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1. Introduction

The idea of slant submanifold was introduced by B. Y. Chen in 1990. Chen 3 gener-

alised the concept of holomorphic and totally real submanifold in complex geometry.

In 1996, A. Lotto 5 extended this concept in contact manifold. Recently Siraj Uddin

and Cenap Ozeln8 have studied a classification theorem on totally umbilical sub-

manifolds in a cosymplectic manifold. T. Adati 1 have studied submanifold of an

almost product Riemannian manifold and defined invariant, anti-invariant and non-

invariant submanifold of locally product manifold. Mehmet Atceken 2 studied slant

submanifold of a Riemannian product manifold in 2010. Totally umbilical proper-

slant submanifold of a nearly Kaehler manifold was studied by K. Singh , S. Uddin

and M. A. Khan 7, R. Prasad, S. S. Shukla, A. Haseeb and S. Kumar have studied

quasi hemi-slant submanifolds of Kaehler manifolds 9 and Hemi-slant submanifolds

in metallic Riemannian manifolds was studied by Cristina E. Hretcanu and Adara

M. Blaga 10. In the cosequences of these V. A. Khan and M. A. Khan 4 studied

semi-slant submanifold of a nearly Kaehler manifold. These studies inspired us for

the study of slant submanifold of a Kaehler-Norden manifold. Throughout the pa-

per, we have considered non-degenerate submanifolds of Kaehler-Norden manifold.

This paper contains six sections, first section is the introductory. In section 2 and

3 we have defined the terms which are required for the studies. In section 4 the for-

mation and proof of theorems are given. In section 5 and 6 discussion and conflict
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of interest are given.

2. Kaehler-Norden manifold

An even n-dimensional differentiable manifold M is said to be an almost complex

manifold with almost complex structure F if

F 2 + I = 0. (1)

A semi Riemannian metric g is said to be an anti-Hermitian (Norden) if the metric

g satisfies

g(FX, Y ) = g(X,FY ), (2)

for any X,Y ∈ TM . An almost complex manifold M with an anti-Hermitian (Nor-

den) metric define by (2) is called an almost anti-Hermitian (Norden) manifold.

An anti-Hermitian (Norden) manifold is said to be an anti-Kaehler or Kaehler-

Norden manifold if 6

(∇XF )Y = 0, (3)

where ∇ is a Levi-civita connection.

3. Submanifold

Through out this paper TM and T⊥M denote the Lie algebra of vector fields in

M and the set of all vector fields normal to M respectively. Now if we take two

connections ∇ and ∇ on M and M then the Gauss-Weigarten farmula are given by

∇X Y = ∇X Y + σ(X,Y ), (4)

and

∇X V = −AV X +∇⊥
X V, (5)

for any X,Y ∈ TM and any V ∈ T⊥M , where ∇⊥ is the connection in the normal

bundle, σ is the second fundamental form and AV is the Weigarten endomorphism

associated with V. The second fundamental form and the shap operator A are

associated by

g(AV X,Y ) = g(σ(X,Y ), V ). (6)

A manifold M is called totally geodesic if its second fundamental form σ vanishes

that is σ = 0, from (6) which gives AV = 0. A manifold is said to be totally umbilical

submanifold in M if for all X,Y ∈ TM, we have

σ(X,Y ) = g(X,Y )H, (7)

where H is the mean curvature vector field M in M . If H = 0, then it is called

minimal submanifold.

For any X ∈ TM , we can write

FX = TX +NX, (8)
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where TX and NX are tangetial and normal part of FX respectively.

Similarly, for any V ∈ T⊥M , we have

FV = tV + nV, (9)

where tV and nV are tangential and normal part of FV respectively.

If NX = 0 i.e. FX = TX ∈ TM , the submanifold is said to be an invariant for any

X ∈ TM . However if TX = 0 i.e. FX = NX ∈ T⊥M , the submanifold is called

anti-invariant X ∈ TM .

