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Abstract: In this paper, we establish the existence and uniqueness of common
fixed point theorems for self mappings satisfying the common limit range property
with respect to mappings S and T and common (E.A)-property via the concept
of C-class functions in b-metric spaces. We furnish two examples to validate our
results. Our results improve various results appeared in the current literature.
As an application, We provide the existence of a solution of integral equations.

1. Introduction

In the development of nonlinear analysis, fixed point theory occupies a renowned
place in many aspects. It has been used in different branches of engineering and
sciences. In particular, the famous Banach contraction principle is very popu-
lar tool of mathematics to solve a problems in several branches of mathematics
such as variational and linear inequalities and approximation theory. Sessa S.
[22] introduced the concept of weakly commuting and G. Jungck [16] introduced
the concept of compatibility, Jungck and Rhoades [17] introduced the notion of
weak compatibility. Bakhtin [6] introduced the concept of b-metric spaces which
is a generalization of metric spaces. After that, Czerwik [11, 12] defined it such
as current structure which is consider a generalization of metric spaces. Several
authors have been interested in investigating fixed point and common fixed point
theorems for mappings in b-metric spaces [5, 7, 14, 23].
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Ansari [2] introduced the notion of C-class function as a major generalization of
Banach contraction principle and obtained some fixed point results. Subsequently,
many authors were interested in fixed point theorems for C-class function [4, 20].
Most recently, some authors obtained fixed point and common fixed point for
C-class function [3, 8, 13, 21, 24].

2. Preliminaries

We recall some definitions which will be used in the sequel.
[6] Let X be a non-empty set and s ≥ 1 a given real number. A function

d : X ×X → [0,∞) is a b-metric if for each x, y, z ∈ X, the following conditions
are satisfied.

(1) d(x, y) = 0 iff x = y,
(2) d(x, y) = d(y, x),
(3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space.
[9] Let (X, d) be a b-metric space. Then a sequence {xn} in X is called

(1) b-convergent if and only if there exists x ∈ X such that d(xn, x) → 0, as
n→ ∞. In this case, we write limn→∞ xn = x.

(2) b-Cauchy if and only if d(xn, xm) → 0, as n,m→ ∞.

[10] Let (X, d) be a b-metric space. Then a subset Y ⊂ X is called closed if
and only if for each sequence {xn} in Y which converges to an element x, we have
x ∈ Y .

[10] The b-metric space (X, d) is complete if every b-Cauchy sequence in X is
b-convergent.
[16] Let f and g be given self mappings on a set X. The pair (f, g) is said to be

weakly compatible if f and g commute at their coincidence point (i.e fgx = gfx
whenever fx = gx).

[2] A mapping F : [0,∞)2 → R is called C-class function if it is continuous and
satisfies following axioms:

(1) F (s, t) ≤ s,
(2) F (s, t) = s implies that either s = 0 or t = 0.

Let us denote C the family of C-class functions.

Remark 2.1. [2] Clearly, for some F we have F (0, 0) = 0.

Example 2.2. [2] The following functions F : [0,∞)2 → R are elements of C, for
all s, t ∈ [0,∞):

(1) F (s, t) = s− t, F (s, t) = s⇒ t = 0;
(2) F (s, t) = ms, 0 < m < 1, F (s, t) = s⇒ s = 0;
(3) F (s, t) = sβ(s), β : [0,∞) → [0, 1) is continuous, F (s, t) = s⇒ s = 0;
(4) F (s, t) = s − φ(s), F (s, t) = s ⇒ s = 0, here φ : [0,∞) → [0,∞) is a

continuous function such that φ(t) = 0 ⇔ t = 0.

[18] A function ψ : [0,∞) → [0,∞) is called an altering distance function if
the following properties are satisfied.

(1) ψ is nondecreasing and continuous,
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(2) ψ(t) = 0 if and only if t = 0.

[2] An ultra altering distance function is a continuous nondecreasing mapping
φ : [0,∞) → [0,∞) such that φ(t) > 0, t > 0 and φ(0) ≥ 0.

