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RIEMANNIAN MAPS FROM KAEHLER MANIFOLD
WITH GENERIC FIBERS

SHAHID ALI AND RICHA AGARWAL

Abstract. We study Riemannian maps from almost Hermitian
manifolds to Riemannian manifolds for the case when the fibers
are generic submanifold of the total space. We obtain the integra-
bility conditions for the distributions while vertical distribution is
always integrable. We also study the geometry of the leaves of the
distribution which arise from such maps, and obtain the necessary
and sufficient conditions for the fibers as well as the total manifold
to be generic product manifolds. We, further, obtain the necessary
and sufficient condition for such maps to be totally geodesic.

1. Introduction

The theory of smooth maps between Riemannian manifolds was
widely used in Riemannian geometry. These map are generally used to
compare the geometric structures between two manifolds. From this
point of view, such smooth maps are the isometric immersion between
Riemannian manifolds which are characterized by the Riemannian met-
rics and Jacobian matrices. More precisely, Let(M, gM) and (B, gB) be
two Riemannian manifolds, then a smooth map

F : (M, gM) −→ (B, gB),

where dimM = m and dimB = n, is called an isometric immersion if
the Jacobian map which we denote by F∗ is injective and satisfies

gB(F∗X,F∗Y ) = gM(X, Y ), (1.1)

for any vector fields X and Y tangent to M .
Here, one can notice that m ≤ n. On the other hand, in case when

m ≥ n, the smooth map F was studied in the name Riemannian sub-
mersions and was first studied by B.O′Neill [12],[13] and Gray [10].
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The smooth map

F : (M, gM) −→ (B, gB),

is called a Riemannian submersion if F∗ is onto and satisfies (1.1) for
vector fields tangent to the horizontal space (KerF∗)

⊥.
The idea of a Riemannian map between Riemanian manifolds was

first introduced by Fischer, A. E. [9]. The idea of Riemannian maps
generalizes and infact unifies the notions of isometric immersion, Rie-
mannian submersion and an isometry. He has shown that every in-
jective Riemannian map is an injective isometric immersion, and that
on a connected manifold, every surjective Riemannian map is a sur-
jective Riemaninan submersion and every bijective Riemannian map is
an isometry. The notions of an immersion and submersion play a key
role in the theory of smooth maps between smooth manifolds(finite or
infinite). If we consider the Riemannian manifolds, then the theory
of smooth maps between Riemannian manifolds, the two notions of an
immersion and a submersion get into the notions of an isometric immer-
sion and Riemannian submersion respectively, and were widely used in
differential geometry [12],[23]. But there is no Riemannian analogue
which corresponds to the general map between smooth manifolds.

Let F : (M, gM) −→ (B, gB) be a smooth map between Riemannian
manifolds (M, gM) and (B, gB) such that 0 < rankF < min{m,n}. If
we denote the Kernal space of F∗ by KerF∗ and its orthogonal com-
plement by (KerF∗)

⊥ in TM the tangent bundle of M, then TM has
the following decomposition

TM = (KerF∗)⊕ (KerF∗)
⊥.

We call (KerF∗) and respectively (KerF∗)
⊥ the vertical and horizontal

space of TM.
We denote by rangF∗ the range of F∗ and consider the orthogonal

complementary space to rangF∗ in the tangent bundle TB of B and
denote it by (rangF∗)

⊥. Because of the fact that rankF < min{m,n},
the (rangF∗)

⊥ is non-empty. Hence, the tangent bundle TB of B is
decomposed as:

TB = (rangF∗)⊕ (rangF∗)
⊥.

Now, let F : (M, gM) −→ (B, gB) be a smooth map between Riemann-
ian manifolds (M, gM) and (B, gB). Then the smooth map F is said
to be a Riemannian map at a point p ∈ M if the horizontal restriction
F h
∗p of the derivative map F∗ at p, i.e. ,

F h
∗p : (KerF∗p)

⊥ −→ (rangF∗p)
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is a linear isometry (also known isometric isomorphism) between the in-

ner product spaces
(
(kerF∗p)

⊥ , gM(p)|(kerF∗p)
⊥

)
and

(
(rangeF∗p) , gB(q)|(rangeF∗p)

)
,

where q = F (p).
The map F is a Riemannian map if F is a Riemannian map at each

point p ∈ M .
Hence, Fischer in the abstract of the paper [9] has remarked that a

Riemannian map is a map that is “as isometric as it can be”subject to
the limitations imposed upon it as a differential mapping. Also he has
remarked that F is a Riemannian map at p ∈ M , q = F (p) ∈ B, if for
all X, Y ∈ (kerF∗)

⊥ ⊂ TpM

gM(p)(X, Y ) = gB(q)(F
h
∗pX,F h

∗pY )

= gB(q)(F∗pX,F∗pY )

Since F h
∗p = F∗p|((kerF∗p)⊥) (also restriction on the range).

In view of equation (1.1) it follows that isometric immersion and
Riemannian submersion are particular cases of Riemannian maps with
kerF∗ = {0} and (rangF∗)

⊥ = {0} respectively.
Recently, B. Sahin [14] introduced the notion of anti-invariant Rie-

mannian maps which are Riemannian maps from almost Hermitian
manifolds to Riemannian manifolds such that the vertical distribu-
tions(or, for that matter the fibers) are anti-invariant under the almost
complex structure of the total space. Further, as a generalization of
anti-invariant Riemannian maps, he introduced the notion of conformal
semi-invariant Riemannian maps when the base manifold is a Riemann-
ian manifold and a Kaehler manifold [15],[22]. He has shown that such
maps are very much useful to study the geometry of the total space of
the Riemannian maps. In the present article, we study the Riemannian
maps from almost Hermitian manifolds under the assumption that the
integral manifolds of vertical distribution kerF∗(or, for that matter the
fibers) are generic submanifolds of the total space and call it the Rie-
mannian maps with generic fibers, and it is not hard to say that one
can see it as a generalization of semi-invariant Riemannian maps. The
paper is organized as follows: In section 2, we give some basic notions
of almost Hermitian manifolds, Riemannian submersion and brief in-
troduction of anti-invariant and semi-invariant Riemannian maps from
almost Hermitian manifolds to Riemannian manifolds. In section 3, we
give the definition of Riemannian maps with generic fibers and investi-
gate the geometry of the distributions and their integral manifolds(also
known as the leaves of the distributions). In the end of this section we
obtain the decomposition theorems. In the last section 4, we find the
condition for such Riemannian maps to be totally geodesic.
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2. Preliminaries

In this section we recall some basic definitions and notions of almost
Hermitian manifolds, Kaehler manifold, CR-submanifolds and give a
brief review of basic fact of Riemannian maps. For the notion of Rie-
mannian maps we follow Fischer [9] and B. Sahin [14],[16].

