$\begin{array}{lll} Vol. & 5 \ (2011), \ pp.89-99 \\ \text{https://doi.org/10.56424/jts.v5i01.10438} \end{array}$

Generalized Sasakian-Space-Forms with Quasi-Conformal Curvature Tensor

Rajendra Prasad, Pankaj and Kwang-Soon Park*

Department of Mathematics and Astronomy
University of Lucknow, Lucknow-226007, India
*Department of Mathematical Sciences,
Seoul National University, Seoul 151-747 (Korea).
e-mail: rp_manpur@rediffmail.com, pankaj.fellow@yahoo.co.in
(Received: 24 June, 2010)

Abstract

In this article, we study generalized Sasakian-space-form with quasi-conformal curvature tensor. In a quasi-conformally flat generalized Sasakian-space-form we find some relations between differentiable functions f_1 , f_2 and f_3 . In a quasi-conformally flat generalized Sasakian space form we also find Riccitensor, Ricci-operator and scalar curvature. Ricci-tensor, Ricci-operator and scalar curvature are also found in a quasi-conformally semi-symmetric generalized Sasakian-space-form.

Keywords and Phrases : Generalized Sasakian-space-form, Quasi-conformal curvature tensor, Quasi-conformally semi-symmetric, Ricci-operator, Ricci-tensor, Scalar curvature

2000 AMS Subject Classification: 53C15, 53C25, 53D15.

1. Introduction

The notion of generalized Sasakian-space-form was introduced and studied by Alegre et al. [1]. A generalized Sasakian-space-form is an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ whose curvature tensor is given by

$$R(X,Y)Z$$

$$= f_{1} [g(Y,Z)X - g(X,Z)Y]$$

$$+ f_{2} [g(X,\varphi Z)\varphi Y - g(Y,\varphi Z)\varphi X + 2g(X,\varphi Y)\varphi Z]$$

$$+ f_{3} [\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$

$$+ g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi],$$
(1.1)

where f_1, f_2, f_3 are differentiable functions on M and X, Y, Z are vector fields on M. In such a case we shall write generalized Sasakian-space-form as M (f_1, f_2, f_3). This type of manifold appears as a natural generalization of the well known Sasakian-space-form M (c), which can be obtain as a particular case of generalized Sasakian-space-form by taking $f_1 = \frac{c+3}{4}$ and $f_2 = f_3 = \frac{c-1}{4}$, where c denotes constant φ -sectional curvature. Moreover cosymplectic space forms, Kenmotsu space forms are also particular case of generalized Sasakian-space-forms M (f_1, f_2, f_3). In the recent paper Alegre and Carriazo [2] ale08 studied contact metric and trans-Sasakian generalized Sasakian-space-forms. Conformally flat and locally symmetric generalized Sasakian-space-form was studied by Kim [8].

In this paper we have studied generalized Sasakian-space-forms with quasi-conformal curvature tensor. The notion of quasi-conformal curvature tensor was introduced by Yano and Sawaki [10]. A (2n+1)-dimensional Riemannian manifold M is quasi-conformally flat if $\widetilde{C}=0$, where \widetilde{C} is quasi-conformal curvature tensor, defined as

$$\widetilde{C}(X,Y) Z = aR(X,Y) Z + b[S(Y,Z) X - S(X,Z) Y
+ g(Y,Z) QX - g(X,Z) QY]
- \frac{\tau}{(2n+1)} \left[\frac{a}{2n} + 2b \right] [g(Y,Z) X - g(X,Z) Y],$$
(1.2)

where a and b are constants and R, S, Q and τ are the Riemannian curvature-tensor, the Ricci-tensor, the Ricci-operator and the scalar curvature of the manifold respectively. If a=1 and $b=-\frac{1}{2n-1}$, then \widetilde{C} becomes conformal curvature tensor. Thus conformal curvature tensor is a particular case of quasi-conformal curvature tensor. It is known that the quasi-conformally flat manifold is either conformally flat if $a\neq 0$ or Einstein if a=0 and $b\neq 0$ [3].

In the present paper we have also studied quasi-conformally semi-symmetric generalized Sasakian-space-forms. If a Riemannian manifold satisfies $R\left(X,Y\right)\widetilde{C}=0$ where \widetilde{C} is the quasi-conformal curvature tensor, then the manifold is said to be quasi-conformally semi-symmetric manifold [5].

