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Abstract

In this article, we study generalized Sasakian-space-form with quasi-con-
formal curvature tensor. In a quasi-conformally flat generalized Sasakian-space-
form we find some relations between differentiable functions f1, f2 and f3. In
a quasi-conformally flat generalized Sasakian space form we also find Ricci-
tensor, Ricci-operator and scaler curvature. Ricci-tensor, Ricci-operator and
scalar curvature are also found in a quasi-conformally semi-symmetric general-
ized Sasakian-space-form.
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1. Introduction

The notion of generalized Sasakian-space-form was introduced and studied
by Alegre et al. [1]. A generalized Sasakian-space-form is an almost contact
metric manifold (M,ϕ, ξ, η, g) whose curvature tensor is given by

R (X, Y ) Z

= f1 [g (Y, Z) X − g (X,Z) Y ]

+ f2 [g (X, ϕZ) ϕY − g (Y, ϕZ)ϕX + 2g (X, ϕY ) ϕZ]

+ f3[η (X) η (Z) Y − η (Y ) η (Z) X

+ g (X,Z) η (Y ) ξ − g (Y, Z) η (X) ξ],

(1.1)
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where f1, f2, f3 are differentiable functions on M and X,Y, Z are vector fields on
M . In such a case we shall write generalized Sasakian-space-form as M (f1, f2, f3).
This type of manifold appears as a natural generalization of the well known
Sasakian-space-form M (c), which can be obtain as a particular case of gen-
eralized Sasakian-space-form by taking f1 = c+3

4 and f2 = f3 = c−1
4 , where

c denotes constant ϕ-sectional curvature. Moreover cosymplectic space forms,
Kenmotsu space forms are also particular case of generalized Sasakian-space-
forms M (f1, f2, f3). In the recent paper Alegre and Carriazo [2] ale08 studied
contact metric and trans-Sasakian generalized Sasakian-space-forms. Confor-
mally flat and locally symmetric generalized Sasakian-space-form was studied
by Kim [8].

In this paper we have studied generalized Sasakian-space-forms with quasi-
conformal curvature tensor. The notion of quasi-conformal curvature tensor
was introduced by Yano and Sawaki [10]. A (2n + 1)-dimensional Riemannian
manifold M is quasi-conformally flat if C̃ = 0, where C̃ is quasi-conformal
curvature tensor, defined as

C̃ (X, Y ) Z

= aR (X,Y ) Z + b[S (Y, Z) X − S (X,Z) Y

+ g (Y, Z) QX − g (X, Z)QY ]

− τ

(2n + 1)

[ a

2n
+ 2b

]
[g (Y,Z) X − g (X, Z)Y ] ,

(1.2)

where a and b are constants and R, S, Q and τ are the Riemannian curvature-
tensor, the Ricci-tensor, the Ricci-operator and the scalar curvature of the man-
ifold respectively. If a = 1 and b = − 1

2n−1 , then C̃ becomes conformal curvature
tensor. Thus conformal curvature tensor is a particular case of quasi-conformal
curvature tensor. It is known that the quasi-conformally flat manifold is either
conformally flat if a 6= 0 or Einstein if a = 0 and b 6= 0 [3].

In the present paper we have also studied quasi-conformally semi-symmetric
generalized Sasakian-space-forms. If a Riemannian manifold satisfies R (X, Y ) C̃

= 0 where C̃ is the quasi-conformal curvature tensor, then the manifold is said
to be quasi-conformally semi-symmetric manifold [5].

