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1. Introduction

Finsler geometry has been developing rapidly since last few decades, after its emer-

gence in 1917. Finsler geometry has been influenced by group theory. The celebrated

Erlangen program of F. Klein, posed in 1872, greatly influenced the development of

geometry. Klein proposed to categorize the geometries by their chacteristic group

of transformations.

Conformal vector fields are important in Riemann - Finsler geometry. To solve

problems on conformal vector fields in Riemanna - Finsler geometry as follows:.

Let (M.F ) be a Finsler manifold. It is known that a vector field v = vi ∂
∂xi on

M is a conformal vector field on F with conformal factor c = c(x) if and only

if Xv(F
2) = 4cF 2, where Xv = vi ∂

∂xi + yi ∂v
j

∂xi
∂

∂yj [5]. Recently, Shen and Xia [5]

have studied conformal vector fields on a Randers manifold with certain curvature

properties. They also determine conformal vector fields on a locally projectively

flat Randers manifold. Besides they use homothetic vector fields (c = constant) on

Randers manifolds to construct new Randers metrics of scalar flag curvature [6].

The theory of Kropina metric was investigated by L.Berwald in connection with a

two dimensional Finsler space with rectilinear extremal and were investigated by

V.K.Kropina. Randers metrics seem to be among the simplest non - trivial Finsler

metrics with many investigation in Physics, Electron optics with a magnetic field,
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dissipative mechanics, irreversible thermodynamics etc..

In this paper, we shall study the conformal vector fields with Finsler Kropina

metric, whose metric is defined in Riemannian metric α and 1-form β and its norm

and here by inspiring the work of conformal vector fields on some Finsler manifolds.

Then we characterize the PDE’s of conformal vector fields on Kropina metric. In

natural way, we consider the general (α, β)- metrics are defined as the form:

F = αϕ(b2, β2/α). (1)

For example, the Randers metrics and the square metrics are defined by functions

ϕ = ϕ(b2, s) in the following form:

ϕ =

√
1− b2 + s2 + s

1− b2
. (2)

ϕ =
(
√
1− b2 + s2 + s)

(1− b2)2
√
1− b2 + s2

. (3)

Based on the some reviews, further we shall study the covariant derivatives of con-

formal vector field is directly proportional to Kropina metric .

2. Preliminaries

LetM be an n-dimensional differential manifold and TM be the tangent bundle.

A Finsler metric onM is a function F = F (x, y) : TM −→ R satisfying the following

conditions:

(1) F (x, y) is a C∞ function on TM\{0};
(2) F (x, y) ≥ 0 and F (x, y) = 0 → y = 0;

(3) F (x, λy) = λF (x, y), λ > 0;

(4) the fundamental tensor gij(x, y) =
1
2
∂2(F 2)
∂yi∂yj is positively defined.

Let

Cijk = 1
4 [F

2]yiyjyk = 1
2
∂gij
∂yk .

Define symmetric trilinear form C = Cijkdx
i
⊗

dxj
⊗

dxk on TM\{0}. We call C

the Cartan torison.

Let F be a Finsler metric on an n - dimensional manifold M . The canonical geodesic

σ(t) of F is characterized by

d2σi(t)
dt2 + 2Gi(σ(t), ˙σ(t)) = 0,

where Gi are the geodesic coefficients having the expression Gi = 1
4g

ij{[F 2]xkylyk−
[F 2]xl} with (gij) = (gij)

−1 and σ̇ = dσi

dt
∂

∂xi . A spray on M is a globally C∞ vector

field G on TM\{0} which is expressed in local coordinates as follows :

G = yi ∂
∂xi − 2Gi ∂

∂yi .



Conformal Vector Fields... 3

Given geodesic coefficients Gi, we define the covariant derivatives of a vector field

X = Xi(t) ∂
∂xi along a curve c(t) by

DiX(t) = { ˙Xi(t) +Xj(t)N i
j(c(t),

˙c(t))} ∂
∂xi|c(t)

,

where N i
j = ∂Gi

∂yj , ˙Xi(t) = dXi

dt and ċ = dci

dt
∂

∂xi .

It is easy to verify that

Dċ(X + Y )(t) = DċX(t) +DċY (t),

Dċ(fX)(t) = f1(t)X(t) + f(t)DċX(t) .

SinceD ˙c(t)
linearly depends onX(t), DċX(t) is called the linear covariant derivative.

It is easy to see that the canonical geodesic satisfies Dσ̇ = 0.

Let TM be the tangent bundle and π : TM\{0} → M the natural projection.

According to the pulled - back bundle π∗TM admits a unique linear connection

called the Chern connection.

