the curve α is lying in a sphere with τ and κ′ are nowhere zero in [0, L], then
equation (1.5) implies (1.2).

The aim of this paper is to give the analog of the theorem 1.1 for curve lying
in an oriented spacelike surface Σ ⊂ E3

1. More precisely the equation (1.6) and
its analog can be solved to express the ratio κn

κ in term of the torsion τ and the
geodesic torsion τg. Then we obtain the following theorem

Theorem 1.3. In the above notations we have the following results.
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(1) Let α = α(s) be a curve lying in an oriented spacelike surface Σ of the
Minkowski space E3

1. Then the ratio κn

κ satisfies

κn

κ
= A1 cosh

∫
(τ − τg)ds+A2 sinh

∫
(τ − τg)ds,

where A1 and A2 are constants in some interval [s1, s2] ⊂ [0, L] on which
τ − τg > 0.

(2) Let α = α(s) be a curve lying in an oriented surface Σ of the Euclidean
space E3. Then the ratio κn

κ satisfies

κn

κ
= A1 cos

∫
(τ − τg)ds+A2 sin

∫
(τ − τg)ds,

where A1 and A2 are constants in some interval [s1, s2] ⊂ [0, L] on which
τ − τg > 0.

The paper is organised as follow: in section 2 we recall some results and def-
initions which we use for the proof of our main results. In section 3, we show
the analog of the theorme 1.1 for curve lying in a spacelike surface in E3

1 and the
expression of the ratio κn

κ in term of τ − τg.

2. Preliminaries

Let Σ be a surface in a three dimensional Minkowski space E3
1 oriented by a

choice of a unit normal vector ξ : Σ −→ H2, where

H2 = {(x1, x2, x3) ∈ R3/x2
1 + x2

2 − x2
3 = −1;x3 > 0}

is a hyperbolic space.
The canonical 3-volume form in E3

1 is dx1 ∧ dx2 ∧ dx3 and the canonical basis
(e1, e2, e3) associated to the coordonates (x1, x2, x3) is positively oriented. If u and
v are two vectors in R3, the vectors product denoted by u× v is defined by

⟨u× v, w⟩ = det(u, v, w), w ∈ E4
1. (2.1)

From (2.1) one gets

u× v = (u2v3 − u3v2)e1 − (u1v3 − u3v1)e2 − (u1v2 − u2v1)e3, (2.2)

where u =
∑3

i=1 uiei et v =
∑3

i=1 viei.
In particular we have e1 × e2 = −e3, e2 × e3 = e1 and e3 × e1 = e2. By using (2.1),
one can prove the following useful formulas in E3

1

(u× v)× w = ⟨v, w⟩u− ⟨u,w⟩v. (2.3)

3. Proof of the main theorem

Now let α : [0, L] −→ Σ ⊂ E3
1 be a curve parametrised by its arc-length s ∈ [0, L].

Let ξ(s) be the restriction of ξ on α. We put T (s) = α′(s) and we assume that
T ′(s) = α′′(s) is not isotropic and non zero vector. We will consider two cases:
Case 1: If T ′ is timelike, we put

T ′ = −κN, (3.1)

where N is the unit normal principal (then N is timelike).
Case 2: If T ′ is spacelike, we put

T ′ = κN. (3.2)



4 ATHOUMANE NIANG AND AMETH NDIAYE

In the formulas (3.1) and (3.2), κ = κ(s) is the curvature of α at s.
In the case 1 as in the case 2, we define the torsion τ of α and the geodesic torsion
τg of α by

τ = ⟨B′, T ⟩,
τg = ⟨ξ′, ξ × T ⟩, (3.3)

where B is the binormal vector defined such that (T,N,B) is a posively oriented
basis of R3.
In the case 1, we put

B = T ×N (3.4)

and for the case 2 we take

B = N × T. (3.5)

- Case 1:
we have T ′ = −κN . There is angle φ = φ(s) such that

N = coshφξ + sinhφ(ξ × T ). (3.6)

By ⟨N,N⟩ = −1, we get that

N ′ = aT + bB,

where a and b are smooth functions of s.
By B = T ×N and T ′ = −κN , we get

B′ = T ×N.

Since (T,N,B) is positively oriented then (B, T,N) also. So we have B × T = −N
T ×N = B
N ×B = T.

Thus we have B′ = bN . And we have also

⟨N ′, B⟩ = b

= −⟨N,B′⟩
= −τ,

and

⟨N ′, T ⟩ = a

= −⟨N,T ′⟩
= −⟨N,−κN⟩
= −κ.

Thus we get the Frenet equations T ′ = −κN
N ′ = −κT − τB
B′ = −τN.

(3.7)

Now let us find the analogous equation for the trihedron (T, ξ × T, ξ).
From (3.2), (3.3), (3.6) and ⟨ξ, ξ⟩ = −1, we have

ξ′ = xT + τg(ξ × T ).
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But

⟨ξ′, T ⟩ = x

= −⟨ξ, T ′⟩
= −κn

= −⟨ξ,−κN⟩
= κ⟨ξ,N⟩
= −κ coshφ.