Let M be an almost complex manifold, that is, M admits a tensor
field J of type (1, 1) with the property that J2 = −I. An almost
complex manifold is necessarily orientable and is of even dimension. An
almost complex manifold (M,J) endowed with a chosen Riemannian
metric g and satisfying the condition

g(JX, JY ) = g(X, Y ), (2.1)

for all X, Y ∈ Γ(TM), is called an almost Hermitian manifold.
The Levi-Civita connection ∇ of the almost Hermitian manifold

(M,J) can be extended to whole tensor algebra on M , and in this
way we obtain tensor fields like (∇XJ) and that

(∇XJ)Y = ∇XJY − J∇XY, (2.2)

for all X, Y ∈ Γ(TM).
An almost Hermitian manifold M is called Kaehler manifold if

(∇XJ)(Y ) = 0, ∀X, Y ∈ Γ(TM) (2.3)

where ∇ is the Levi-Civita connection on M .
Let (M, g, J) be an almost Hermitian manifold and M be a real

submanifold of M , and let

Dp = TpM ∩ JTpM, ∀p ∈ M

such that Dp is the maximal subspace of TpM .

Definition 2.1 ([4]). A submanifoldM is said to be a CR-submanifold
of an almost Hermitian manifold (M, g) if there exists on M a C∞-
holomorphic distribution D such that its orthogonal complementary
distribution D⊥ is totally real, i.e., JD⊥

p ⊆ T⊥
p M for all p ∈ M . A CR-

submanifold M is said to be proper if neither D = {0}, nor D⊥ = {0}.

Now, we recall the definition of generic submanifold which is the
generalization of CR-submanifolds. These submanifold are defined by
relaxing the condition on the complementary distribution to the holo-
morphic distribution.

Definition 2.2 ([4]). Let (M, g, J) be an almost Hermitian manifold
and let M be a real submanifold of M . Then M is said to be a generic
submanifold of M if the maximal complex subspace Dp has constant
dimension at each point p ∈ M and defines a differentiable distribution
on M .
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We denote by D⊥ be orthogonal complementary distribution to D
in Γ(TM) and observe that JD⊥∩D⊥ = {0}. If, in particular, JD⊥ ⊂
Γ(T⊥M), we have the concept of CR-submanifold. We call D and D⊥

the holomorphic and the purely real distribution on M .
For U ∈ Γ(TM), we put

JU = PU + FU, (2.4)

where PU and FU are the tangential and normal part of JU respec-
tively.

For a generic submanifold we have

(i)PD = D, FD = {0}, (ii)PD⊥ ⊂ D⊥, FD⊥ ⊂ T⊥M. (2.5)

For the theory of Riemannian maps we follow A. E, Fischer [9] and
B. Sahin [14],[16].

Let F : (M, gM) −→ (B, gB) be a Riemannian map between the
Riemannian manifolds (M, gM) and (B, gB), where dimM = m and
dimB = n with 0 < rankF < min{m,n}. The letters H and V
are used to denote the orthogonal projections of Γ(TM) on the distri-
butions Γ(kerF∗)

⊥ and Γ(kerF∗) respectively. The geometry of Rie-
mannian maps are characterized by the tensor fields T and A of the
Riemannian map F defined for arbitrary vector fields E and F on M
by

AEF = H∇HEVF + V∇HEHF, (2.6)

TEF = H∇VEVF + V∇VEHF, (2.7)

where ∇ is the Levi-Civita connection of gM . Indeed, one can see that
these tensor fields are B. O’Neill’s fundamental tensor fields defined
for the Riemannian submersion. It is easy to see that the Riemannian
map F : M −→ B has totally geodesic fibers if and only if T vanishes
identically. For any E ∈ Γ(TM), TE and AE are skew-symmetric
operators on (Γ(TM), g) reversing the horizontal and vertical spaces.
It is also seen that T is vertical, i.e., TE = TVE and A is horizontal,
i.e., AE = AHE. We observe that the tensor fields T and A satisfy

(i)TUV = TVU, U, V ∈ Γ(kerF∗), (ii)AXY = −AYX, X, Y ∈ Γ(kerF∗)
⊥.(2.8)

On the other hand, (2.6) and (2.7) give the following lemma.

Lemma 2.1 ([9]). We have

∇UV = TUV + ∇̂UV, (2.9)

∇UX = H∇UX + TUX, (2.10)

∇XU = AXU + V∇XU, (2.11)

∇XY = H∇XY + AXY, (2.12)

for any X, Y ∈ Γ(kerF∗)
⊥ and U, V ∈ Γ(kerF∗), where ∇̂UV = V∇UV .
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Next,we recall the following definition.

Definition 2.3 ([16]). LetF : (M, gM , J) −→ (B, gB) be a Riemannian
map from an almost Hermition manifold (M, gM , J) to a Riemannian
manifold (B, gB). Then F is said to be semi-invariant Riemannian map
if there is a distribution D1 ∈ Γ(kerF∗), such that

kerF∗ = D1 ⊕D2, JD1 = D1, JD2 ⊂ Γ(kerF∗)
⊥,

where D2 is the orthogonal complement of D1 in Γ(kerF∗).
Finally, we recall the notion of second fundamental form of a map

between Riemannian manifolds. Let (M, gM) and (B, gB) be Riemann-
ian manifolds, and let ϕ : M −→ B be a smooth map between them.
Then the differential ϕ∗ of ϕ can be viewed as a section of the bun-
dle Hom((TM), ϕ−1(TB)) −→ M , where, ϕ−1(TB) = Tϕ(p)B, p ∈ M .
Hom(TM, ϕ−1(TB)) has a connection∇ induced from Levi-Civita con-
nection ∇ on M and the pullback connection.

The second fundamental form of ϕ is then given by

(∇ϕ∗)(X, Y ) = ∇ϕ
Xϕ∗(Y )− ϕ∗(∇XY ) (2.13)

for any X, Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is
known that the second fundamental form is symmetric. We now state
the result of B. Sahin [14], which shows that the second fundamental
form (∇ϕ∗)(X, Y ),
∀X, Y ∈ (kerF∗)⊥, of a Riemannian map ϕ has no component in
rangϕ∗.

Lemma 2.2 ([14]). Let ϕ be a Riemannian map from a Riemannian
manifold (M, gM) to a Riemannian manifold (B, gB). Then

gB((∇ϕ∗)(X, Y ), ϕ∗Z) = 0, ∀X, Y, Z ∈ Γ(kerF∗)
⊥. (2.14)

3. Riemannian Maps With Generic Fibers

B. Sahin [14],[16] defined anti-invariant and semi-invariant Riemann-
ian maps from almost Hermition manifolds to a Riemannian manifold.
In these two cases he has defined them for the cases where the ver-
tical distribution are infact anti-invariant and semi-invariant respec-
tively. That means the integral manifolds(or for that matter the fibers)
F−1(q), q ∈ B of (kerF∗) are respectively anti-invariant and semi-
invariant submanifolds of M . In this section we consider Riemannian
maps for the case when the integral manifolds(the fibers) of kerF∗
are generic submanifolds of M which inturn generalizes these above
mentioned maps. We obtain the integrability conditions for the distri-
butions and investigate the geometry of the distribution (kerF∗) and
(kerF∗)

⊥. Also, we obtain the necessary and sufficient condition for
such maps to be totally geodesic. We also obtain product theorem for
the total manifold of such Riemannian maps.
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Let F be a Riemannian map from an almost Hermition manifold
(M, gM , J) to a Riemannian manifold (B, gB). We say that the inte-
gral manifold(or for that matter the fibers) F−1(q), q ∈ B of the vertical
distribution kerF∗ is a generic submanifold of M if the maximal com-
plex space
Dp = (kerF∗p) ∩ (JkerF∗p), p ∈ M , defines on F−1(q) a differential
distribution
D : p −→ Dp ⊂ (kerF∗p) such that

kerF∗ = D1 ⊕D2, JD1 = D1, (3.1)

where D2 is the orthogonal complement of D in Γ(kerF∗), and is called
a purely real distribution of the fibers of the Riemannian map F .