Let F = α2

β be a Kropina metric expressed in terms of a Riemannian metric α and

a vector field V on M . Consider equation (1) is

F = αϕ(b2, β
α )

where ϕ = ϕ(b2, s) is a positive smooth function on [0, b0)× (−b0, b0). It is required

that

ϕ− ϕ2s > 0, ϕ− ϕ2s+ (b2 − s2)ϕ22 > 0, (4)

for b < b0, where,

ϕ1 = ∂ϕ
∂b2 , ϕ2 = ∂ϕ

∂s ,

ϕ22 = ∂2ϕ
∂s2 , α =

√
1−b2+s2

1−b2 , β = s
1−b2 .

We write the function where ϕ = ϕ(b2, s) in the following Taylor expansion

ϕ = p0 + p1s+ p2s
2 + o(s3),

where

pi = pi(b
2), and p0 = 1

(1−b2)
1
2
, p1 = 1

1−b2 , p2 = 1
2(1−b2)3/2

.

Now (2) implies that

p0 > 0, p0 + 2b2p2 > 0.

But there is no restriction on p1 . If we assume that p1 ̸= 0, then F is not reversible.

If the Finsler Kropina metric is on the conformal vector field, then Finsler Kropina

metric becomes

ϕ(b2, s) = 1−b2+s2

s(1−b2)
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and (2) and (3) satisfy

1

2b2
+ {p

1
1

p1
− p10

p0
+

p2
p0

[2
p11
p1

− p10
p0

]− p12
p0

}b2 =
1

2b2(1− b2)
. (5)

2.1. Definition of Conformal vector fields:

Let F be a Finsler metric on a manifold M , and V be a vector field on M . Let ϕt

be the flow generated by V . Define ϕ̃ : TM → TM by ϕt(x, y) = (ϕt(x), ϕt ∗ (y)).
A vector field V is said to be conformal if

ϕ∗
t F̃ = e−2σtF, (6)

where σt is a function on M for every t.

Differentiating the above equation by t at t = 0, we obtain

Xv(F ) = −2cF, (7)

where c is called the conformal factor and we define

Xv = V i ∂

∂xi
+ yi

∂V j

∂xi

∂

∂yj
, c =

d

dt
|t=0σt. (8)

Differentiating the above equation by t at t = 0, we obtain

Xv(F ) = −2cF, (9)

where c is called the conformal factor and we define

Xv = V i ∂

∂xi
+ yi

∂V j

∂xi

∂

∂yj
, c =

d

dt
|t=0σt. (10)

3. Conformal vector fields on Finsler- Kropina metric

In this section we shall study the conformal vector field on Kropina metric with (2).

Let V be a conformal vector field of F with conformal factor c(x).

i.e.,Xv(F
2) = 4cF 2. (11)

Now we are in the position from (2) and to solve the above with the Kropina metric,

we have

F =
α2

β
=

1− b2 + s2

s(1− b2)
,

then (11) implies

Xv(F
2) = ϕ2Xv(α

2) + α2Xv(ϕ
2),
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Xv(F
2) = ϕ2Xv(α

2) + 2ϕα2ϕ1Xv(b
2) + 2ϕϕ2αXv(β)− 2ϕϕ2βXv(α),

Xv(F
2) = (1 + b4 + s4 − 2b2 − 2s2b2)Xv(α

2)

+ 2α2Xv(b
2)(s3 − s3b2 + s5) + 2αXv(β)(b

2 + b4 + b6 + s4 − s4b2)

− 2βXv(α)(b
6 + 2b4 − b2 + s4 − s4b2 + 2s2b2

− b4s2 − s2)/s3(1− b2)3

Xv(F
2) = A0[A1Xv(α

2) + 2α2Xv(b
2)A2

+ 2αXv(β)A3 − 2βXv(α)A4], (12)

where,

A0 =
1

s3(1− b2)3
,

A1 = 1 + b4 + s4 − 2b2 − 2s2b2,

A2 = s3 − s3b2 + s5,

A3 = b4(1 + b2) + b2(1− s4) + s4,

A4 = b6 + b4(2− s2) + s2(2b2 − s4 − 1)− b2 + s4, (13)

Xv(α
2) = 2V0;0, Xv(β) = (V jbi;j + bjVj;i)y

i.