2. Preliminaries

In this section, we recall some general definitions and basic formulas which
we will use later. For this, we recommend the reference [4]. A (2n + 1)-
dimensional Riemannian manifold (M, g) is said to be an almost contact metric
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manifold if there exist a (1, 1) tensor field ϕ, a unique global non-vanishing
structural vector field ξ (called the vector field) and a 1-form η such that

η(ξ) = 1, ϕ2X = −X + η (X) ξ, ϕξ = 0, (2.1)

dη (X, ξ) = 0, g(X, ξ) = η(X), (2.2)

g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ), (2.3)

dη (X,Y ) = g(X, ϕY ) ηoϕ = 0. (2.4)

Such a manifold is called contact manifold if η∧(dη)n 6= 0, where n is nth exterior
power. For contact manifold we also have dη = Φ, where Φ (X, Y ) = g (ϕX, Y )
is called fundamental 2-form on M . If ξ is killing vector field, then M is said to
be K-contact manifold. The almost contact metric structure (ϕ, ξ, η, g) on M

is said to be normal if

[ϕ,ϕ] (X, Y ) + 2dη (X, Y ) ξ = 0, (2.5)

for any vector fields X, Y on M , where [ϕ, ϕ] denotes the Nijenhuis torsion of ϕ

given by
[ϕ, ϕ] (X, Y ) =ϕ2 [X,Y ] + [ϕX, ϕY ]

− ϕ [ϕX, Y ]− ϕ [X,ϕY ] .
(2.6)

An almost contact metric manifold is called trans-Sasakian manifold of type
(α, β) if

(∇Xϕ) Y =α (g (X,Y ) ξ − η (X) Y )

+ β (g (ϕX, Y ) ξ − η (X) ϕY ) ,
(2.7)

for all vector field X,Y on M , where α and β are some smooth real valued
functions. A trans-Sasakian manifold of type (1, 0) and (0, 1) is called Sasakian
and Kenmotsu manifold respectively.

An almost contact metric manifold M is said to be η-Einstein if its Ricci-
tensor S is of the form

S (X,Y ) = cg (X, Y ) + dη (X) η(Y ), (2.8)

where c and d are smooth functions on M . A η-Einstein manifold becomes
Einstein if d = 0.

If {e1, e2, ......, e2n, ξ} is a local orthonormal basis of vector fields in a
(2n + 1)-dimensional almost contact manifold M , then {ϕe1, ϕe2, ............, ϕe2n, ξ}
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is also a local orthonormal basis. It is easy to verify that
2n∑

i=1

g (ei, ei) =
2n∑

i=1

g (ϕei, ϕei) = 2n, (2.9)

2n∑

i=1

g (ei, Y ) S (X, ei) =
2n∑

i=1

g (ϕei, Y )S (X, ϕei)

=S (X, Y )− S (X, ξ) η (Y ) ,

(2.10)

for all X,Y ∈ TM . In view of (2.4) and (2.10), we get
2n∑

i=1

g (ei, ϕY ) S (ϕX, ei) =
2n∑

i=1

g (ϕei, ϕY ) S (ϕX, ϕei)

=S (ϕX, ϕY ) .

(2.11)

2.1. Some Results on generalized Sasakian-space-form

On taking Z = ξ in the equation (1.1), we have

R (X,Y ) ξ = (f1 − f3) (η (Y )X − η (X) Y ) . (2.12)

Again from (1.1) and taking account of S(X, Y ) =
(2n+1)∑

i=1
g(R(ei, X)Y, ei), we get

S (X, Y ) = (2nf1 + 3f2 − f3) g (X,Y )

− (3f2 + (2n− 1) f3) η(X)η(Y ).
(2.13)

From (2.12), we have

R (X, ξ) ξ = (f1 − f3) (X − η (X) ξ) , (2.14)

R (X, ξ) Y = (f1 − f3) (η (Y ) X − g (X, Y ) ξ) (2.15)

and from (2.13), we have

Q (X) = (2nf1 + 3f2 − f3) X − (3f2 + (2n− 1) f3) η(X).ξ, (2.16)

τ = 2n (2n + 1) f1 + 6nf2 − 4nf3, (2.17)

where Q is the Ricci operator and τ is scalar curvature of M (f1, f2, f3). Now
from (2.13) and (2.16), we have

S (X, ξ) = 2n (f1 − f3) η(X) (2.18)

and
Qξ = 2n (f1 − f3) ξ. (2.19)
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From (2.18), we get