Definition 3.1 The Riemannian map F : (M, gM , J) −→ (B, gB) sat-
isfying condition (3.1) is called a Reimannian map with generic fibers.

For any V ∈ Γ(kerF∗) we set

JV = ϕV + ωV, (3.2)

where ϕV ∈ Γ(D1) and ωV ∈ Γ(kerF∗)
⊥. We denote the orthogonal

complementary distribution to ωD2 in (kerF∗)
⊥ by µ. Then we can

write

(kerF∗)
⊥ = ωD2 ⊕ µ. (3.3)

It is easy to see that µ is J-invariant. Thus, for any X ∈ Γ(kerF∗)
⊥ we

have

JX = BX + CX, (3.4)

where BX ∈ Γ(D2) and CX ∈ Γ(µ).

Using (3.1) through (3.4) we obtain

Lemma 3.1 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from an almost Hermitian manifold (M, gM , J) to a Riemannian man-
ifold (B, gB) with generic fibers. Then We have

(i) ϕD1 = D1, ωD1 = 0
(ii) ϕD2 ⊂ D2, B(kerF∗)

⊥ = D2

(iii) ϕ2 +Bω = −id, ωϕ+ Cω = 0
(iv) BC + ϕB = 0, ωB + C2 = −id.

Next, using equations (2.1),(3.2)and Lemma 2.1 we have

Lemma 3.2 Let (M, gM , J) be an almost Hermitian manifold and F be
a Riemannian map from (M, gM , J) to a Riemannian manifold (B, gB)
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with generic fibers. Then

(i) gM(JY, ϕV ) = g(BY, JV ), (3.5)

(ii) gM(CY, ωV ) = 0, (3.6)

(iii) gM(∇XBY, JV ) = −gM(BY,V∇XϕV )− gM(BY,AXωV ),(3.7)

(iv) gM(∇UBY, JV ) = −gM(BY, ∇̂UϕV )− gM(BY, TUωV ), (3.8)

(v) gM(∇UBY,CX) = gM(CX, TUBY ) = −g(BY, TUCX), (3.9)

for any X, Y ∈ Γ(kerF∗)
⊥and U, V ∈ Γ(kerF∗).

Proof. Proof of (i) and (ii) directly follows from equations (2.1),(3.1),(3.2),(3.3)
and (3.4).
(iii), Using the fact that for any Y ∈ Γ(kerF∗)

⊥, BY ∈ Γ(D2) and for
any V ∈ Γ(kerF∗), ϕV ∈ Γ(D1), for any X ∈ Γ(kerF∗)

⊥ we have

gM(∇XBY, JV ) = −gM(∇XBY, ϕV ) + gM(∇XBY, ωV )

= −gM(BY,∇XϕV )− gM(BY,∇XωV )

= −gM(BY,V∇XϕV )− gM(BY,V∇XωV )

= −gM(BY,V∇XϕV )− gM(BY,AXωV ).

Similarly, we obtain (iv) and(v). □

Proposition 3.1 Let F : (M, gM , J) −→ (B, gB) be a Riemannian
map from a Kaehler manifold (M, gM , J) to a Riemannian manifold
(B, gB) with generic fibers. Then we have

gM(∇XCY, ωV ) = gM(BY,AXωV ) + gM(ωAXY, ωV )

= −gM(AXBY, ωV ) + gM(ωAXY, ωV ),(3.10)

for any X, Y ∈ Γ(kerF∗)
⊥ and V ∈ Γ(kerF∗).

Proof. From Lemma 3.1(i), Lemma 3.2(ii) and equations (2.2),(2.3)
for any X, Y ∈ Γ(kerF∗)

⊥ and V ∈ Γ(kerF∗) we have

gM(∇XCY, ωV ) = −gM(CY,∇XωV )

= −gM(JY,∇XωV ) + gM(BY,∇XωV )

= gM(∇XJY, ωV )− gM(∇XBY, ωV )

= gM(J∇XY, ωV )− gM(∇XBY, ωV )

= −gM(H∇XY, JωV ) + gM(V∇XY, JωV )− gM(H∇XBY, ωV )

= −gM(H∇XY, JωV )− gM(V∇XY, JωV )− gM(AXBY, ωV )

= −gM(H∇XY, JωV )− gM(AXY, JωV )− gM(AXBY, ωV )

= gM(JH∇XY, ωV ) + gM(JAXY, ωV )− gM(AXBY, ωV )

= gM(BH∇XY, ωV ) + gM(CH∇XY, ωV ) + gM(JAXY, ωV )

− gM(AXBY, ωV ).
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Since for anyX ∈ Γ(kerF∗)
⊥, BX ∈ Γ(D2) and for V ∈ Γ(kerF∗), ωV ∈

Γ(kerF∗)
⊥. Also, using Lemma 3.1 again we have

gM(∇XCY, ωV ) = −gM(AXBY, ωV ) + gM(ωAXY, ωV ).

which completes the proof. □

Since gM is a non-degenerate metric on M , from Proposition 3.1 we
have

Corollary 3.1 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers. Then

∇XCY = −AXBY + ωAXY, (3.11)

for any X, Y ∈ Γ(kerF∗)
⊥.

Further, as a consequences of Proposition 3.1 we have

Corollary 3.2 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannain manifold (B, gB)
with generic fibers. Then ∇XCY ∈ Γ(µ) if and only if

AXBY = ωAXY,

for any X, Y ∈ Γ(kerF∗)
⊥.

We define the covariant derivative of ϕ and ω as follow:

(∇V ϕ)W = ∇̂V ϕW − ϕ∇̂VW

(∇V ω)W = H(∇V ωW )− ω∇̂VW

Then, using Lemma 2.1 and equations (3.2),(3.4) we obtain

(∇V ϕ)W = BTVW − TV ωW

(∇V ω)W = CTVW − TV ϕW

for any V,W ∈ Γ(kerF∗).
We now have the following proposition.