Then equation (12) equivalent to

(ϕ− ϕ2s)V0;0 + αϕ2(V
jbi;j + bjVj;i)y

i(ϕ1Xv(b
2)− 2cϕ)α2 = 0,(

1− b2 + s2

s(1− b2)
− (

s2 − s2b2 + 2b2 − b4 − 1

s2(1− b2)2
)s

)
V0;0

+ α

(
s2 − s2b2 + 2b2 − b4 − 1

s2(1− b2)2

)(
V jbi;j + bjvj;i

)
yi

+

[
(

s3

s2(1− b2)2
)Xv(b

2)− 2c(
1− b2 + s2

s(1− b2)
)

]
α2 = 0

(1− b2 + s2)(1− b2)− (s2 − s2b2 + 2b2 − sb4 − 1)

s(1− b2)2
V0;j

+ α

((
s2 − s2b2 + 2b2 − b4 − 1

s2(1− b2)2

)
(V jbi;j + bjVj;i)

)
yi

+
sα2Xv(b

2)− 2cα2(1− b2 + s2)

s(1− b2)
= 0

b4 + sb4 − 4b2

s(1− b2)
V0;j + α

{(
α2 − s2b2 + 2b2 − b4 − 1

s2(1− b2)2

)
V jbi;j + bjVj;i

}
yi

+ s2α2Xv(b
2)− 2cα2(1− b2 + s2)

s(1− b2)
= 0.
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Which implies,

B1V0;0 + αB2(V
jbi;j + bjVj;i)y

i + s2α2Xv(b
2)− 2B3cα

2 = 0, (14)

where,

B1 =
b4(1 + s2)− 4b2

s(1− b2)2
,

B2 =
α2 − b4 − b2(s2 − 2)− 1

s2(1− b2)2
,

B3 =
1− b2 + s2

s(1− b2)
. (15)

To simplify the computation, we fixed point x ∈ M and make a co-ordinate change

such that

y =
s√

b2 − s2
α, α =

b

b2 − s2
α, β =

bs√
b2 − s2

α, α =

√√√√ n∑
a=2

(ya)2.

Then we have

V0;0 = V1;1
s2

b2 − s2
α2 + (V 1;0 + V 0;1)

s√
b2 − s2

α+ V 0;0, (16)

V jbi + bjVj;iy
i = (V jb1;j + bjVj;1)

s√
b2 − s2

α+ (V jb0;j + bjV j;0), (17)

where,

V 1;0 + V 0;1 =

n∑
a=2

(V1;p + Vp;1)y
p, V 0;0 =

n∑
p,q=0

Vp;qy
pyq, (18)

V jb0;j + bjV j;0 =

n∑
p=2

(V jbp;j + bjVj;p)y
p.

From (16) and (17) in to (14), which yields

(ϕ− ϕ2s)

{
V1;1

s2

b2 − s2
α2 + (V1;0 + V0;1)

s√
b2 − s2α

+ V0;0

}
+ ϕ2

b√
b2 − s2

α

{
(V jb1;j + bjVj;1)

s√
b2 − s2

α+ (V jb0;i + bjVj;0)

}

B1{V1;1
s2

b2 − s2
α2 + (V 1;0 + V 0;1)

s√
b2 − s2

α+ V 0;0}}

+B2
b√

b2 = s2
α{(V jb1;j + bjVj;1)

s√
b2 − s2

α+ (V jb0;j

+ bjV j;0)}+ [s2Xv(b
2)− 2B3c]

b2

b2 − s2
α2 = 0. (19)

Consider the polynomial
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ϕ = p0 + p1s+ p2s
2 + o(s3)

with pi = pi(b
2) then we have,

ϕ1 = p10 + p11s+ p12s
2 + o(s2).

s
(1−b2)2 = p10 + p11s+ p12s

2 + o(s2).

By letting s = 0 in (19) then

p0V 0;0 + p1(V
jb0;j + bjV j;0)α+ {p10Xv(b

2)− 2cp0}α2 = 0. (20)

According to the irrationality of α, the (19) is equivalent to

p1(V
jb0;j + bjV j;0) = 0, (21)

p0(V 0;0 + p10Xv(b
2)− 2cp0)α2 = 0. (22)

Therefore, the equation (22) yields

(V jb0;j + bjV j;0) = 0,

V jbp;j + bjV j;p = 0. (23)

By (23) we have

Vp;q + Vq;p = −2{p
1
0

p0
Xv(b

2)− 2c}δpq, 2 ≤ p, q ≤ n. (24)

Again irrationality of α from (14) we get

B1(V 1;0 + V 0;1)
s√

b2 − s2
α = 0. (25)

B1{V1;1
b2

b2 − s2
α2 + V 0;0}+B2

bs

b2 − s2
α2(V jb1;j + bjVj;1)

+ {s2Xv(b
2)− 2cB2}

b2

b2 − s2
α2 = 0. (26)

From (24) we get

V 1;0 + V 0;1 = 0.