2. Preliminaries

In this section, we recall some general definitions and basic formulas which we will use later. For this, we recommend the reference [4]. A (2n+1)-dimensional Riemannian manifold (M,g) is said to be an almost contact metric

manifold if there exist a (1,1) tensor field φ , a unique global non-vanishing structural vector field ξ (called the vector field) and a 1-form η such that

$$\eta(\xi) = 1, \qquad \varphi^2 X = -X + \eta(X)\xi, \qquad \varphi \xi = 0,$$
(2.1)

$$d\eta(X,\xi) = 0, \qquad g(X,\xi) = \eta(X), \tag{2.2}$$

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{2.3}$$

$$d\eta(X,Y) = g(X,\varphi Y) \qquad \eta o \varphi = 0.$$
 (2.4)

Such a manifold is called contact manifold if $\eta \wedge (d\eta)^n \neq 0$, where n is n^{th} exterior power. For contact manifold we also have $d\eta = \Phi$, where $\Phi(X,Y) = g(\varphi X,Y)$ is called fundamental 2-form on M. If ξ is killing vector field, then M is said to be K-contact manifold. The almost contact metric structure (φ, ξ, η, g) on M is said to be normal if

$$[\varphi, \varphi](X, Y) + 2d\eta(X, Y)\xi = 0, \tag{2.5}$$

for any vector fields X, Y on M, where $[\varphi, \varphi]$ denotes the Nijenhuis torsion of φ given by

$$[\varphi, \varphi](X, Y) = \varphi^{2}[X, Y] + [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y].$$

$$(2.6)$$

An almost contact metric manifold is called trans-Sasakian manifold of type (α, β) if

$$(\nabla_X \varphi) Y = \alpha (g(X, Y) \xi - \eta(X) Y) + \beta (g(\varphi X, Y) \xi - \eta(X) \varphi Y),$$
(2.7)

for all vector field X, Y on M, where α and β are some smooth real valued functions. A trans-Sasakian manifold of type (1,0) and (0,1) is called Sasakian and Kenmotsu manifold respectively.

An almost contact metric manifold M is said to be η -Einstein if its Riccitensor S is of the form

$$S(X,Y) = cg(X,Y) + d\eta(X)\eta(Y), \qquad (2.8)$$

where c and d are smooth functions on M. A η -Einstein manifold becomes Einstein if d = 0.

If $\{e_1, e_2, \ldots, e_{2n}, \xi\}$ is a local orthonormal basis of vector fields in a (2n+1)-dimensional almost contact manifold M, then $\{\varphi e_1, \varphi e_2, \ldots, \varphi e_{2n}, \xi\}$

is also a local orthonormal basis. It is easy to verify that

$$\sum_{i=1}^{2n} g(e_i, e_i) = \sum_{i=1}^{2n} g(\varphi e_i, \varphi e_i) = 2n,$$
(2.9)

$$\sum_{i=1}^{2n} g(e_i, Y) S(X, e_i) = \sum_{i=1}^{2n} g(\varphi e_i, Y) S(X, \varphi e_i)$$

$$= S(X, Y) - S(X, \xi) \eta(Y),$$
(2.10)

for all $X, Y \in TM$. In view of (2.4) and (2.10), we get

$$\sum_{i=1}^{2n} g(e_i, \varphi Y) S(\varphi X, e_i) = \sum_{i=1}^{2n} g(\varphi e_i, \varphi Y) S(\varphi X, \varphi e_i)$$

$$= S(\varphi X, \varphi Y).$$
(2.11)

2.1. Some Results on generalized Sasakian-space-form

On taking $Z = \xi$ in the equation (1.1), we have

$$R(X,Y)\xi = (f_1 - f_3)(\eta(Y)X - \eta(X)Y).$$
 (2.12)

Again from (1.1) and taking account of $S(X,Y) = \sum_{i=1}^{(2n+1)} g(R(e_i,X)Y,e_i)$, we get

$$S(X,Y) = (2nf_1 + 3f_2 - f_3) g(X,Y) - (3f_2 + (2n-1) f_3) \eta(X) \eta(Y).$$
(2.13)