Proposition 3.2 Let F be a Riemannian map from a Kaehler manifold
(M, gM , J) to a Reimannian manifold (B, gB) with generic fibers.Then

(i) AXϕV +H∇XωV = CAXV + ω(V∇XV )

and

V(∇XϕV ) + AXωV = BAXV + ϕ(V∇XV ),

(ii) AXBY +H(∇XCY ) = C(H∇XY ) + ωAXY

and

V(∇XBY ) + AXCY = B(H∇XY ) + ϕAXY,
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(iii) TV ϕW +H(∇V ωW ) = CTVW + ω∇̂VW

and

∇̂V ϕW + TV ωW = BTVW + ϕ∇̂VW,

for any X, Y ∈ Γ(kerF∗)
⊥ and V,W ∈ Γ(kerF∗).

Proof. (i) For a Keahler manifold M , we have on using equation (2.3)

∇XJV = J∇XV,

for any X ∈ Γ(kerF∗)
⊥, V ∈ Γ(kerF∗).

Further, using Lemma 2.1 and equations (3.1),(3.4) we get

∇XϕV +∇XωV = B(AXV ) + C(AXV ) + ϕ(V∇XV ) + ω(V∇XV )

or,

H∇XϕV + V∇XϕV +H∇XωV + V∇XωV = B(AXV ) + C(AXV )

+ ϕ(V∇XV ) + ω(V∇XV )

or,

AXϕV + V∇XϕV +H∇XωV + AXωV = B(AXV ) + C(AXV )

+ ϕ(V∇XV ) + ω(V∇XV ).

Comparing horizontal and vertical parts, we get

AXϕV +H∇XωV = C(AXV ) + ω(V∇XV ),

V∇XϕV + AXωV = B(AXV ) + ϕ(V∇XV ).

On similar lines we get the proof of (ii) and (iii). □

Theorem 3.1 Let F be a Riemannian map from a Kaehler mani-
fold (M, gM , J) to a Reimmanian manifold (B, gB) with generic fibers.
Then we have

gB((∇F∗)(V,W ), F∗Jξ) = −gB((∇F∗)(V, ϕW ), F∗ξ)− gB((∇F∗)(V, ωW ), F∗ξ),

for any V,W ∈ Γ(kerF∗) and ξ ∈ Γ(µ).

Proof. Since M is a kaehler manifold, for any V,W ∈ Γ(kerF∗) we
have,

∇V JW = J∇VW.

Using Lemma 2.1 and equations (3.2),(3.4), we get

H(∇V ϕW ) + V(∇V ϕW ) +H(∇V ωW ) + V(∇V ωW )

= BH∇VW + CH∇VW + ϕV∇VW + ωV∇VW

= BH∇VW + CH∇VW + ϕ∇̂VW + ω∇̂VW. (3.12)

Equating horizontal parts in (3.12), we have

H∇V ϕW +H∇V ωW = CH∇VW + ω∇̂VW. (3.13)
18



Taking Riemannian inner product in (3.13) with a vector ξ ∈ Γ(µ), we
obtain

gM(H)∇V ϕW, ξ) + gM(H∇V ωW, ξ) = gM(CH∇VW, ξ)

gM(∇V ϕW, ξ) + gM(∇V ωW, ξ) = gM(JH∇VW, ξ)

= −gM(∇VW,Jξ).

Since F is a Riemannian map, we have

gB(F∗(∇V ϕW ), F∗ξ) + gB(F∗(∇V ωW ), F∗ξ) = −gB(F∗(∇VW ), F∗Jξ).

Using equation (2.13) we get the result. □

From Theorem 3.1 we have

Corollary 3.3 Let F be a Riemannian map from a Kaehler manifold
(M, gM , J) to a Riemannain manifold (B, gB) with generic fibers. Then
we have

gB((∇F∗)(V,W ), F∗Jξ) = −gB((∇F∗)(V, JW ), F∗ξ),

for any V ∈ Γ(kerF∗),W ∈ Γ(D1) and ξ ∈ Γ(µ).

Lemma 3.3 Let F be a Riemannian map from a Kaehler manifold
(M, gM , J) to a Riemannian manifold (B, gB). Then

g(JTVW, ξ) = g(TV JW, ξ),

for any V ∈ Γ(kerF∗),W ∈ Γ(D) and ξ ∈ Γ(µ)

Proof. Since M is a Kaehler manifold, then for any V ∈ Γ(kerF∗),W ∈
Γ(D1), using equation (2.3) we have

J∇VW = ∇V JW.

On using Lemma 2.1 we get

J(TVW + ∇̂VW ) = TV JW + ∇̂V JW.

Taking inner product with a vector field ξ ∈ Γ(µ), we get

g(JTVW, ξ) + g(J∇̂VW, ξ) = g(TV JW, ξ) + g(∇̂V JW, ξ)

g(JTVW, ξ)− g(∇̂VW,Jξ) = g(TV JW, ξ) + g(∇̂V JW, ξ). (3.14)

Since µ is invariant under J , the result then follows from (3.14). □

Next, we have

Theorem 3.2 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers. Then we have

gB((∇F∗)(X, V ), F∗Jξ) = gB((∇F∗)(X,ϕV ) + (∇F∗)(X,ωV ), F∗ξ)

− gB(∇F
XF∗(ωV ), F∗ξ),

for any vector field X ∈ Γ(kerF∗)
⊥, V ∈ Γ(kerF∗) and ξ ∈ Γ(µ).
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Proof. For X ∈ Γ(kerF∗)
⊥, V ∈ Γ(kerF∗),

using equation (2.3) for a Kaehler manifold we have

∇XJV = J∇XV.

Using Lemma 2.1 and equations (3.2),(3.4) we get

H∇XϕV+V∇XϕV+H∇XωV+V∇XωV = BH∇XV+CH∇XV+ϕV∇XV+ωV∇XV.
(3.15)

Equating horizontal component in (3.15) we get

H∇XϕV +H∇XωV = CH∇XV + ωV∇XV. (3.16)

Taking Riemannian product in (3.16) with a vector ξ ∈ Γ(µ) we obtain

gM(H∇XϕV, ξ) + g(H∇XωV, ξ) = g(CH∇XV, ξ) + gM(ωV∇XV, ξ)

gM(∇XϕV, ξ) + g(∇XωV, ξ) = gM(JH∇XV, ξ)− gM(BH∇XV, ξ)

+ gM(JV∇XV, ξ)− gM(ϕV∇XV ξ).

But, for generic fibers B(kerF∗)
⊥ = D2 and ϕV∇XV ∈ (kerF∗),

(Lemma 3.1) we then have

gM(∇XϕV, ξ) + gM(∇XωV C, ξ) = −gM(H∇XV, ξ)

= −gM(∇XV, ξ). (3.17)

Since F is a Riemannian map, from (3.17) we have

gB(F∗(∇XϕV ), F∗ξ) + gB(F∗(∇XωV ), F∗ξ) = gB(F∗(∇XV ), F∗Jξ),

which on using (2.13) yields

−gB((∇F∗)(X,ϕV ), F∗ξ)− gB((∇F∗)(X,ωV ), F∗ξ) + gB(∇F
XF∗(ωV ), F∗ξ)

= −gB((∇F∗)(X, V ), F∗Jξ)

gB((∇F∗)(X, V ), F∗Jξ) = gB((∇F∗)(X,ϕV ) + (∇F∗)(X,ωV ), F∗ξ)

−gB(∇F
XF∗(ωV ), F∗ξ).