2n∑

i=1

S (ei, ei) =
2n∑

i=1

S (ϕei, ϕei) = τ − 2n (f1 − f3) , (2.20)

where τ is scalar curvature. In a generalized Sasakian-space-form M (f1, f2, f3)
we also have

R (X, ξ, ξ, Y ) = R (ξ,X, Y, ξ) = (f1 − f3) g (ϕX, ϕY ) (2.21)

and
2n∑

i=1

R (ei, X, Y, ei) =
2n∑

i=1

R (ϕei, X, Y, ϕei)

= S (X, Y )− (f1 − f3) g (ϕX, ϕY ) ,

(2.22)

for all X, Y ∈ TM .

3. Quasi-conformally flat generalized Sasakian-space-form

Let M (f1, f2, f3) be a (2n + 1) -dimensional generalized Sasakian-space-
form. Then the Riemannian curvature-tensor R, the Ricci-tensor S and the
Ricci-operator Q of M are given by equations (1.1), (2.13) and (2.16) respec-
tively. On putting the value of R (X, Y ) Z, S (X, Y ) and QX in the equation
(1.2), we get

C̃ (X,Y ) Z

= a[
−1

2n + 1
(3f2 − 2f3) {g (Y, Z) X − g (X, Z) Y }

+ f2 {g (X, ϕZ) ϕY − g (Y, ϕZ)ϕX + 2g (X, ϕY ) ϕZ}
+ f3{η (X) η (Z) Y − η (Y ) η (Z) X + g (X,Z) η (Y ) ξ

− g (Y, Z) η (X) ξ}]

+ b[
(6f2 + 2 (2n− 1) f3)

(2n + 1)
{g (Y, Z) X − g (X, Z) Y }

− (3f2 + (2n− 1) f3) {η (Y ) η (Z)X − η (X) η (Z) Y

+ g (Y, Z) η (X) ξ − g (X, Z) η (Y ) ξ}].

(3.1)

If M (f1, f2, f3) is quasi-conformally flat, then we have C̃ (X, Y )Z = 0. If we
put X = ϕY in the above equation, we get
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a[
−1

2n + 1
(3f2 − 2f3) {g (Y, Z) ϕY − g (ϕY, Z) Y }

+ f2{g (Y, Z) ϕY − η (Y ) η (Z) ϕY + g (Y, ϕZ) Y

− g (Y, ϕZ) η (Y ) ξ + 2g (Y, Y ) ϕZ − 2η (Y ) η (Y ) ϕZ}
+ f3{η (Y ) η (Z) ϕY + g (ϕY, Z) η (Y ) ξ}]

+ b[
(6f2 + 2 (2n− 1) f3)

(2n + 1)
{g (Y,Z) ϕY − g (ϕY,Z) Y }

− (3f2 + (2n− 1) f3) {η (Y ) η (Z) ϕY − g (ϕY, Z) η (Y ) ξ} = 0.

(3.2)

If we choose a unit vector U such that η (U) = 0 and put Y = U in the equation
(3.2), then we get

a[
(2f3 − 3f2)
(2n + 1)

{g (U,Z) ϕU − g (ϕU,Z) U}
+f2 {g (U,Z) ϕU − g (ϕU,Z) U + 2ϕZ}]
+b[

(6f2 + 2 (2n− 1) f3)
(2n + 1)

{g (U,Z)ϕU − g (ϕU,Z)U}] = 0.

Again taking Z = U in the above equation, we get

[(3nf2 + f3) a + (3f2 + (2n− 1) f3) b]ϕU = 0. (3.3)

In view of equation (3.3) we have following theorem:

Theorem 3.1. In a quasi-conformally flat generalized Sasakian-space-form

(3nf2 + f3) a + (3f2 + (2n− 1) f3) b = 0.