From (2.12), we have

$$R(X,\xi)\xi = (f_1 - f_3)(X - \eta(X)\xi),$$
 (2.14)

$$R(X,\xi)Y = (f_1 - f_3)(\eta(Y)X - g(X,Y)\xi)$$
(2.15)

and from (2.13), we have

$$Q(X) = (2nf_1 + 3f_2 - f_3)X - (3f_2 + (2n - 1)f_3)\eta(X).\xi,$$
(2.16)

$$\tau = 2n(2n+1)f_1 + 6nf_2 - 4nf_3, \tag{2.17}$$

where Q is the Ricci operator and τ is scalar curvature of $M(f_1, f_2, f_3)$. Now from (2.13) and (2.16), we have

$$S(X,\xi) = 2n(f_1 - f_3)\eta(X) \tag{2.18}$$

and

$$Q\xi = 2n(f_1 - f_3)\xi. \tag{2.19}$$

From (2.18), we get

$$\sum_{i=1}^{2n} S(e_i, e_i) = \sum_{i=1}^{2n} S(\varphi e_i, \varphi e_i) = \tau - 2n(f_1 - f_3), \qquad (2.20)$$

where τ is scalar curvature. In a generalized Sasakian-space-form $M\left(f_{1},f_{2},f_{3}\right)$ we also have

$$R(X, \xi, \xi, Y) = R(\xi, X, Y, \xi) = (f_1 - f_3) g(\varphi X, \varphi Y)$$
 (2.21)

and

$$\sum_{i=1}^{2n} R(e_i, X, Y, e_i) = \sum_{i=1}^{2n} R(\varphi e_i, X, Y, \varphi e_i)$$

$$= S(X, Y) - (f_1 - f_3) g(\varphi X, \varphi Y),$$
(2.22)

for all $X, Y \in TM$.

3. Quasi-conformally flat generalized Sasakian-space-form

Let $M(f_1, f_2, f_3)$ be a (2n+1) -dimensional generalized Sasakian-spaceform. Then the Riemannian curvature-tensor R, the Ricci-tensor S and the Ricci-operator Q of M are given by equations (1.1), (2.13) and (2.16) respectively. On putting the value of R(X,Y)Z, S(X,Y) and QX in the equation (1.2), we get

$$\widetilde{C}(X,Y)Z = a\left[\frac{-1}{2n+1} (3f_2 - 2f_3) \{g(Y,Z)X - g(X,Z)Y\} + f_2 \{g(X,\varphi Z)\varphi Y - g(Y,\varphi Z)\varphi X + 2g(X,\varphi Y)\varphi Z\} + f_3 \{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}\right] + b\left[\frac{(6f_2 + 2(2n-1)f_3)}{(2n+1)} \{g(Y,Z)X - g(X,Z)Y\} - (3f_2 + (2n-1)f_3) \{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y + g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi\}\right].$$
(3.1)

If $M(f_1, f_2, f_3)$ is quasi-conformally flat, then we have $\widetilde{C}(X, Y)Z = 0$. If we put $X = \varphi Y$ in the above equation, we get

$$a\left[\frac{-1}{2n+1} (3f_{2}-2f_{3}) \left\{g(Y,Z)\varphi Y - g(\varphi Y,Z)Y\right\} + f_{2}\left\{g(Y,Z)\varphi Y - \eta(Y)\eta(Z)\varphi Y + g(Y,\varphi Z)Y\right\} - g(Y,\varphi Z)\eta(Y)\xi + 2g(Y,Y)\varphi Z - 2\eta(Y)\eta(Y)\varphi Z\right\} + f_{3}\left\{\eta(Y)\eta(Z)\varphi Y + g(\varphi Y,Z)\eta(Y)\xi\right\} + b\left[\frac{(6f_{2}+2(2n-1)f_{3})}{(2n+1)} \left\{g(Y,Z)\varphi Y - g(\varphi Y,Z)Y\right\} - (3f_{2}+(2n-1)f_{3})\left\{\eta(Y)\eta(Z)\varphi Y - g(\varphi Y,Z)\eta(Y)\xi\right\} = 0.$$
(3.2)