Which completes the proof. □

As a consequences of above result we have

Corollary 3.4 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers. Then

gB((∇F∗)(X, V ), F∗Jξ) = gB((∇F∗)(X, JV ), F∗ξ),

for any X ∈ Γ(kerF∗)
⊥, V ∈ Γ(D1), ξ ∈ Γ(µ).
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4. Integrability of Distributions

In this section we obtain the integrability conditions for the distribu-
tion D1 and D2. Since we have seen that the fibers of the Riemannian
map F under consideration are the generic submanifolds of the mani-
fold M and T works as the second fundamental form of the fibers and
∇F∗ is the second fundamental form of the Riemannian map F , we
have following theorem;

Theorem 4.1 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers. Then the distribution D1 is integrable if and only
if

gB((∇F∗)(V, JW )− (∇F∗)(W,JV ), F∗ωU) = 0. (4.1)

or, (∇F∗)(V, JW )− (∇F∗)(W,JV ) has no component in Γ(F∗(ωD2)),
for any V,W ∈ Γ(D1) and U ∈ Γ(D2)

Proof. Let V,W ∈ Γ(D1), U ∈ Γ(D2). Then on using equations (2.3),(3.1)
and (3.2), we have

ω[V,W ] = J [V,W ]− ϕ[V,W ]

= J∇VW − J∇WV − ϕ[V,W ]

= ∇V JW − J∇WJV − ϕ[V,W ]

= H∇V JW −H∇WJV + V∇V JW − V∇WJV − ϕ[V,W ]

ω[V,W ]−H∇V JW −H∇WJV = V∇V JW − V∇WJV − ϕ[V,W ].(4.2)

Since ω[V,W ] ∈ Γ(kerF∗)
⊥. In equation (4.2) the right hand side is

vertical where as the left hand side is horizontal. Comparing horizontal
and vertical parts, we get

ω[V,W ] = H∇V JW −H∇WJV. (4.3)

ϕ[V,W ] = V∇V JW − V∇WJV. (4.4)

Now, in view of decomposition (3.3) and equation (3.4) for each vector
field Z ∈ Γ(ωD2) ⊂ Γ(kerF∗)

⊥ there exist a vector U ∈ Γ(D2) such
that ωU = Z. Taking Riemannian inner product in (4.3) with ωU ∈
Γ(ωD2) we get

gM(ω[V,W ], ωU) = gM(H∇V JW, ωU)− gM(H∇WJV, ωU)

= gM(∇V JW, ωU)− gM(∇WJV, ωU)

Since F is a Riemannian map,

gM(ω[V,W ], ωU) = gB(F∗(∇V JW ), F∗ωU)− gB(F∗(∇WJV ), F∗ωU).
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On using equation (2.13), we get

gM(ω[V,W ], ωU) = gB((∇F∗)(V, JW ), F∗ωU)− gB((∇F∗)(W,JV ), F∗ωU)

= gB((∇F∗)(V, JW )− (∇F∗)(W,JV ), F∗ωU). (4.5)

Hence the distribution D1 is integrable if and only if ω[V,W ] = 0. That
is D1 is inetegrable if and only if

gB((∇F∗)(V, JW )− (∇F∗)(W,JV ), F∗ωU) = 0. (4.6)

or, (∇F∗)(V, JW )− (∇F∗)(W,JV ) has no component in Γ(F∗(ωU)).
Which completes the proof. □

Since F∗(kerF∗)
⊥ = rangeF∗ and F is a Riemannian map, using

Lemma 3.2(ii) it follows that gB(F∗ωV, F∗X) = 0, for anyX ∈ Γ(kerF∗)
⊥

and V ∈ Γ(kerF∗), which then implies that

TB = F∗(ωD2)⊕ F∗(µ)⊕ (rangeF∗)
⊥.

From equation (4.6) we also have

Theorem 4.2 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers, then the distribution D1 is integrable if and only if

(∇F∗)(V, JW )− (∇F∗)(W,JV ) ∈ Γ(F∗(µ)),

for any V,W ∈ Γ(D1).

Lemma 4.1 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from an almost Hermitian manifold (M, gM , J) to a Riemannian man-
ifold (B, gB) with generic fibers, then the distribution D2 is integrable
if and only if

ϕ[V,W ] ∈ Γ(D2),

for any V,W ∈ Γ(D2).

Proof. Since M is an almost Hermitian manifold and the distribution
(kerF∗) is integrable, for any V,W ∈ Γ(D2) and Z ∈ Γ(D1), we have

gM([V,W ], Z) = gM(J [V,W ], JZ)

= gM(ϕ[V,W ], JZ) + gM(ω[V,W ], JZ)

= gM(ϕ[V,W ], JZ).

The result then follow immediately. □

Next we have,

Theorem 4.3 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers, then the distribution D2 is integrable if and only if

TV ωW − TWωV + ∇̂V ϕW − ∇̂WϕV ∈ Γ(D2),

for any V,W ∈ Γ(D2).
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Proof. Since M is a Kaehler manifold, for any V,W ∈ Γ(D2) using
Lemma 2.1 and equations (2.3),(3.2),(3.4) we obtain

[V,W ] = ∇VW −∇WV

= −J(∇V JW −∇WJV )

= B(H∇WJV −H∇V JW ) + C(H∇WJV −H∇V JW )

+ϕ(V∇WJV − V∇V JW ) + ω(V∇WJV − V∇V JW ). (4.7)

Since (kerF∗) is always integrable, therefore [V,W ] ∈ Γ(kerF∗). Com-
paring the vertical part in (4.7), we get

[V,W ] = B(H∇WJV −H∇V JW ) + ϕ(V∇WJV − V∇V JW ). (4.8)

Taking Riemannian inner product in (4.8) with a vector Z ∈ Γ(D1)
and further using equation (3.2) and Lemma 3.1, we get

gM ([V,W ], Z) = gM (ϕ(V∇WJV ), Z)− gM (ϕV∇V JW,Z)

= gM (J(V∇WJV ), Z)− gM (J(V∇V JW ), Z)

= −gM (V∇WϕV, JZ)− gM (V∇WωV, JZ) + gM (V∇V ϕW, JZ)

+ gM (V∇V ωW, JZ)

= −gM

(
∇̂WϕV, JZ

)
− gM (TV ωV, JZ) + gM

(
∇̂V ϕW, JZ

)
+ gM (TWωV, JZ) .

Finally, we get

gM ([V,W ], Z) = gM

(
TV ωW − TWωV + ∇̂V ϕW − ∇̂WϕV, JZ

)
.(4.9)

Since for, JZ ∈ Γ(D1). From equation (4.9) it follows that the distri-
bution D2 is integrable if and only if

TV ωW − TWωV + ∇̂V ϕW − ∇̂WϕV ∈ Γ(D2),

for any V,W ∈ Γ(D2). Which completes the proof. □

We now discuss the geometry of the leaves of the distributions D1

and D2, and relate it with the geometry of the base manifold B using
the second fundamental form of the Riemannian map F , and we have
the following propositions.