[25] Two self maps f and S of a metric space (X, d) are said to satisfy common
limit range property with respect to S, denoted by (CLRS) if there exists a
sequence {xn} in X such that

lim
n→∞

fxn = lim
n→∞

Sxn = t where t ∈ S(X).

[15] Two pairs (f, S) and (g, T ) of self mappings of a metric space (X, d) are
said to satisfy common limit range property with respect to S and T , denoted
(CLRST ) if there exists two sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

Sxn = lim
n→∞

gyn = lim
n→∞

Tyn = t where t ∈ S(X) ∩ T (X).

[1] Let S and T be two self mappings of a metric space (X, d). We say that S
and T satisfy (E.A)-property if there exists a sequence {xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t, for some t ∈ X.

[19] Two pairs (A, S) and (B, T ) of self mappings of a metric space (X, d) are
said to satisfy common (E.A)-property if there exists two sequences {xn} and
{yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t,

for some t ∈ X.
In this paper, we establish the existence and uniqueness of common fixed point

theorems for self mappings satisfying the common limit range property with re-
spect to mappings S and T and common (E.A)-property via the concept of C-class
functions in b-metric spaces. We furnish two examples to validate our results. Our
results improve various results appeared in the current literature. We apply our
result to the existence of a solution of an integral equation.

3. Main Result

Now, we state and prove our main results as follows: Let (X, d) be a b-metric
space and f, g, S, T : X → X be mappings with f(X) ⊆ T (X) and g(X) ⊆ S(X)
such that

ψ(sd(fx, gy)) ≤ F (ψ(Ms(x, y)), φ(Ms(x, y))), for all x, y ∈ X, (3.1)

where Ms(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(fx, Ty) + d(Sx, gy)

2s
}.

Suppose that the pairs (f, S) and (g, T ) satisfy the CLRST -property then the
pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if the pairs
(f, S) and (g, T ) are weakly compatible, then f, g, S and T have a unique common
fixed point.
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Proof. If the pairs (f, S) and (g, T ) satisfy the CLRST -property, then there exists
a sequence {xn} and {yn} in X satisfying

lim
n→∞

fxn = lim
n→∞

Sxn = lim
n→∞

gyn = lim
n→∞

Tyn = z,

for some z ∈ S(X)∩T (X). Since z ∈ S(X), then there exists a point p ∈ X such
that Sp = z. Now, we show that fp = z. We put x = p and y = yn in (3.1), we
get

ψ(d(fp, gyn)) ≤ ψ(sd(fp, gyn))

≤ F (ψ(Ms(p, yn)), φ(Ms(p, yn))), (3.2)

where

Ms(p, yn) = max{d(Sp, Tyn), d(fp, Sp), d(gyn, T yn),
d(fp, Tyn) + d(Sp, gyn)

2s
}

taking limit as n→ ∞, we have

lim
n→∞

Ms(p, yn) = max{d(z, z), d(fp, z), d(z, z), d(fp, z) + d(z, z)

2s
}

= d(fp, z).

Taking limit as n→ ∞ in (3.2) and definition of ψ and φ, we get

ψ(d(fp, z)) ≤ F (ψ(d(fp, z)), φ(d(fp, z))),

which implies ψ(d(fp, z)) = 0 or φ(d(fp, z)) = 0 which gives fp = z. Thus p is
a coincidence point of the pair (f, S). Since the pair (f, S) is weakly compatible
and fp = Sp,
therefore fSp = Sfp which implies that fz = Sz.

Since z ∈ T (X), then there exists a point q ∈ X such that Tq = z. Now, we
show that gq = z. We put x = p and y = q in (3.1), we get

ψ(d(fp, gq)) ≤ ψ(sd(fp, gq))

≤ F (ψ(Ms(p, q)), φ(Ms(p, q))), (3.3)

where

Ms(p, q) = max{d(Sp, Tq), d(fp, Sp), d(gq, T q), d(fp, Tq) + d(Sp, gq)

2s
}

= max{d(z, z), d(z, z), d(gq, z), d(z, z) + d(z, gq)

2s
}

= d(z, gq).