If we choose a unit vector U such that $\eta(U) = 0$ and put Y = U in the equation (3.2), then we get

$$a\left[\frac{(2f_{3}-3f_{2})}{(2n+1)}\left\{g\left(U,Z\right)\varphi U-g\left(\varphi U,Z\right)U\right\}\right.$$

+ $f_{2}\left\{g\left(U,Z\right)\varphi U-g\left(\varphi U,Z\right)U+2\varphi Z\right\}\right]$
+ $b\left[\frac{(6f_{2}+2\left(2n-1\right)f_{3}\right)}{(2n+1)}\left\{g\left(U,Z\right)\varphi U-g\left(\varphi U,Z\right)U\right\}\right]=0.$

Again taking Z = U in the above equation, we get

$$[(3nf_2 + f_3) a + (3f_2 + (2n - 1) f_3) b] \varphi U = 0.$$
(3.3)

In view of equation (3.3) we have following theorem:

Theorem 3.1. In a quasi-conformally flat generalized Sasakian-space-form

$$(3nf_2 + f_3) a + (3f_2 + (2n - 1) f_3) b = 0.$$

It is known that a quasi-conformally flat manifold becomes Einstein if a=0 and $b\neq 0$ [3]. Thus, analogous to [3], if a quasi-conformally flat generalized Sasakian-space-form is Einstein, then theorem 3.1 implies

$$3f_2 + (2n-1)f_3 = 0 (3.4)$$

and equation (2.13) also implies the same condition for Einstein generalized Sasakian-space-form. So we have following corollary:

Corollary 3.1. Quasi-conformally flatness $(a = 0, b \neq 0)$ does not change the condition of Einstein generalized Sasakian-space-form.

Now under the consideration of quasi-conformally flat manifold equation (1.2) reduces to

$$R(X, Y, Z, W) = \frac{b}{a} [S(X, Z) g(Y, W) - S(Y, Z) g(X, W) + S(X, W) g(X, Z) - S(X, W) g(Y, Z)] + \frac{\tau}{a(2n+1)} [\frac{a}{2n} + 2b] [g(Y, Z) g(X, W) - g(X, Z) g(Y, W)],$$
(3.5)

where R(X, Y, Z, W) = g(R(X, Y) Z, W).

On taking $Z=\xi$ in the equation (3.5) and using equations (2.2), (2.12) and (2.18), we get

$$(f_{1} - f_{3}) [\eta(Y) g(X, W) - \eta(X) g(Y, W)]$$

$$= \frac{b}{a} [2n (f_{1} - f_{3}) {\eta(X) g(Y, W) - \eta(Y) g(X, W)} + {\eta(X) S(Y, W) - \eta(Y) S(X, W)}]$$

$$+ \frac{\tau}{a (2n + 1)} [\frac{a}{2n} + 2b] [\eta(Y) g(X, W) - \eta(X) g(Y, W)].$$

Again putting $X = \xi$ and using equations (2.1), (2.2) and (2.18), we get

$$S(Y,W) = \left[\frac{\tau}{b(2n+1)} \left(\frac{a}{2n} + 2b\right) - 2n(f_1 - f_3) - (f_1 - f_3) \frac{a}{b} g(Y,W) + \left[(f_1 - f_3) \frac{a}{b} + 4n(f_1 - f_3) - \frac{\tau}{b(2n+1)} \left(\frac{a}{2n} + 2b\right)\right] \eta(Y) \eta(W).$$
(3.6)

Putting $W = \xi$ in the above equation, we get

$$QY = 2n(f_1 - f_3)Y. (3.7)$$

If $\{e_1, e_2, \dots, e_{2n}, e_{2n+1} = \xi\}$ is a local orthonormal basis of vector fields in $M(f_1, f_2, f_3)$, then from equation (3.6) we get

$$\sum_{i=1}^{2n+1} S(e_i, e_i) = \left[\frac{\tau}{b(2n+1)} \left(\frac{a}{2n} + 2b \right) - 2n \left(f_1 - f_3 \right) \right.$$

$$\left. - \left(f_1 - f_3 \right) \frac{a}{b} \right] \sum_{i=1}^{2n+1} g(e_i, e_i) + \left[\left(f_1 - f_3 \right) \frac{a}{b} \right.$$

$$\left. + 4n \left(f_1 - f_3 \right) - \frac{\tau}{b(2n+1)} \left(\frac{a}{2n} + 2b \right) \right] \sum_{i=1}^{2n+1} \eta(e_i) \eta(e_i) .$$

Using equations (2.2), (2.9) and (2.20), we get

$$\tau = \frac{2n(2n+1)(a+(2n-1)b)(f_1-f_3)}{(a+2n(2n-1)b)}.$$
 (3.8)

Theorem 3.2. In a quasi-conformally flat generalized Sasakian-space-form $M(f_1, f_2, f_3)$ Ricci-tensor S, Ricci-operator Q and scalar curvature τ are given by the equations (3.6), (3.7) and (3.8) respectively.