Proposition 4.1 Let F : (M, gM , J) −→ (B, gB) be a Riemannian
map from a Kaehler manifold (M, gM , J) to a Riemannian manifold
(B, gB) with generic fibers. Then the distribution D1 defines a totally
geodesic foliation if and only if

gM

(
∇̂UJV, ϕW2

)
= gB ((∇F∗)(U, JV ), F∗ωW2)

and

gM

(
∇̂U1JV1, BX

)
= gB ((∇F∗)(U1, JV1), F∗CX) ,

for any vector fields U, V ∈ Γ(D1),W2 ∈ Γ(D2) and X ∈ Γ(kerF∗)
⊥.
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Proof. For U1, V1 ∈ Γ(D1) and X ∈ Γ(kerF∗)
⊥ using equation (3.4) we

have

gM (∇U1V1, X) = gM (J∇U1V1, JX)

= gM (∇U1JV1, BX) + gM (∇U1JV1, CX)

= gM

(
∇̂U1JV1, BX

)
+ gM

(
∇U1JV1, CX

)
= gM

(
∇̂U1JV1, BX

)
+ gB

(
F∗(∇U1JV1), F∗CX

)
,

where we have used the fact that F be a Riemannian map. Using now
equation (2.13) we have

gM (∇U1V1, X) = gM

(
∇̂U1JV1, BX

)
− gB ((∇F∗)(U1, JV1), F∗CX) .

Hence ∇U1V1 ∈ Γ(kerF∗) if and only if

gM

(
∇̂U1JV1, BX

)
= gB ((∇F∗)(U1, JV1), F∗CX) . (4.10)

Further, for U1, V1 ∈ Γ(D1) andW ∈ Γ(D2), using equations (2.1),(2.3)
and (3.1) we have

gM (∇U1V1,W2) = gM (J∇U1V1, JW2)

= gM (J∇U1JV1, JW2)

= gM (H∇U1JV1, ϕW2) + gM (V∇U1JV1, ϕW2) + g (H∇U1JV1, ωW2)

+ gM (V∇U1JV1, ωW2)

= gM

(
∇̂U1JV1, ϕW2

)
+ gM

(
∇U1JV1, ωW2

)
.

Since F is a Riemannian map, using (2.13) we have

gM (∇U1V1,W2) = gM

(
∇̂U1JV1, ϕW2

)
+ gB

(
F∗(∇U1JV1), F∗ωW2

)
= gM

(
∇̂U1JV1, ϕW2

)
− gB ((∇F∗)(U1, JV1), F∗ωW2) .

Hence ∇U1V1 ∈ Γ(D1) if and only if

gM

(
∇̂U1JV1, ϕW2

)
= gB ((∇F∗)(U1, JV1), F∗ωW2) . (4.11)

The result then follows from (4.10) and (4.11) and which completes the
proof. □

Proposition 4.2 Let F : (M, gM , J) −→ (B, gB) be a Riemannian
map from a Kaehler manifold (M, gM , J) to a Riemannian manifold
(B, gB) with generic fibers. Then the distribution D2 defines a totally
geodesic foliation if and only if

gM

(
∇̂V2ϕW2, BX

)
+ gM (TV2ωW2, BX) = gB((∇F∗)(V2, ϕW2)

+ (∇F∗)(V2, ωW2), F∗CX)
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and

∇̂V2ϕW2 + TV2ωW2 ∈ Γ(D2),

for any V2,W2 ∈ Γ(D2) and X ∈ Γ(kerF∗)
⊥.

Proof. For any V2,W2 ∈ Γ(D2), X ∈ Γ(kerF∗)
⊥.

Using equations (2.1),(2.3),(2.13),(3.2),(3.4),Lemma 2.1 and the fact
that F is a Riemannian map we have

gM (∇V2W2, X) = gM (∇V2JW2, JX)

= gM

(
∇̂V2ϕW2, BX

)
+ gM (v∇V2ωW2, BX)

+ gM
(
∇V2ϕW2, CX

)
+ gM

(
∇V2ωW2, CX

)
= gM

(
∇̂V2ϕW2, BX

)
+ gM (TV2ωW2, BX)

+ gM
(
F∗(∇V2ϕW2), F∗CX

)
+ gM

(
F∗(∇V2ωW2), F∗CX

)
= gM

(
∇̂V2ϕW2, BX

)
+ gM (TV2ωW2, BX)

− gB ((∇F∗)(V2, ϕW2), F∗CX)− gB ((∇F∗)(V2, ωW2), F∗CX) .

(4.12)

Equation (4.12) yields that ∇V2W2 ∈ Γ(KerF∗) if and only if

gM

(
∇̂V2ϕW2, BX

)
+ gM (TV2ωW2, BX) = gB ((∇F∗)(V2, ϕW2), F∗CX)

+ gB ((∇F∗)(V2, ωW2), F∗CX)

. (4.13)

On the other hand, for U1 ∈ Γ(D1) and V2,W2 ∈ Γ(D2) we have

gM (∇V2W2, U1) = gM (∇V2JW2, JU1)

= gM (V∇V2JW2, JU1)

= gM (V∇V2ϕW2, U1) + gM (V∇V2ωW2, U1)

= gM

(
∇̂V2ϕW2 + TV2ωW2, JU1

)
.

Since for U1 ∈ Γ(D1), JU1 ∈ Γ(D1), the above relation implies that
∇V2W2 ∈ Γ(D2) if and only if

∇̂V2ϕW2 + TV2ωW2 ∈ Γ(D2). (4.14)

The result then follows from (4.13) and (4.14) □

We now recall the following definition.

Definition 4.1 ([3]). Let g be a metric tensor on the manifold M =
B × F and assume that the canonical distribution DB and DF inter-
sect perpendicularly everywhere, then g is the metric tensor of a usual
product of Riemannian manifold if and only if DB and DF are totally
geodesic foliation.
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From Proposition 4.1 and Proposition 4.2 we have the following the-
orem.

Theorem 4.4 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold F : (M, gM , J) to a Riemannian manifold
(B, gB) with generic fibers. Then the integral manifold of the distri-
butions (kerF∗) is a locally Riemannian product of the leaves of the
distribution D1 and D2 if and only if

gM

(
∇̂U1JV1, ϕW2

)
= gB ((∇F∗)(U1, JV1), F∗ωW2) ,

gM

(
∇̂U1JV1, BX

)
= gB ((∇F∗)(U1, JV1), F∗CX)

and gM

(
∇̂V1ϕW2, BX

)
+ gM (TV1ωW2, BX) = gB ((∇F∗)(V1, ϕW2), F∗CX)

+ gB ((∇F∗)(V1, ωW2), F∗CX) ;

∇̂V1ϕW2 + TV ωW2 ∈ Γ(D2),

for any vector fields U1, V1 ∈ Γ(D1), V2,W2 ∈ Γ(D2) and X ∈ Γ(kerF∗)
⊥.

