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Abstract

For arbitrary geometries of Petrov types III, N and O we construct the
Lanczos potential for the corresponding Weyl tensor. This will provide a tech-
nique to construct Lanczos potential in non-vacuum cases.
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1 Introduction

The Lanczos potential Kµνα [1, 2, 3, 4, 5, 6, 7, 8] satisfies the algebraic symmetries:

Kµνα = −Kνµα, Kµνα +Kναµ +Kαµν = 0, Kµν
ν = 0 (1.1)

and it generates the Weyl tensor [9, 10] via the expression [11]:

− Cµναβ = Kµνα;β −Kµνβ;α +Kαβµ;ν −Kαβν;µ +
1

2
[(Kµβ +Kβµ)gνα + (Kνα +Kαν)gµβ

− (Kµα +Kαµ)gνβ − (Kνβ +Kβν)gµα] +
2

3
Kλσ

λ;σ, where Kµν = K ;σ
µσν −K σ

µσ ;ν

(1.2)

Though the introduction of such a tensor provides an analogy of gravitation and
electromagnetism, the possible physical meaning of Kµνα in general relativity, is an
open problem. Here we exhibit the structure of the Lanczos generator for arbitrary
spacetimes of Petrov types O, N and III [12], via the Newman-Penrose technique
[9, 10, 13, 14] and tensor and spinor formalisms [15]. Given a geometry we must
construct the corresponding Lanczos potential, which is difficult in the general case
except for certain Petrov types, for example, if in (1.2) we use the expression:

Kµνα = Nµgνα −Nνgµα, (1.3)

in terms of the metric tensor with Nµ arbitrary, we obtain Cµναβ = 0, that is, (1.3)
is a Lanczos generator for any spacetime type O.

This paper is dedicated to late Prof. Oscar Chavoya Aceves (1957-2023) for his work in the
field of Relativity theory.
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2 Algebraic symmetries of the Lanczos potential

If aµνα is an arbitrary tensor, then the following tensor [16]:

K̃µνα = aµνα − aνµα + aανµ − aαµν (2.1)

satisfies the symmetries:

K̃µνα = −K̃νµα, K̃µνα + K̃ναµ + K̃αµν = 0, (2.2)

where we may employ:

aµνα =
1

3
Fµν;α, Fµν = −Fνµ, (2.3)

whose application in (4) gives the expression:

K̃µνα =
1

3
(2Fµν;α + Fαν;µ − Fαµ;ν), (2.4)

and if now we ask the condition K̃µνα = 0, then from (2.4) we obtain a tensor
verifying the algebraic symmetries (1.1) of the Lanczos potential [11]:

Kµνα =
1

3
(2Fµν;α + Fαν;µ − Fαµ;ν + F νλ

;λg
αµ − Fµλ

;λg
αν), (2.5)

which we shall use in our study.
If in (4) we employ the option aµνα = Fµνkα, Fµν = −Fνµ with the properties:

Fµνkα + Fναkµ + Fαµkν = 0, where Fµνk
ν = 0, (2.6)

and the trace is eliminated, then we obtain that Kµνα ∝ Fµνkα, which allows con-
struction of the Lanczos generator for plane gravitational waves [spacetime of Petrov
type N ] [17].

3 Lanczos potential for arbitrary 4-geometries with Petrov
types O, N and III

If we select (2.5) for arbitrary Fµν = −Fνµ, then (1.2) implies the relation:

Cµναβ = CσναβF
σ
µ − CσµαβF

σ
ν + CσβµνF

σ
α − CσαµνF

σ
β (3.1)

which identically vanishes for any conformally flat space, that is, (2.5) is a Lanczos
potential for any spacetime with Petrov type O.

Now we consider two Petrov types in the canonical null tetrad [9, 13, 18], for
certain Fµν :

(a) Type N :

Cµναβ = ψ4VµνVαβ + ψ̄4V̄µν V̄αβ, (3.2)

where Vµν = lµmν − lνmµ and

Fαβ = q(nαlβ − nβlα). (3.3)

Thus, (3.1) takes the form Cµναβ = 2qCµναβ , therefore (2.5) is a Lanczos
potential with (3.3) for q = 1/2.



56 Ravi Panchal, A.H. Hasmani and J. López-Bonilla

(b) Type III:

Cµναβ = ψ3(VµνMαβ +MµνVαβ) + ψ̄3(V̄µνM̄αβ + M̄µν V̄αβ), (3.4)

where Mµν = mµm̄ν −mνm̄µ + nµlν − nν lµ. Then (3.1), (3.3) and (3.4) give
the relation Cµναβ = qCµναβ , that is, (2.5) is a Lanczos generator with (3.3)
for q = 1.
Hence, the Lanczos potential for arbitrary Petrov types N and III spacetimes
has the structure (2.5) if we employ the corresponding canonical null tetrad
and Fµν is given by (3.3) with q = 1/2 and q = 1, respectively; in Petrov type
O geometries, we can use (2.5) with any Fαβ. The construction of Kµνα for
arbitrary 4-spaces of types I, II, and D, is an open problem.