4. Quasi-conformally semi-symmetric generalized Sasakian-space-form

Let $M(f_1, f_2, f_3)$ be a (2n + 1)-dimensional generalized Sasakian-spaceform. We obtain from equation (1.2) by using equations (2.2), (2.12) and (2.18)

$$\eta \left(\widetilde{C}(X,Y) Z \right) \\
= \left((a + 2nb) (f_1 - f_3) - \frac{\tau}{(2n+1)} \left(\frac{a}{2n} + 2b \right) \right) \\
[g(Y,Z) \eta(X) - g(X,Z) \eta(Y)] \\
+ b [S(Y,Z) \eta(X) - S(X,Z) \eta(Y)].$$
(4.1)

On taking $Z = \xi$ in the equation (4.1), we get

$$\eta\left(\widetilde{C}\left(X,Y\right)\xi\right) = 0\tag{4.2}$$

and on taking $X = \xi$ in the equation (4.1), we get

$$\eta \left(\widetilde{C} (\xi, Y) Z \right)
= \left((a + 2nb) (f_1 - f_3) - \frac{\tau}{(2n+1)} \left(\frac{a}{2n} + 2b \right) \right)
\left[g(Y, Z) - \eta(Y) \eta(Z) \right]
+ b \left[S(Y, Z) - 2n (f_1 - f_3) \eta(Y) \eta(Z) \right].$$
(4.3)

The condition of quasi-conformally semi-symmetric manifold is

$$R(X,Y).\widetilde{C} = 0. (4.4)$$

In virtue of above equation, we get

$$R(X,Y)\widetilde{C}(U,V)W - \widetilde{C}(R(X,Y)U,V)W - \widetilde{C}(U,R(X,Y)V)W - \widetilde{C}(U,V)R(X,Y)W = 0,$$

$$(4.5)$$

which implies that

$$(f_{1} - f_{3}) \left[\widetilde{C}(U, V, W, Y) - \eta(Y) \eta\left(\widetilde{C}(U, V) W\right) + \eta(U) \eta\left(\widetilde{C}(Y, V) W\right) + \eta(V) \eta\left(\widetilde{C}(U, Y) W\right) + \eta(W) \eta\left(\widetilde{C}(U, V) Y\right) - g(Y, U) \eta\left(\widetilde{C}(\xi, V) W\right) - g(Y, V) \eta\left(\widetilde{C}(U, \xi) W\right) - g(Y, W) \eta\left(\widetilde{C}(U, V) \xi\right)\right] = 0.$$

$$(4.6)$$

The above equation states that either $f_1 = f_3$ or

$$\begin{split} &\widetilde{C}\left(U,V,W,Y\right) - \eta\left(Y\right)\eta\left(\widetilde{C}\left(U,V\right)W\right) \\ &+ \eta\left(U\right)\eta\left(\widetilde{C}\left(Y,V\right)W\right) + \eta\left(V\right)\eta\left(\widetilde{C}\left(U,Y\right)W\right) \\ &+ \eta\left(W\right)\eta\left(\widetilde{C}\left(U,V\right)Y\right) - g\left(Y,U\right)\eta\left(\widetilde{C}\left(\xi,V\right)W\right) \\ &- g\left(Y,V\right)\eta\left(\widetilde{C}\left(U,\xi\right)W\right) - g\left(Y,W\right)\eta\left(\widetilde{C}\left(U,V\right)\xi\right) = 0. \end{split} \tag{4.7}$$