Since the integral manifolds of the distribution (kerF∗) are infact the
fibers of the Riemannian map F , the above theorem can be re-stated
as:

Theorem 4.5 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold F : (M, gM , J) to a Riemannian manifold
(B, gB) with generic fibers. Then the fibers of F are the locally Rie-
mannian product of the leaves of D1 and D2 if and only if

gM

(
∇̂U1JV1, ϕW2

)
= gB ((∇F∗)(U1, JV1), F∗ωW2) ,

gM

(
∇̂U1JV1, BX

)
= gB ((∇F∗)(U1, JV1), F∗CX)

and gM

(
∇̂V1ϕW2, BX

)
+ gM (TV1ωW2, BX) = gB ((∇F∗)(V1, ϕW2), F∗CX)

+ gB ((∇F∗)(V1, ωW2), F∗CX) ;

∇̂V1ϕW2 + TV ωW2 ∈ Γ(D2),

for any vector fields U1, V1 ∈ Γ(D1), V2,W2 ∈ Γ(D1) and X ∈ Γ(kerF∗)
⊥.

Now, we study the geometry of the leaves of the distribution (kerF∗)
and (kerF∗)

⊥.

Proposition 4.3 Let F : (M, gM , J) −→ (B, gB) be a Riemannian
map from a kaehler manifold (M, gM , J) to a Riemannian manifold
(B, gB) with generic fibers. Then the distribution (kerF∗) defines a
totally geodesic foliation if and only if

gB ((∇F∗)(V, ϕW ), F∗CX) + gB ((∇F∗)(V, ωW ), F∗CX)

= gM

(
∇̂V ϕW,BX

)
+ gM (TV ωW,BX) ,
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for any V,W ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥.

Proof. For any V,W ∈ Γ(kerF∗) and X ∈ Γ(kerF∗)
⊥, using equations

(2.3),(2.13),(3.2),(3.4),Lemma 2.1 and the fact that F be a Reimannian
map we have

gM (∇VW,X) = gM (∇V JW, JX)

= gM (∇V (ϕW + ωW ), BX + CX)

= gM (V∇V ϕW,BX) + gM (V∇V ωW,BX)

+ gM (H∇V ϕW,CX) + gM (H∇V ωW,CX)

= gM

(
∇̂V ϕW,BX

)
+ gM (TV ωW,BX)

+ gM
(
∇V ϕW,CX

)
+ gM

(
∇V ωW,CX

)
= gM

(
∇̂V ϕW,BX

)
+ gM (TV ωW,BX)

+ gM
(
F∗(∇V ϕW ), F∗CX

)
+ gM

(
F∗(∇V ωW ), F∗CX

)
= gM

(
∇̂V ϕW,BX

)
+ gM (TV ωW,BX)

− gM ((∇F∗)(V, ϕW ), F∗CX)− gM ((∇F∗)(V, ωW ), F∗CX) .

(4.15)

From equation (4.15) it follows that kerF∗ defines a totally geodesic
foliation if and only if

gB ((∇F∗)(V, ϕW ), F∗CX) + gB ((∇F∗)(V, ωW ), F∗CX)

= gM

(
∇̂V ϕW,BX

)
+ gM (TV ωW,BX) .

Which completes the proof. □

Next, we have

Proposition 4.4 Let F : (M, gM , J) −→ (B, gB) be a Riemannian
map from a Kaehler manifold (M, gM , J) to a Riemannian manifold
(B, gB) with generic fibers. Then the distribution (kerF∗)

⊥ defines a
totally geodesic foliation if and only if

gM (ωAXY, ωV ) = −gM (V∇XBY, ϕV )− gM (AXCY, ϕV ) ,

for any X, Y ∈ Γ(kerF∗)
⊥ and V ∈ Γ(kerF∗).

Proof. For any X, Y ∈ Γ(kerF∗)
⊥ and V ∈ Γ(kerF∗), using equations

(2.1),(2.3), we have

gM (∇XY, V ) = gM (∇XJY, JV ) .
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Further, on using equations (3.2),(3.4) and Lemma 2.1 we obtain

gM (∇XY, V ) = gM (∇XBY, ϕV ) + gM (∇XBY, ωV )

+ gM (∇XCY, ϕV ) + gM (∇XCY, ωV )

= gM (V∇XBY, ϕV ) + gM (V∇XCY, ϕV )

+ gM (V∇XBY, ωV ) + gM
(
∇XCY, ωV

)
= gM (V∇XBY, ϕV ) + gM (AXCY, ωV )

+ gM (AXBY, ωV ) + gM
(
∇XCY, ωV

)
.

Using Proposition 3.1 we get

gM (∇XY, V ) = gM (V∇XBY, ϕV ) + gM (AXCY, ϕV ) + gM (ωAXY, ωV ) .

(4.16)

Hence, from (4.16) it follows that (kerF∗)
⊥ defines a totally geodesic

foliation if and only if

gM (ωAXY, ωV ) = −gM (V∇XBY, ϕV )− gM (AXCY, ϕV ) .

Which completes the proof. □

From equation (4.16) and Lemma 3.1 we also have

Proposition 4.5 Let F : (M, gM , J) −→ (B, gB) be a Riemannian
map from a Kaehler manifold (M, gM , J) to a Riemannian manifold
(B, gB) with generic fibers. Then the distribution (kerF∗)

⊥ defines a
totally geodesic foliation if and only if

V∇XBY + AXCY = 0 and AXY ∈ Γ(D1)

for any X, Y ∈ Γ(kerF∗)
⊥.

Theorem 4.4 and Proposition 4.4 yields the following decomposition
theorem.

Theorem 4.6 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers. Then the total manifold M is a Riemannian product
manifold of the leaves D1,D2 and (kerF∗)

⊥ i,e.,
M = MD1 ×MD2 ×M(kerF∗)⊥, if and only if

gM

(
∇̂U1JV1, ϕW2

)
= gM ((∇F∗)(U1, JV1), F∗ωW ) ;

gM

(
∇̂U1JV1, BX

)
= gB ((∇F∗)(U1, JV1), F∗CX)

gB ((∇F∗)(V2, ϕW2), F∗CX) + gB ((∇F∗)(V2, ωW2), F∗CX)

= gM

(
∇̂V2ϕW2, BX

)
+ gM (TV2ωW2, BX) ;

∇̂V2ϕW2 + TV2ωW2 ∈ Γ(D2).
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and

gM (ωAXY, ωV ) = −gM (v∇XBY, ϕV )− gM (AXCY, ϕV ) ,

for any U1, V1 ∈ Γ(D1), V2,W2 ∈ Γ(D2), V ∈ Γ(kerF∗) and X, Y ∈
Γ(kerF∗)

⊥, where MD1 ,MD2 and M(kerF∗)⊥ are respectively the leaves

of D1, D2 and (kerF∗)
⊥.