Replacing X by FX in equation (8), we get

F 2X = FTX + FNX. (10)

With the help of equations (1), (8), (9) and (10), we can write

−X = T 2X + TNX +NtX +NnX, (11)

compairing tangential and normal part of equation (11) , we have

T 2 +Nt = −I, (12)

and

TN +Nn = 0. (13)

Simiarly for any V ∈ T⊥M , we get

n2 +Nt = −I, (14)

and

tT + tn = 0. (15)

From equation (3), we have

∇X FY = F∇X Y, (16)

using equation (8) and (9) in (16), we get

∇X TY+σ(X,TY )−AN Y X +∇⊥
X NY

= T∇X Y +N∇X Y + tσ(X,Y ) + nσ(X,Y ),
(17)

compairing tangential and normal part of equation (17), we get

(∇X T )Y = AN Y X + tσ(X,Y ), (18)

and

(∇X N)Y = nσ(X,Y )− σ(X,TY ), (19)

where the covariant derivative of T and N are defined by

(∇X T )Y = ∇X TY − T∇X Y, (20)

and

(∇X N)Y = ∇⊥
X NY −N∇X Y, (21)
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for any X,Y ∈ TM .

Definition 1. A manifold M is said to be slant if the angle θ(X) is constant,

which is independent of the choice of x ∈ M and X ∈ TM . Invariant and anti-

invariant submanifolds are slant submanifolds with slant angle θ = 0 and θ = π
2

respectively. A slant submanifold is said to be proper slant if it is neither invariant

nor anti-invariant. Let M be a slant submanifold of an anti-Hermitian metric M .

The FTxM is subspace of T⊥M . Thus for any x ∈ M we decompose the normal

space as

T⊥M = FTM ⊕ µ. (22)

4. Main results

Theorem 2. Let M be a submanifold of a Kaehler-Norden manifold M then M

is slant if and only if there exists a constant λ ∈ [−1 , 0] such that T 2 = λI, where

λ = −cos2θ.

Proof: Suppose that M is slant manifold then for any X ∈ TM , we have

Cosθ(X) =
∥TX∥
∥FX∥

, (23)

where θ(X) is slant angle.

With the help of equation(2) and (23), we have

g(T 2X, X) = g(TX, TX)

= Cos2θ(X)g(FX, FX)

= −Cos2θ(X)g(X, X).

(24)

Equation (24), can be written as

T 2X = −Cos2θ(X)X. (25)

Let λ = −Cos2θ(X), then equation (25) becomes

T 2 = λ I, (26)

where λ ∈ [−1, 0].

Conversaly suppose that T 2 = λ I, where λ ∈ [−1, 0], then from equation (1), (24)

and (25), we get

Cosθ(X) =
g(FX, TX)

∥FX∥ ∥TX∥
=

g(X ,T 2X)

∥FX∥ ∥TX∥

= −Cos2θ(X)g(X, X)

∥FX∥ ∥TX∥
=

Cos2θ(X)g(FX, FX)

∥FX∥ ∥TX∥

= −λg(FX, FX)

∥FX∥ ∥TX∥
= −λ ∥FX∥

∥TX∥
.

(27)
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Using equation (23) in (27), we get

Cos2θ(X) = −λ, (28)

which implies that θ(X) is constant so M is slant.

Using equation (8) in (2), we have

g(TX +NX,TY +NY ) = −g(X,Y ). (29)

Equation (29) implies that

g(TX, TY ) = −Cos2θ g(X,Y ), (30)

and

g(NX,NY ) = −Sine2θ g(X,Y ). (31)

Thus we conclude:

Lemma 3. If M be a slant submanifold of a Kaehler-Norden manifold M with slant

angle θ then for any X,Y ∈ TM , we get

(i) g(TX, TX) = −Cos2θ g(X,Y ),

(ii) g(NY,NY ) = −Sine2θ g(X,Y ).