Thus, from (3.3) and definition of ψ and φ, we get

ψ(d(z, gq)) ≤ F (ψ(d(z, gq)), φ(d(z, gq))),

which implies ψ(d(z, gq)) = 0 or φ(d(z, gq)) = 0 which gives gq = z. Thus q is
a coincidence point of the pair (g, T ). Since the pair (g, T ) is weakly compatible
and gq = Tq, therefore gTq = Tgq which implies that gz = Tz.
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Now we show that z is a common fixed point of the pair (f, S). Putting x = z,
y = q in (3.1), we get

ψ(d(fz, gq)) ≤ ψ(sd(fz, gq))

≤ F (ψ(Ms(z, q)), φ(Ms(z, q))), (3.4)

where

Ms(z, q) = max{d(Sz, Tq), d(fz, Sz), d(gq, T q), d(fz, T q) + d(Sz, gq)

2s
}

= max{d(fz, z), d(fz, Sz), d(z, z), d(fz, z) + d(fz, z)

2s
}

= d(fz, z).

Thus, from (3.4) and definition of ψ and φ, we get

ψ(d(fz, z)) ≤ F (ψ(d(fz, z)), φ(d(fz, z))),

which implies ψ(d(fz, z)) = 0 or φ(d(fz, z)) = 0 which gives fz = z. Hence
fz = z = Sz. Thus z is a common fixed point of the pair (f, S). Similarly, we
can show that gz = z = Tz. Hence z is a common fixed point of f, g, S and T .

Now, we show that z is a unique common fixed point. Let t be another common
fixed point of f, g, S and T . Putting x = z, y = t in (3.1), we get

ψ(d(fz, gt)) ≤ ψ(sd(fz, gt))

≤ F (ψ(Ms(z, t)), φ(Ms(z, t))), (3.5)

where

Ms(z, t) = max{d(Sz, T t), d(fz, Sz), d(gt, T t), d(fz, T t) + d(Sz, gt)

2s
}

= max{d(z, t), d(z, z), d(t, t), d(z, t) + d(z, t)

2s
}

= d(z, t).

Thus, from (3.5) and definition of ψ and φ, we get

ψ(d(z, t)) ≤ F (ψ(d(z, t)), φ(d(z, t))),

which implies ψ(d(z, t)) = 0 or φ(d(z, t)) = 0 which gives z = t. Hence z is a
unique common fixed point of mappings f , g, S and T . □

Remark 3.1. If we put ψ(t) = t in Theorem 3, we get the following result.

Let (X, d) be a b-metric space and f, g, S, T : X → X be mappings with
f(X) ⊆ T (X) and g(X) ⊆ S(X) such that

sd(fx, gy) ≤ F (Ms(x, y), φ(Ms(x, y))), for all x, y ∈ X,

where,

Ms(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(fx, Ty) + d(Sx, gy)

2s
}.

Suppose that the pairs (f, S) and (g, T ) satisfy the CLRST -property then the
pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if the pairs
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(f, S) and (g, T ) are weakly compatible, then f , g, S and T have a unique common
fixed point.

Remark 3.2. If we put g = f and S = T in Theorem 3, we get the following
result.

Let (X, d) be a b-metric space and f, T : X → X be mappings with f(X) ⊆
T (X) such that

ψ(sd(fx, fy)) ≤ F (ψ(Ms(x, y)), φ(Ms(x, y))), for all x, y ∈ X,

where,

Ms(x, y) = max{d(Tx, Ty), d(fx, Tx), d(fy, Ty), d(fx, Ty) + d(Tx, fy)

2s
}.

Suppose that the pair (f, T ) satisfy the CLRT -property then the pair (f, T )
has a point of coincidence in X. Moreover, if the pair (f, T ) is weakly compatible,
then f and T have a unique common fixed point.

Now, we illustrate an example to validate our main Theorem 3.