If $f_1 \neq f_3$ then equation (4.7) must be true. Now we proceed under the assumption that $f_1 \neq f_3$. Putting U = Y in (4.7) and using equations (4.1) and (4.2), we get

$$\widetilde{C}(Y, V, W, Y) + \eta(W) \eta\left(\widetilde{C}(Y, V) Y\right) - g(Y, Y) \eta\left(\widetilde{C}(\xi, V) W\right) - g(Y, V) \eta\left(\widetilde{C}(Y, \xi) W\right) = 0.$$

$$(4.8)$$

Let $\{e_1, e_2, \ldots, e_{2n}, e_{2n+1} = \xi\}$ is a local orthonormal basis of vector fields in $M(f_1, f_2, f_3)$. Putting $Y = e_i$ in the above equation and taking the summation over $i, 1 \leq 2n + 1$, we get

$$\sum_{i=1}^{2n+1} \widetilde{C}(e_{i}, V, W, e_{i}) + \eta(W) \sum_{i=1}^{2n+1} \eta\left(\widetilde{C}(e_{i}, V) e_{i}\right) - (2n+1) \eta\left(\widetilde{C}(\xi, V) W\right) - \sum_{i=1}^{2n+1} g(e_{i}, V) \eta\left(\widetilde{C}(e_{i}, \xi) W\right) = 0.$$
(4.9)

Now using equations (2.9), (2.10), (2.20), (2.22), (4.1) and (4.3), we get

$$S(V,W) = \frac{(2n(a+2nb)(f_1-f_3)-\tau b)}{(a-b)}g(V,W) + \frac{(2a+(6n-1)b)(\tau-2n(2n+1)(f_1-f_3))}{(2n+1)(a-b)}\eta(V)\eta(W).$$
(4.10)

On taking $W = \xi$ in the equation (4.10), we get

$$QV = \frac{2(a + (2n - 1)b)\tau - 2n(2n + 1)(a + (4n - 1)b)(f_1 - f_3)}{(2n + 1)(a - b)}V$$
 (4.11)

and on taking $V = W = \xi$ in the equation (4.10), we get

$$\tau = \frac{4n^2 (2n+1) b (f_1 - f_3)}{(a + (2n-1) b)}.$$
 (4.12)

Theorem 4.1. In a quasi-conformally semi-symmetric generalized Sasakian-space-form $M(f_1, f_2, f_3)$ Ricci-tensor S, Ricci-operator Q and scalar curvature τ are given by the equations (4.10), (4.11) and (4.12) respectively.

5. Acknowledgement

Second author (Pankaj) would like to acknowledge financial support from the University Grant commission in the form of Junior Research Fellowship.

References

- 1. Alegre, P., Blair, D. E. and Carriiazo, A.: Generalized Sasakian-space-form., Israel J. Math., 14 (2004), 157-183.
- 2. Alegre, P. and Carriiazo, A.: Structures on Generalized Sasakian-space-form., Diff. Geo. and its Application Vol. 26, Issue-6, (Dec. 2008), 656-666.
- Amur, K. and Maralabhavi, Y. B.: On quasi-conformally flat spaces., Tensor, N. S., 31 (1957), no. 2, 194-198.
- 4. Blair, D.E.: Riemannian geometry of Contact and Symplectic manifolds., Birkhauser Boston, 2002.
- 5. De, U.C., Jun J. B. and Gazi A.K.: Sasakian manifolds with quasi-conformal curvature tensor, Bul. Korean Math Soc., 45(2008), No. 2, 313-319.
- 6. Ghosh, A., Koufogiorgos, T. and Sharma, R.: Conformally flat contact metric manifold, J. Geometry, 70(2001), 66-76.
- 7. Ishii, Y.: On conharmonic transformation, Tensor, N. S., 7 (1957), 73-80.

- 8. Kim, U. K.: Conformally flat Generalized Sasakian-space-forms and locally symmetric Generalized Sasakian-space-forms., Note di Mathematica 26, n. 1, (2006), 55-67.
- 9. Gouli-Andreou, F. and Xenos, P. J.: Two classes of conformally flat contact metric 3-manifolds, J. Geom. 64 (1999), 80-88.
- 10. Yano, K. and Sawaki, S.: Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry, 2 (1968), 161-184.
- 11. Yano, K. and Bochner, S.: Curvature and Betti numbers, Annals of Mathematical Studies 32 (Princeton University Press) (1953).