It is known that a quasi-conformally flat manifold becomes Einstein if a = 0
and b 6= 0 [3]. Thus, analogous to [3], if a quasi-conformally flat generalized
Sasakian-space-form is Einstein, then theorem 3.1 implies

3f2 + (2n− 1) f3 = 0 (3.4)

and equation (2.13) also implies the same condition for Einstein generalized
Sasakian-space-form. So we have following corollary:

Corollary 3.1. Quasi-conformally flatness (a = 0, b 6= 0) does not change the
condition of Einstein generalized Sasakian-space-form.

Now under the consideration of quasi-conformally flat manifold equation
(1.2) reduces to
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R (X, Y, Z, W )

=
b

a
[S (X, Z) g (Y,W )− S (Y, Z) g (X,W )

+ S (X, W ) g (X, Z)− S (X,W ) g (Y, Z)]

+
τ

a (2n + 1)

[ a

2n
+ 2b

]
[g (Y, Z) g (X,W )

− g (X, Z) g (Y,W )],

(3.5)

where R (X, Y, Z, W ) = g (R (X, Y ) Z,W ).

On taking Z = ξ in the equation (3.5) and using equations (2.2 ), (2.12)
and (2.18), we get

(f1 − f3) [η (Y ) g (X, W )− η (X) g (Y, W )]

=
b

a
[2n (f1 − f3) {η (X) g (Y,W )− η (Y ) g (X, W )}

+ {η (X) S (Y, W )− η (Y ) S (X,W )}]
+

τ

a (2n + 1)

[ a

2n
+ 2b

]
[η (Y ) g (X,W )− η (X) g (Y, W )] .

Again putting X = ξ and using equations (2.1), (2.2) and (2.18), we get

S (Y, W )

= [
τ

b (2n + 1)

( a

2n
+ 2b

)
− 2n (f1 − f3)

− (f1 − f3)
a

b
]g (Y,W ) + [(f1 − f3)

a

b

+ 4n (f1 − f3)− τ

b (2n + 1)

( a

2n
+ 2b

)
]η (Y ) η (W ) .

(3.6)

Putting W = ξ in the above equation, we get

QY = 2n (f1 − f3) Y. (3.7)

If {e1, e2, ......, e2n, e2n+1 = ξ} is a local orthonormal basis of vector fields
in M (f1, f2, f3), then from equation (3.6) we get
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2n+1∑

i=1

S (ei, ei) = [
τ

b (2n + 1)

( a

2n
+ 2b

)
− 2n (f1 − f3)

− (f1 − f3)
a

b
]
2n+1∑

i=1

g (ei, ei) + [(f1 − f3)
a

b

+4n (f1 − f3)− τ

b (2n + 1)

( a

2n
+ 2b

)
]
2n+1∑

i=1

η (ei) η (ei) .

Using equations (2.2), (2.9) and (2.20), we get

τ =
2n (2n + 1) (a + (2n− 1) b) (f1 − f3)

(a + 2n (2n− 1) b)
. (3.8)

Theorem 3.2. In a quasi-conformally flat generalized Sasakian-space-form
M (f1, f2, f3) Ricci-tensor S, Ricci-operator Q and scalar curvature τ are given
by the equations (3.6), (3.7) and (3.8) respectively.

4. Quasi-conformally semi-symmetric generalized Sasakian-space-form

Let M (f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian-space-
form. We obtain from equation (1.2) by using equations (2.2), (2.12) and (2.18)

η
(
C̃ (X,Y ) Z

)

=
(

(a + 2nb) (f1 − f3)− τ

(2n + 1)

( a

2n
+ 2b

))

[g (Y, Z) η (X)− g (X, Z) η (Y )]

+ b [S (Y, Z) η (X)− S (X,Z) η (Y )] .

(4.1)

On taking Z = ξ in the equation (4.1), we get

η
(
C̃ (X, Y ) ξ

)
= 0 (4.2)

and on taking X = ξ in the equation (4.1), we get

η
(
C̃ (ξ, Y ) Z

)

=
(

(a + 2nb) (f1 − f3)− τ

(2n + 1)

( a

2n
+ 2b

))

[g (Y, Z)− η (Y ) η (Z)]

+ b [S (Y, Z)− 2n (f1 − f3) η (Y ) η (Z)] .