From Proposition 4.3 and Proposition 4.4 we have following theorem

Theorem 4.7 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers. Then the total space is a generic product manifold
i.e,
M = M(kerF∗) ×M(kerF∗)⊥, if and only if

gM ((∇F∗)(V, ϕW ), F∗CX) + gM ((∇F∗)(V, ωW ))

= gM

(
∇̂V ϕW,BX

)
+ gM (TV ωW,BX)

and

gM(ωAXY, ωV ) = −gM(v∇XBY, ϕV )− gM(AXCY, ϕV ),

for any V,W ∈ Γ(kerF∗) and X, Y ∈ Γ(kerF∗)
⊥.

If we consider Proposition 4.5 along with Proposition 4.3, then we
have the following theorem

Theorem 4.8 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Keahler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers. Then M is a generic product manifold, i.e.,
M = M(kerF∗) ×M(kerF∗)⊥, if and only if

gM ((∇F∗)(V, ϕW ), F∗CX) + gM ((∇F∗)(V, ωW ))

= gM

(
∇̂V ϕW,BX

)
+ gM (TV ωW,BX)

and

V∇XBX + AXCY = 0; AXY ∈ Γ(D1),

for any X, Y ∈ Γ(kerF∗)
⊥ and V,W ∈ Γ(kerF∗).

5. Totally Geodesic Maps

In this section we obtain the necessary and sufficient condition for
the Riemannian map F to be totally geodesic map. First we recall the
following definition.
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Definition 5.1 Let F : (M, gM) −→ (B, gB) be a Riemannian map
between the Riemannian manifolds (M, gM) and (B, gB). Then F is
said to be totally geodesic map if

(∇F∗)(X, Y ) = 0, (5.1)

for all vector fields X, Y ∈ Γ(TM).

We have the following theorem.

Theorem 5.1 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a Kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic fibers. Then F is a totally geodesic map if and only if

∇̂V ϕW + TV ωW ∈ Γ(D1),

TV ϕW +H∇V ωW ∈ Γ(ωD2),

∇̂VBX + TVCX ∈ Γ(D1),

TVBX +H∇VCX ∈ Γ(ωD2),

for any V,W ∈ Γ(kerF∗) and X, Y ∈ Γ(kerF∗)
⊥.

Proof. Since F is a Riemannian map, then from Lemma 2.2 we have

(∇F∗)(X, Y ) = 0, (5.2)

for any X, Y ∈ Γ(kerF∗)
⊥

For any V,W ∈ Γ(kerF∗) and X, Y ∈ Γ(kerF∗)
⊥, using equation

(2.13) we have

(∇F∗)(V,W ) = −F∗(∇VW ), (5.3)

Now, using equations (2.3),(3.2),(3.4) and Lemma 2.1 we have

−(∇VW ) = J(∇V JW )

= J∇V ϕW + J∇V ωW

= J
(
H∇V ϕW + V∇V ϕW

)
+ J

(
H∇V ωW + V∇V ωW

)
=

(
BH∇V ϕW +BH∇V ωW

)
+
(
CH∇V ϕW + CH∇V ωW

)
+

(
ϕ∇̂V ϕW + ϕV∇V ωW

)
+
(
ω∇̂V ϕW + ωV∇V ωW

)
= B

(
TV ϕW +∇V ωW

)
+ C

(
TV ϕW +∇V ωW

)
+ ϕ

(
∇̂V ϕW + TV ωW

)
+ ω

(
∇̂V ϕW + TV ωW

)
.

Applying F∗ to above equation we have

−F∗(∇VW ) = F∗
(
C(TV ϕW +H∇V ωW )

)
+ F∗

(
ω(∇̂V ϕW + TV ωW )

)
.

(5.4)

From (5.3) and (5.4), we have

(∇F∗)(V,W ) = F∗
(
C(TV ϕW +H∇V ωW )

)
+ F∗

(
ω(∇̂V ϕW + TV ωW )

)
.
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Hence, (∇F∗)(V,W ) = 0 if and only if

∇̂V ϕW + TV ωW ∈ Γ(D1), TV ϕW +H∇V ϕW ∈ Γ(ωD2). (5.5)

On the other hand using (2.13) for any V ∈ Γ(kerF∗) and X ∈
Γ(kerF∗)

⊥, we have

(∇F∗)(V,X) = −F∗(∇VX). (5.6)

But

−∇VX = J∇V JX

= J(∇VBX) + J(∇VCX)

= J(H∇VBX) + J(H∇VCX) + J(V∇VBX) + J(V∇VCX)

= B(TVBX) + C(TVBX) +B(H∇VCX) + C(H∇VCX)

+ ϕ∇̂VBX + ω∇̂VBX + ϕV∇VCX + ωV∇VCX

= B(TVBX +H∇VCX) + ϕ
(
∇̂VBX + V∇VCX

)
+ C(TVBX +H∇VCX) + ω

(
∇̂VBX + TVCX

)
.

Therefore,

−F∗(∇VX) = F∗

(
ω(∇̂VBX + TVCX)

)
+ F∗

(
C(TVBX +∇VCX)

)
.

Which then yields (∇F∗)(V,X) = 0 if and only if

ω
(
∇̂VBX + TVCX

)
+ C

(
TVBX +H∇VCX

)
= 0

that is, (∇F∗)(V,X) = 0 if and only if

∇̂VBX + TVCX ∈ Γ(D1); TVBX +H∇VCX ∈ Γ(ωD2). (5.7)

which completes the proof. □

Now we recall the following definition:

Definition 5.2 Let F : (M, gM) −→ (B, gB) be a Riemannian map
between the Riemannian manifold (M, gM) and (B, gB). Then we say
that the fibers of the map F are totally umbilical if and only if

h(V,W ) = g(V,W )λ, (5.8)

for any X, Y ∈ Γ(TM) where h is the second fundamental form of
the fibers when considered as the immersed submanifolds of the tatal
space M and concide with the B. O’Neill’s fundamental tensor T for
the vector fields V,W ∈ Γ(kerF∗). λ is called the mean curvature
vector of the fibers and is a horizontal vector field.

Infact, we prove the following.

Theorem 5.2 Let F : (M, gM , J) −→ (B, gB) be a Riemannian map
from a kaehler manifold (M, gM , J) to a Riemannian manifold (B, gB)
with generic and D1−totally umbilical fibers. Then λ ∈ Γ(ωD2).
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Proof. Since M is a Kaehler manifold, for any V,W ∈ Γ(D1) using
(2.3) we have

∇V JW = J∇VW.

Now using (3.2) and (3.4) we have

h(V, JW ) + ∇̂V JW = Bh(V,W ) + Ch(V,W ) + ϕ∇VW + ω∇VW.

Taking Riemannian product in above equation with a vector field X ∈
Γ(µ) and then using (5.8) we obtain

g(h(V, JW ), X) = g(Ch(V,W ), X),

g(V, JW )g(λ,X) = −g(h(V,W ), JX)

= −g(V,W )g(λ, JX).

(5.9)

Interchanging V and W in (5.9), we have

g(W,JV )g(λ,X) = −g(W,V )g(λ, JX). (5.10)

From equation (5.9) and (5.10) on combining them, we get

g(λ, JX) = 0.

Which gives the result. □
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