Example 3.3. Consider X = [0, 12], d(x, y) = max{x, y}, ψ(t) = t, φ(t) = t
10

and F (s, t) = 9
10
s. Then (X, d) is a b-metric space with constant s = 7

5
. Define

mappings f , g, S and T on X such that

f(x) =

{
0, if x ∈ {0} ∪ (5, 12];
3, if x ∈ (0, 5];

g(x) =

{
0, if x ∈ {0} ∪ (5, 12];
4, if x ∈ (0, 5];

S(x) =

 0, if x = 0;
7, if x ∈ (0, 5];
x+4
4
, if x ∈ (5, 12];

T (x) =

 0, if x = 0;
6, if x ∈ (0, 5];
x-5, if x ∈ (5, 12].

We take the sequence xn = {0} and yn = {5 + 1
n
}. We have

lim
n→∞

fxn = lim
n→∞

Sxn = lim
n→∞

gyn = lim
n→∞

Tyn = 0 ∈ S(X) ∩ T (X).

Therefore, both pairs (f, S) and (g, T ) satisfy the (CLRST )-property. We see
that mappings (f, S) and (g, T ) commute at 0 which is the coincidence point.
Also, f(x) ⊆ T (X) and g(X) ⊆ S(X). We can verify the contraction condition
(3.1) by a simple calculation for the case x, y ∈ X as follows:

If x, y ∈ (0, 5], then

ψ(sd(fx, gy)) =
7

5
× 4 ≤ 9

10
× 7 =

9

10
d(Sx, Ty) ≤ 9

10
ψ(Ms(x, y)).

Thus the contraction condition (3.1) is satisfied for x, y ∈ (0, 5]. Similarly, we
can verify for other cases. Thus all the conditions of Theorem 3 are satisfied and
0 is a unique common fixed point of mappings f , g, S and T .

Let (X, d) be a b-metric space and f , g, S, T : X → X be mappings with
f(X) ⊆ T (X) and g(X) ⊆ S(X) satisfying the inequality (3.1). If the pairs
(f, S) and (g, T ) satisfy the common (E.A)-property and S(X) or T (X) is closed.
Then the pairs (f, S) and (g, T ) have a point of coincidence in X. Moreover, if
the pairs (f, S) and (g, T ) are weakly compatible, then f , g, S and T have a
unique common fixed point.
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Proof. If the pairs (f, S) and (g, T ) satisfy the common (E.A)-property, then
there exists a sequence {xn} and {yn} in X satisfying

lim
n→∞

fxn = lim
n→∞

Sxn = lim
n→∞

gyn = lim
n→∞

Tyn = z,

for some z ∈ X. Since S(X) is closed, then there exists a point p ∈ X such that
Sp = z. Now, we show that fp = z. We put x = p and y = yn in (3.1), we get

ψ(d(fp, gyn)) ≤ ψ(sd(fp, gyn))

≤ F (ψ(Ms(p, yn)), φ(Ms(p, yn))), (3.6)

where

Ms(p, yn) = max{d(Sp, Tyn), d(fp, Sp), d(gyn, T yn),
d(fp, Tyn) + d(Sp, gyn)

2s
}

taking limit as n→ ∞, we have

lim
n→∞

Ms(p, yn) = max{d(z, z), d(fp, z), d(z, z), d(fp, z) + d(z, z)

2s
}

= d(fp, z).

Taking limit as n→ ∞ in (3.6) and definition of ψ and φ, we get

ψ(d(fp, z)) ≤ F (ψ(d(fp, z)), φ(d(fp, z))),

which implies ψ(d(fp, z)) = 0 or φ(d(fp, z)) = 0 which gives fp = z. Thus p is
a coincidence point of the pair (f, S). Since the pair (f, S) is weakly compatible
and fp = Sp,
therefore fSp = Sfp which implies that fz = Sz.

Since f(X) ⊆ T (X), then there exists a point q ∈ X such that Tq = z. Now,
we show that gq = z. We put x = p and y = q in (3.1), we get

ψ(d(fp, gq)) ≤ ψ(sd(fp, gq))

≤ F (ψ(Ms(p, q)), φ(Ms(p, q))), (3.7)

where

Ms(p, q) = max{d(Sp, Tq), d(fp, Sp), d(gq, T q), d(fp, Tq) + d(Sp, gq)

2s
}

= max{d(z, z), d(z, z), d(gq, z), d(z, z) + d(z, gq)

2s
}

= d(z, gq).