Now we propose:

Lemma 4. If M be a slant submanifold of a Kaehler-Norden manifold M then N

is parallel if and only if

AnV Z = AV TZ,

for all Z ∈ TM and V ∈ T⊥M .

Proof: From equation (2) and (19), we get

g((∇X N)Z, V ) = g(nσ(X ,Z)− σ(X, TZ), V )

= g((σ(X ,Z), nV )− g(σ(X ,TZ)) , V ),
(32)

using (6), in (32), we have

g((∇X N)Z, V ) = g(AnV Z −AV TZ, X). (33)

If we take

(∇X N) = 0, (34)

then from (33) and (34), we have

AnV Z = AV TZ. (35)

Conversaly if

AnV Z = AV TZ,
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then from equation (33), we get

(∇X N) = 0.

Since in a Norden manifold the metric tensor g satisfies

g(Z, (∇Y F )X) = g((∇Y F )Z,X). (36)

Equation (36) can be written as

g(Z, (∇Y FX − F∇Y X)) = g((∇Y FZ − F∇Y Z), X). (37)

Using equation (8) in (37), we have

g(Z, (∇Y (TX +NX)− F∇Y X)) = g((∇Y (TZ +NZ)− F∇Y Z), X). (38)

From (4), (5) and (38), we have

g(Z, (∇Y TX+σ(Y, TX)−AN X Y +∇⊥
Y NX))− g(Z,F∇Y X)

= g((∇Y TZ + σ(Y, TZ)−AN Z Y

+∇⊥
Y NZ), X)− g(F∇Y Z, X).

(39)

Using (8), (20) and (21) in (39), we get

g(Z, (∇Y T )X) + g(Z, σ(Y, TX))− g(Z, AN X Y ) + g(Z, (∇Y N)X)

= g((∇Y T )Z ,X) + g(σ(Y, TZ) , X)− g(AN Z Y ,X)

+ g((∇Y N)Z, X) + g(Z, Fσ(Y ,X))− g(Fσ(Y ,Z) , X),

(40)

from (36) and (40), we have

g(Z, σ(Y, TX)−Fσ(Y ,X))− g(σ(Y, TZ)− Fσ(Y ,Z) , X)

= g(Z, AN X Y )− g(AN Z Y ,X).
(41)

Suppose that

σ(Y, TX) = σ(Y ,X) = 0,

then from equation (41), we have

g(Z, AN X Y ) = g(AN Z Y ,X). (42)

Thus we conclude:

Theorem 5. If M be a slant submanifold of a Kaehler-Norden manifold M then

the manifold M is totally geodesic if

g(Z, AN X Y ) = g(AN Z Y ,X).

Now we propose:

Theorem 6. If M be a slant submanifold of a Kaehler-Norden manifold M then

the manifold M is totally geodesic if

∇X Y = 0.
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Proof: From equation (1), (2) and (3), we have

g(∇X Y, Z) = −g(∇X FY, FZ). (43)

Now using (8) in (43), we have

g(∇X Y, Z) = −g(∇X FY, TZ)− g(∇X FY, NZ), (44)

from (3) and (44), we have

g(∇X Y, Z) = −g(∇X Y, FTZ)− g(∇X Y, FNZ), (45)

using (8) in (45), we get

g(∇X Y, Z) = −g(∇X Y, T 2 Z + TNZ)− g(∇X Y, TNZ +N2 Z), (46)

equation (46), can be written as

g(∇X Y, Z) = −g(∇X Y, T 2 Z)− 2g(∇X Y, TNZ)− g(∇X Y, N2 Z), (47)

using lemma (23) in (47), we get

g(∇X Y, TNZ) = 0. (48)

From (4) and (48), we have

∇X Y = −σ(X,Y ) . (49)

If M be a totally geodesic i.e. σ(X,Y ) = 0, then from (49), we get

∇X Y = 0. (50)

Now we propose:

Theorem 7. If M is totally umbilical slant submanifold of a Kaeher-Norden man-

ifold M then the manifold M is minimal if and only if

(∇T X N)X = 0.