This equivalent to

V1;p + Vp;1 = 0. (27)

Solving (22) for V 0;0 and plugging it in to (25) we have

B1s
2{V1;1

p10
p0

(Xv(b
2)− 2c)} − {p

1
0

p0
Xv(b

2)− 2c}B1(b
2)

+B3sb(V
jb1;j + bjVj;1) +B2b

2Xv(b
2)

− 2cb2
(1− b2 − s2)

1− b2
= 0. (28)
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By Taylor series, expansion of ϕ(b2, s) then plugging it in to (25) and by the coef-

ficients of s we have.

bp1(V
jb1;j + bjVj;1) + b2Xv(b

2)
∂p1
∂b2

− 2cb2p1 = 0. (29)

Then

V jb1;j + bjVj;1 = −(
p11
p1

Xv(b
2)− 2c)bi. (30)

Then by (23) and (30) we have

V jbi;j + bjVj;i = −(
p11
p1

Xv(b
2)− 2c)bi. (31)

Substituting (30) in (29), we have

B1s
2{V1;j + (

p11
p0

Xv(b
2)− 2c)}

− b2Xv(b
2){p

1
0

p0
B1 −B2 +B3s

p11
p1

} = 0. (32)

The coefficients of all powers of s must vanish in (32). In particular, the coefficients

of s2 vanishes.

We have

V1;1 +
p10
p0

Xv(b
2)− 2cb = −b2Xv(b

2)R0, (33)

where

R0 = [
p10
p0

p2
p0

+
p10
p0

− 2
p11
p1

p2
p0

].

By (24),(26) and (33), we have

Vi;j + Vj;i = 4cpij − 2Xv(b
2){p

1
0

p0
pij +R0bibj}. (34)

It equivalent to

vi;j + vj;i = 4cα− 2Xv(b
2){p

1
0

p0
α+R0β}. (35)

Contracting (26) with bi and bj yields

Vi;jb
ibj = 2cb2 − b2Xv(b

2){p
1
0

p0
+R0b

2}. (36)

This equivalent to

Vi;jb
ibj = 2cβ2 − b2Xv(b

2).
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Contracting 26 with bi and bj yields

Vi;jb
ibj = 2cb2 − b2Xv(b

2){ 1

2b2
+

p11
p1

}. (37)

Here,we used the fact that Xv(b
2) = 2bi;kb

iV k . Then comparing (33) with (38)

yields

Xv(b
2){R1 −R0b

2} = 0, (38)

where R1 = 1
2b2 +

p1
1

p1
− p1

0

p0
.

Now, (38) reduced to

Xv(b
2){R1 +R2b

2} = 0. (39)

Here, two cases arises : Case 1: If

R1 +R2b
2 ̸= 0, (40)

where, R2 =
p1
0

p0

p1
2

p0
+

p1
2

p0
− 2

p1
1

p1

p2

p0
.

It follows from (40) that Xv(b
2) = 0 and in (30) and we have

Vi;j + Vj;i = 4cα, V jbi;j + bjVj;i = 2cβ. (41)

Notice that if Xv(b
2) = 0 and (41) holds then V satisfies (12) and V is an conformal

vector field.

Therefore, we obtain

Theorem-1

Let F = α2

β be a Kropina metric on an n-dimensional manifold M (n ≥ 3) and let

V = V i(x) ∂
∂xi be a conformal vector field.Then V is a conformal vector field of F

with conformal factor c = c(x) if and only if Xv(b
2) = 0 and

Vi;j + Vj;i = 4cα, V jbi;j + bjVj;i = 2cβ. (42)

Case 2: If

R1 +R2b
2 = 0. (43)

In this case Xv(b
2) ̸= 0. Then obviously, we have

Vi;j + Vj;i = 4c̄α− 2Xv(b
2)b−2R1bibj , (44)

V jbi;j + Vj;ib
j = 2c̄β. (45)

Since V is conformal vectror field and above equation then (12) is reduced to

Xv(b
2){B1b

−1[(b2 − s2)R∗
1] +B2 − (

1− b2 + s2

s(1− b2)
)
p11
p1

= 0. (46)

Therefore it follows we obtain

Theorem-2
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Let F = α2

β be a Kropina metric on an n-dimensional manifold M (n ≥ 3) and

let V = V i(x) ∂
∂xi be a conformal vector field.Then ,V is a conformal vector field of

F with conformal factor c = c(x) if and only if

Vi;j + Vj;i = 4c̄α− 2Xv(b
2)b−2R1bibj ,

V jbi;j + Vj;i = 2c̄β, (47)

Xv(b
2){B1b

−1[(b2 − s2)R∗
1] +B2

− (
1− b2 + s2

s(1− b2)
)
p11
p1

= 0, (48)

where,

R1 = (
1

2b2
+

p11
p1

− p10
p0

),

R∗
1 = (

p11
p1

− p10
p0

)
s2

2b2
,

B1 =
b4(1 + s2)− 4b2

s(1− b2)2
,

B2 =
α2 − b4 − b2(s2 − 2)− 1

s2(1− b2)2
,

and c = c− 1
2Xv(b

2)
p1
0

p0
.
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