Thus, from (3.7) and definition of ψ and φ, we get

ψ(d(z, gq)) ≤ F (ψ(d(z, gq)), φ(d(z, gq))),

which implies ψ(d(z, gq)) = 0 or φ(d(z, gq)) = 0 which gives gq = z. Thus q is
a coincidence point of the pair (g, T ). Since the pair (g, T ) is weakly compatible
and gq = Tq,
therefore gTq = Tgq which implies that gz = Tz.
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Now we show that z is a common fixed point of the pair (f, S). Putting x = z,
y = q in (3.1), we get

ψ(d(fz, gq)) ≤ ψ(sd(fz, gq))

≤ F (ψ(Ms(z, q)), φ(Ms(z, q))), (3.8)

where

Ms(z, q) = max{d(Sz, Tq), d(fz, Sz), d(gq, T q), d(fz, T q) + d(Sz, gq)

2s
}

= max{d(fz, z), d(fz, Sz), d(z, z), d(fz, z) + d(fz, z)

2s
}

= d(fz, z).

Thus, from (3.8) and definition of ψ and φ, we get

ψ(d(fz, z)) ≤ F (ψ(d(fz, z)), φ(d(fz, z))),

which implies ψ(d(fz, z)) = 0 or φ(d(fz, z)) = 0 which gives fz = z. Hence
fz = z = Sz. Thus z is a common fixed point of the pair (f, S). Similarly, we
can show that gz = z = Tz. Hence z is a common fixed point of f, g, S and T .

Now, we show that z is a unique common fixed point. Let t be another common
fixed point of f, g, S and T . Putting x = z, y = t in (3.1), we get

ψ(d(fz, gt)) ≤ ψ(sd(fz, gt))

≤ F (ψ(Ms(z, t)), φ(Ms(z, t))), (3.9)

where

Ms(z, t) = max{d(Sz, T t), d(fz, Sz), d(gt, T t), d(fz, T t) + d(Sz, gt)

2s
}

= max{d(z, t), d(z, z), d(t, t), d(z, t) + d(z, t)

2s
}

= d(z, t).

Thus, from (3.9) and definition of ψ and φ, we get

ψ(d(z, t)) ≤ F (ψ(d(z, t)), φ(d(z, t))),

which implies ψ(d(z, t)) = 0 or φ(d(z, t)) = 0 which gives z = t. Hence z is a
unique common fixed point of mappings f , g, S and T . □

Remark 3.4. If we put ψ(t) = t in Theorem 3, we get the following result.

Let (X, d) be a b-metric space and f , g, S, T : X → X be mappings with
f(X) ⊆ T (X) and g(X) ⊆ S(X) such that

sd(fx, gy) ≤ F (Ms(x, y), φ(Ms(x, y))), for all x, y ∈ X,

where

Ms(x, y) = max{d(Sx, Ty), d(fx, Sx), d(gy, Ty), d(fx, Ty) + d(Sx, gy)

2s
}.

Suppose that the pairs (f, S) and (g, T ) satisfy the common (E.A)-property
and S(X) or T (X) is closed. Then the pairs (f, S) and (g, T ) have a point of
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coincidence in X. Moreover, if the pairs (f, S) and (g, T ) are weakly compatible,
then f , g, S and T have a unique common fixed point.

Remark 3.5. If we put g = f and S = T in Theorem 3, we get the following
result.

Let (X, d) be a b-metric space and f , T : X → X be mappings with f(X) ⊆
T (X) such that

ψ(sd(fx, fy)) ≤ F (ψ(Ms(x, y)), φ(Ms(x, y))), for all x, y ∈ X,

where Ms(x, y) = max{d(Tx, Ty), d(fx, Tx), d(fy, Ty), d(fx, Ty) + d(Tx, fy)

2s
}.