Therefore we have

ξ = −κ coshφT + τg(ξ × T ).

An easy computation shows that

(ξ × T )′ = κ sinhφT + τgξ.

We summarize this by T ′ = −κN
ξ′ = −κnT + τ(ξ × T )

(ξ × T )′ = κ sinhφT + τgξ.
(3.8)

We have that {
N = coshφξ + sinhφ(ξ × T )

N ′ = −κT − τB.
(3.9)

With the equation B = T ×N we get

(i)

N ′ = −κT − τ
(
T × (coshφξ + sinhφ(ξ × T ))

)
= −κT + τ coshφξ × T + τ sinhφξ,

by T × (ξ × T ) = −ξ.
By differentiating the first equation of (3.9) and using (3.8) we get

(ii)

N ′ = −κT + sinhφ(φ′ + τg)ξ + coshφ(φ′ + τg)(ξ × T )

By differentiating (i)n and (ii) we get

φ′ = τ − τg. (3.10)

We have found that the normal courvature κn = κ coshφ. Then(κn

k

)
= coshφ. (3.11)

Differentiating this equation, we get
(
κn

κ

)′
= φ′ sinhφ; and by (3.10), we obtain(

κn

κ

)′
= (τ − τg)

(
±
√

cosh2 φ− 1
)
=⇒

(
κn

κ

)′
= (τ − τg)

(√
(κn

κ )2 − 1
)
.

From this last equation, we get[(
1

τ − τg

)(κn

κ

)′]′
− (τ − τg)

(κn

κ

)
= 0. (3.12)
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We will soon come back to equation (3.12).
- Case 2: T ′ is spacelike.
Thus we have {

N = sinhφξ + coshφ(ξ × τ)

T ′ = κN
(3.13)

and as before we put N ′ = aτ + bB and B = N × T , for some smooth functions
a, b of s.
We get B′ = N ′ × T = bB. The fact B is timelike and the Frenet frame (T,N,B)
is positively oriented then B × T = N .
Thus

B′ = bN ; τ = ⟨B′, N⟩ = b. (3.14)

We have also,

a = ⟨N, τ⟩ = −⟨τ,N⟩.

Thus we have the Frenet equations T ′ = κN
N ′ = −κτ + τB
B′ = τN

(3.15)

By the same method as in the case 1, we find that the trihedron (T, ξ×T, ξ) satisfies
the equations 

τ ′ = κ sinhφξ + κ coshφ× T

ξ = κ sinhφT + τg(ξ × T )

(ξ × T )′ = −κ coshφT + τgξ

(3.16)

with κn = −κ sinhφ.
By using the relation κn

κ = − sinhφ, one gets that. And we can obtain also

φ′ = τ − τg. (3.17)

Using (3.17) with κn

κ = − sinhφ, we get(
1

τ − τg

)(κn

κ

)′
+ (τ − τg)

(κn

κ

)
= 0. (3.18)

The equation (3.12), (3.18) have the following form

[p(s)y′(s)]′ ± |q(s)|y = 0. (3.19)

This equation has been already studied by the author in [2] and [7].
Applying their results we state that the solutions (κn

κ ) of (3.18) and (3.12) have
the following solution

κn

κ
= A1 cosh

∫
(τ − τg)ds+A2 sinh

∫
(τ − τg)ds, (3.20)

where A1 and A2 are constants in some interval [s1, s2] ⊂ [0, L] on which τ−τg > 0.
The case of Euclidean space obtain by ii) of the theorem 1.1.
This end the proof.
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Example 3.1. The Euclidean case:
Consider the right cylinder H parametrized by

f(s, t) = (cos(s), sin(s), t)

and the helix α in H given by

α(s) =

(
cos(

√
2

2
s), sin(

√
2

2
s),

√
2

2
s

)
.

By computing T = α′ and T ′, we find κ = 1
2 . An easy computation show that

ξ = fs × ft = (cos s, sin s, 0)

and

κn = ⟨T ′, ξ⟩ = −1

2
cos

(
2−

√
2

2
s

)
.

Thus κn

κ = − cos
(

2−
√
2

2 s
)
which statisfy the differential equation

(
κn

κ
)′′ + (

κn

κ
) = 0.

Then we have the condition of 2) of the theorem 1.3.

Example 3.2. The Minkowski case:
Consider the ruled surface S parametrized by

g(s, t) = (t cosh(s),
√
2s, t sinh(s)).

The surface S is spacelike if −
√
2 < t <

√
2. The curve α in S given by

α(s) =
(
cosh(s),

√
2s, sinh(s)

)
lies in the surface S. By computing T = α′ and T ′, we find κ = 1. An easy
computation show that

ξ = (
√
2 sinh s,−1

√
2 cosh s).

The same computation in the Euclidean case shows that κn

κ statisfies the differential
equation

(
κn

κ
)′′ − (

κn

κ
) = 0.

Then we have the condition of 1) of the theorem 1.3.
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