Proof: Let M is totally umbilical submanifold then from equation (7), we have

σ(TX, TY ) = g(TX , TY )H. (51)

Now using equation (4) in (51) , we get

∇T X T Y −∇T X T Y = g(TX , TY )H

= −Cos2θg(X ,Y )H.
(52)

Replacing Y with X, we have

∇T X T X −∇T X T X = −Cos2θg(X ,X)H

= −Cos2θ ∥X∥2 H.
(53)

Using (8) in (53), we have

∇T X F X −∇T X N X −∇T X T X = −Cos2θ ∥X∥2 H. (54)



8 B. K. Gupta and B. B. Chaturvedi

From (4), (5) and (54), we have

−(∇T X T )X + (∇T X F )X +N∇T X X + g(TX,X)FH

−∇⊥
T X NX +AN X TX

= −Cos2θ ∥X∥2 H.

(55)

Taking normal part of Equation (55), we have

N∇T X X −∇⊥
T X NX = −Cos2θ ∥X∥2 H. (56)

Now taking inner product in equation (56) with NX, we get

g(N∇T X X, NX)− g(∇⊥
T X NX, NX) = −Cos2θ ∥X∥2 g(H, NX), (57)

using (21) in (57), we get

g((∇T XN)X ,NX) = Cos2θ ∥X∥2 g(H, NX). (58)

If we take

(∇T XN)X = 0, (59)

then from equation (58) and (59), we get

H = 0. (60)

Conversaly if manifold be minimal i.e. H = 0, then from equation (58 ) and (60),

we get

(∇T XN)X = 0.

Now from equation(3), we get

∇X FY = F∇X Y, (61)

using (5), (6) and (8) in (61), we have

∇X TY +g(X, TY )H−AN Y X+∇⊥
X NY = T∇X Y +N∇X Y +Fσ(X, Y ). (62)

From (7) and (62), we get

∇X TY +g(X, TY )H−AN Y X+∇⊥
X NY = T∇X Y +N∇X Y +Fg(X,Y )H. (63)

Now taking inner product of (63) by FH, we have

g(∇X TY, FH) + g(X, TY ) g(H ,FH)

− g(NY ,H) g(X ,FH) + g(∇⊥
X NY ,FH)

= g(T∇X Y , FH) + g(N∇X Y , FH)

+ g(X,Y ) g(FH, FH).

(64)

equation (64) implies

g(∇X TY, FH) + g(X, TY ) g(H ,FH)

− g(NY ,H) g(X ,FH) + g(∇⊥
X NY ,FH)

= g(T∇X Y , FH) + g(N∇X Y , FH)− g(X, Y ) ∥H∥2 .
(65)
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From equation (21) and (65), we get

g(((∇X T ) + (∇X N))Y, FH)

+ g(X, TY ) g(H ,FH)− g(NY ,H) g(X ,FH)

= −g(X, Y ) ∥H∥2 .
(66)

Replacing H by FH in (66), we get

g(((∇X T ) + (∇X N))Y,H) + g(X, TY ) g(FH ,H)− g(NY ,FH) g(X ,H)

= −g(X,Y ) ∥H∥2 .
(67)

Equation (67) can be written as

H = − ((∇X T ) + (∇X N))Y + g(X, TY )FH − g(NY ,FH)

g(X,Y )
. (68)

Now if M be minimal i.e. H = 0, then from (68), we have

(∇X T )Y + (∇X N)Y = 0. (69)

Thus we conclude:

Theorem 8. If M be a totally umbilical slant submanifold of a Kaeher-Norden

manifold M then the slant submanifold M is minimal if

∇X T = −∇X N.

5. Discussion

In the present we have studied slant submanifold of a Kaehler-Norden manifold. In

this paper, we have proved some interesting results in Kaehler-Nordan manifold.
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