Suppose that the pair (f, T ) satisfy the common (E.A)-property and one of
subspaces f(X) and T (X) is closed. Then the pair (f, T ) has a point of coinci-
dence in X. Moreover, if the pair (f, T ) is weakly compatible, then f and T have
a unique common fixed point.

Now, we illustrate an example to validate our Theorem 3.

Example 3.6. Consider X = [0, 1], d(x, y) = max{x, y}, ψ(t) = t, φ(t) = t
10

and F (s, t) = 9
10
s. Then (X, d) is a b-metric space with constant s = 49

25
. Define

mappings f , g, S and T on X such that

f(x) =

{
0, if x ∈ {0} ∪ (1

2
, 1];

1
4
, if x ∈ (0, 1

2
];

g(x) =

{
0, if x ∈ {0} ∪ (1

2
, 1];

1
3
, if x ∈ (0, 1

2
];

S(x) =

 0, if x = 0;
4
5
, if x ∈ (0, 1

2
];

x+3
12
, if x ∈ (1

2
, 1];

T (x) =

 0, if x = 0;
3
5
, if x ∈ (0, 1

2
];

x− 1
2
, if x ∈ (1

2
, 1].

We take sequences xn = {0} and yn = {1
2
+ 1

n
}. We have

lim
n→∞

fxn = lim
n→∞

Sxn = lim
n→∞

gyn = lim
n→∞

Tyn = 0 ∈ X.

Therefore, both pairs (f, S) and (g, T ) satisfy the common (E.A)-property. We
see that mappings (f, S) and (g, T ) commute at 0 which is coincidence point.
Also, f(x) ⊆ T (X) and g(X) ⊆ S(X). We can verify the contraction condition
(3.1) by a simple calculation for the case x, y ∈ X as follows:

If x, y ∈ (1
2
, 1], then

ψ(sd(fx, gy)) =
49

25
× 0 ≤ 9

10
× 1

2
=

9

10
d(Sx, Ty) ≤ 9

10
ψ(Ms(x, y)).

Thus the contraction condition (3.1) is satisfied for x, y ∈ (1
2
, 1]. Similarly, we

can verify for other cases. Thus all the conditions of Theorem 3 are satisfied and
0 is a unique common fixed point of mappings f , g, S and T .

4. Application to system of integral equations

Let X = C[a, b] be the set of all real continuous functions on [a, b]. Let the
function d : X ×X → [0,∞) be defined by d(u, v) = maxa≤r≤b |u(r)− v(r)|2, for
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all u, v ∈ X. Obviously, (X, d) is a b-metric space with parameter s = 2.
Now, consider the integral equations:

u(r) = p(r) +

∫ b

a

G(r, s)K(r, s, S(u(t)))ds (4.1)

v(r) = p(r) +

∫ b

a

G(r, s)J(r, s, T (v(t)))ds (4.2)

for all r ∈ [a, b], where G : [a, b]× [a, b] → R and K, J : [a, b]× [a, b]×R → R are
continuous functions. Suppose that

(1) For all r, s ∈ [a, b] and u, v ∈ X, we have

|K(r, s, S)− J(r, s, T )| ≤
√
F (|S(u(r))− T (v(r))|2, φ(|S(u(r))− T (v(r))|2))

2
.

(2) maxa≤r≤b

∫ b

a
G(r, s)ds ≤ 1.

Then the integral equations (4.1) and (4.2) have a unique common solution.