4 About Lanczos Spinor

From (2.5):

Sµνα = Kµνα + i ∗Kµνα =
1

3
(2Sµν;α + Sαν;µ − Sαµ;ν + S ;λ

νλ gαµ − S ;λ
µλ gαν), (4.1)

such that Sµν = Fµν + i ∗Fµν , with the participation of the dual tensor:

∗Kµνα =
1

2
ηµνλβK

λβ
α and ∗Fµν =

1

2
ηµνλβF

λβ (4.2)

From (4.1) the corresponding Lanczos spinor [19, 20, 21, 22, 23] is given by:

3L(ABCḊ) = ∇AḊ φBC +∇BḊ φCA +∇CḊ φAB, (4.3)

which implies the following equations in the Newman-Penrose (NP) formalism [9,
13, 14, 21, 24]:

Ω0 = Dϕ0 + 2(−ϵϕ0 + κϕ1), 3Ω1 = δ̄ϕ0 + 2[Dϕ1 − (α+ π)ϕ0 + ρϕ1 + κϕ2],

Ω3 = δ̄ϕ2 + 2(−λϕ1 + αϕ2), 3Ω2 = Dϕ2 + 2[δ̄ϕ1 − λϕ0 − πϕ1 + (ρ+ ϵ)ϕ2],

Ω4 = δϕ0 + 2(−βϕ0 + σϕ1), 3Ω5 = ∆ϕ0 + 2[δϕ1 − (γ + µ)ϕ0 + τϕ1 + σϕ2],

Ω7 = ∆ϕ2 + 2(−νϕ1 + γϕ2), 3Ω6 = δϕ2 + 2[∆ϕ1 − νϕ0 − µϕ1 + (β + τ)ϕ2],

(4.4)

for the NP components of Lanczos potential in terms of the spin coefficients and the
NP projections of Fµν .

The work [25] used the canonical null tetrad [9, 18, 26] to determine the NP
components of Kµνα , that is, a solution of the Weyl-Lanczos equations [8, 20, 21,
25, 27] thus:

Ω0 = qk, Ω3 = −qλ, Ω4 = qσ, Ω7 = −qν

Ω1 =
q

3
ρ, Ω2 = −q

3
π, Ω5 =

q

3
τ, Ω6 = −q

3
µ (4.5)

for arbitrary spacetimes with Petrov types III and N for q = 1 and q = 1/2 ,
respectively. It is easy to see that the relations (4.4) imply (4.5) if ϕ0 = ϕ2 = 0 and
ϕ1 =

q
2 , hence Fµν has the structure (3.3) and Sµν = qMµν .
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5 Conclusion

Due to non-linearity in Weyl-Lanczos relations, their solution is not unique and it
becomes difficult to solve them for spacetimes of general nature. In this work we have
derived Lanczos potential for metric of Petrov types III, N and O. It is pending
to determine the Lanczos potential for Petrov types I, II and D in the general
case, however, for these spacetimes Kµνα has been constructed for specific metrics
[28, 29, 4, 5, 6, 8, 30, 31, 32, 33, 34, 35] and in almost all of these situations the NP
components Ωr have turned out to be linear combinations of the spin coefficients if
we properly choose the corresponding null tetrad. Equation (2.5) may be seen as
interaction between gravitational field in vacuum and electromagnetic field, which
requires further investigation. There are various proposals [30, 31, 36, 37, 38] for the
possible physical meaning of the Lanczos spintensor, which we consider important
because Kµνα is present in all Riemannian 4-geometries and therefore it is necessary
to know its role in the description of the gravitational field.
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des Sciences de Universite de Clermont-Ferrand, 8:167–170, 1962.

[3] Zoltán Perjés. The works of Kornél Lánczos on the Theory of Relativity. In A
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[18] J López-Bonilla, R López-Vázquez, J Morales, and G Ovando. Petrov types
and their canonical tetrads. Prespacetime Journal, 7(8):1176–1186, 2016.

[19] W. F. Maher and J. D. Zund. A Spinor Approach to the Lanczos Spin Tensor.
Il Nuovo Cimento A (1965-1970), 57(4):638–648, 1968.

[20] J.D. Zund. The theory of the Lanczos spinor. Annali di Matematica Pura ed
Applicata, 104:239–268, 1975.

[21] Peter O’Donnell. Introduction to 2-Spinors in General Relativity. World Scien-
tific, 2003.
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[24] J. López-Bonilla, R. López-Vázquez, J. Morales, and G. Ovando. Spin coeffi-
cients formalism. Prespacetime Journal, 6(8):697–709, 2015.



On the Lanczos Potential 59
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