(4.3)
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The condition of quasi-conformally semi-symmetric manifold is

R (X,Y ) .C̃ = 0. (4.4)

In virtue of above equation, we get

R (X, Y ) C̃ (U, V ) W − C̃ (R (X,Y ) U, V ) W

− C̃ (U,R (X, Y ) V ) W − C̃ (U, V )R (X, Y )W = 0,
(4.5)

which implies that

(f1 − f3) [C̃ (U, V,W, Y )− η (Y ) η
(
C̃ (U, V ) W

)

+ η (U) η
(
C̃ (Y, V ) W

)
+ η (V ) η

(
C̃ (U, Y ) W

)

+ η (W ) η
(
C̃ (U, V ) Y

)
− g (Y, U) η

(
C̃ (ξ, V ) W

)

− g (Y, V ) η
(
C̃ (U, ξ) W

)
− g (Y, W ) η

(
C̃ (U, V ) ξ

)
] = 0.

(4.6)

The above equation states that either f1 = f3 or

C̃ (U, V, W, Y )− η (Y ) η
(
C̃ (U, V ) W

)

+ η (U) η
(
C̃ (Y, V ) W

)
+ η (V ) η

(
C̃ (U, Y ) W

)

+ η (W ) η
(
C̃ (U, V ) Y

)
− g (Y, U) η

(
C̃ (ξ, V ) W

)

− g (Y, V ) η
(
C̃ (U, ξ) W

)
− g (Y,W ) η

(
C̃ (U, V ) ξ

)
= 0.

(4.7)

If f1 6= f3 then equation (4.7) must be true. Now we proceed under the assump-
tion that f1 6= f3. Putting U = Y in (4.7) and using equations (4.1) and (4.2),
we get

C̃ (Y, V,W, Y ) + η (W ) η
(
C̃ (Y, V ) Y

)

− g (Y, Y ) η
(
C̃ (ξ, V ) W

)
− g (Y, V ) η

(
C̃ (Y, ξ) W

)
= 0.

(4.8)

Let {e1, e2, ......, e2n, e2n+1 = ξ} is a local orthonormal basis of vector fields in
M (f1, f2, f3). Putting Y = ei in the above equation and taking the summation
over i, 1 ≤ 2n + 1, we get

2n+1∑

i=1

C̃ (ei, V,W, ei) + η (W )
2n+1∑

i=1

η
(
C̃ (ei, V ) ei

)

− (2n + 1) η
(
C̃ (ξ, V ) W

)
−

2n+1∑

i=1

g (ei, V ) η
(
C̃ (ei, ξ)W

)
= 0.

(4.9)
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Now using equations (2.9), (2.10), (2.20), (2.22), (4.1) and (4.3), we get

S (V,W ) =

(2n (a + 2nb) (f1 − f3)− τb)
(a− b)

g (V, W )

+
(2a + (6n− 1) b) (τ − 2n (2n + 1) (f1 − f3))

(2n + 1) (a− b)
η (V ) η (W ) .

(4.10)

On taking W = ξ in the equation (4.10), we get

QV =
2 (a + (2n− 1) b) τ − 2n (2n + 1) (a + (4n− 1) b) (f1 − f3)

(2n + 1) (a− b)
V (4.11)

and on taking V = W = ξ in the equation (4.10), we get

τ =
4n2 (2n + 1) b (f1 − f3)

(a + (2n− 1) b)
. (4.12)

Theorem 4.1. In a quasi-conformally semi-symmetric generalized Sa-
sakian-space-form M (f1, f2, f3) Ricci-tensor S, Ricci-operator Q and scalar cur-
vature τ are given by the equations (4.10), (4.11) and (4.12) respectively.
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