Proof. Let f, g : X → X be mappings defined by

f(u(r)) = p(r) +

∫ b

a

G(r, s)K(r, s, S(u(t)))ds

g(v(r)) = p(r) +

∫ b

a

G(r, s)J(r, s, T (v(t)))ds

From (4.1) and (4.2), we have

d(f(u(r)), g(v(r))) = max
a≤r≤b

|f(u(r))− g(v(r))|2

= max
a≤r≤b

{
|
∫ b

a

G(r, s)K(r, s, S(u(t)))ds

−
∫ b

a

G(r, s)J(r, s, T (v(t)))ds|2
}

= max
a≤r≤b

{
(

∫ b

a

G(r, s)ds)2(

∫ b

a

|K(r, s, S(u(t)))

− J(r, s, T (v(t)))|2ds)
}

≤ max
a≤r≤b

{
(
F (|S(u(r))− T (v(r))|2, φ(|S(u(r))− T (v(r))|2))

2
)

(

∫ b

a

G(r, s)ds)2
}

≤ F (d(S(u(r)), T (v(r))), φ(d(S(u(r)), T (v(r)))))

2

≤ F (Ms(u, v), φ(Ms(u, v)))

2
2d(f(u(r)), g(v(r))) ≤ F (Ms(u, v), φ(Ms(u, v))),
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where

Ms(u, v) = max{d(Su, Tv), d(fu, Su), d(gv, Tv), d(fu, Tv) + d(Su, gv)

2s
}.

for all u, v ∈ X

sd(fu, gv) ≤ F (Ms(u, v), φ(Ms(u, v))).

Hence all hypotheses of Corollary 3 are satisfied. Thus, the system of integral
equations (4.1) and (4.2) have a unique common solution. □

5. Conclusion

It concludes that we have established common fixed point theorems for self
mappings satisfying the common limit range property with respect to mappings
S and T and common (E.A)-property via the concept of C-class functions in
b-metric spaces. Further we furnish examples and an application to validate our
findings.

References

[1] M. Aamri, D. El Moutawakil, Some new common fixed point theorems under strict contrac-
tive conditions, J. Math. Anal. Appl., 270 (1), (2002), 181-188.

[2] A. H. Ansari, Note on φ − ψ-contractive type mappings and related fixed point, The 2nd
Reg. Conf. math. Appl. PNU, (2014), 377-380.

[3] A. H. Ansari, J. Kumar, S. Vashistha, C-class functions on common fixed point theorem of
weakly compatible maps in partial metric space, Int. J. Adv. Math., 3, (2019), 15-23.

[4] A. H. Ansari, W. Shatanawi, A. Kurdi, G. Maniu, Best proximity points in complete metric
spaces with (P)-property via C-class functions, J. Math. Anal., 7, (2016), 54-67.

[5] S. Arora, S. Mishra, M. Kumar, Heena, Common fixed point theorems for four self-maps
satisfying (CLRST )-Property in b-Metric Spaces, J. Physics: Conference Series, 1531, (2020)
012083.

[6] I. A. Bakhtin, The contraction principal in quasi metric spaces, Funct. Anal., 30, (1989),
26-37.

[7] G. V. R. Babu, T. M. Dula, P. S. Kumar, A common fixed point theorem in b-metric spaces
via simulation function, J. Fixed Point Theory, (2018), 2018:12.

[8] S. Beloul, A. H. Ansari, C-class function on some common fixed point theorems for weakly
sub-sequently continuous mappings in menger spaces, Bull. Int. Math. Virt. Inst., 8, (2018),
345-355.

[9] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric space, Int.
J. Mod. Math., 4, (2009), 285-301.

[10] M. Boriceanu, M. Bota, A. Petrusel, Multivalued fractal in b-metric spaces, Cent. Eur. J.
Math., 8(2), (2010), 367-377.

[11] S. Czerwik, Contraction mappings in b- metric spaces, Acta Mat. Inf. Uni. Ostraviensis,
1, (1993), 5-11.

[12] S. Czerwik, Nonlinear set valued contraction mappings in b-metric spaces, Atti Sem. Mat.
Fis. Univ. Modena, 46(2), (1998), 263-276.

[13] V. Gupta, A.H. Ansari, N. Mani, Fixed point theorem for new type of auxillary functions,
Acta Univ. Sapientiae, Mathematica, 12(1), (2020), 97-111.

[14] N. Hussain, Z. D. Mitrovi, S. Radenovi, A common fixed point theorem of Fisher in b-
metric spaces, Revista de la Real Academia de Ciencias Exactas, F́ısicas y Naturales. Serie A,
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